Storage Foundation 8.0.2 Administrator's Guide - AIX
- Section I. Introducing Storage Foundation
- Overview of Storage Foundation
- How Dynamic Multi-Pathing works
- How Veritas Volume Manager works
- How Veritas Volume Manager works with the operating system
- How Veritas Volume Manager handles storage management
- Volume layouts in Veritas Volume Manager
- Online relayout
- Volume resynchronization
- Hot-relocation
- Dirty region logging
- Volume snapshots
- FastResync
- Volume sets
- How VxVM handles hardware clones or snapshots
- How Veritas File System works
- Section II. Provisioning storage
- Provisioning new storage
- Advanced allocation methods for configuring storage
- Customizing allocation behavior
- Setting default values for vxassist
- Using rules to make volume allocation more efficient
- Understanding persistent attributes
- Customizing disk classes for allocation
- Specifying allocation constraints for vxassist operations with the use clause and the require clause
- Management of the use and require type of persistent attributes
- Creating volumes of a specific layout
- Creating a volume on specific disks
- Creating volumes on specific media types
- Specifying ordered allocation of storage to volumes
- Site-based allocation
- Changing the read policy for mirrored volumes
- Customizing allocation behavior
- Creating and mounting VxFS file systems
- Creating a VxFS file system
- Converting a file system to VxFS
- Mounting a VxFS file system
- log mount option
- delaylog mount option
- tmplog mount option
- logiosize mount option
- nodatainlog mount option
- blkclear mount option
- mincache mount option
- convosync mount option
- ioerror mount option
- largefiles and nolargefiles mount options
- cio mount option
- mntlock mount option
- ckptautomnt mount option
- Combining mount command options
- Unmounting a file system
- Resizing a file system
- Displaying information on mounted file systems
- Monitoring free space
- Extent attributes
- Section III. Administering multi-pathing with DMP
- Administering Dynamic Multi-Pathing
- Discovering and configuring newly added disk devices
- Partial device discovery
- About discovering disks and dynamically adding disk arrays
- About third-party driver coexistence
- How to administer the Device Discovery Layer
- Listing all the devices including iSCSI
- Listing all the Host Bus Adapters including iSCSI
- Listing the ports configured on a Host Bus Adapter
- Listing the targets configured from a Host Bus Adapter or a port
- Listing the devices configured from a Host Bus Adapter and target
- Getting or setting the iSCSI operational parameters
- Listing all supported disk arrays
- Displaying details about an Array Support Library
- Excluding support for a disk array library
- Re-including support for an excluded disk array library
- Listing excluded disk arrays
- Listing disks claimed in the DISKS category
- Adding unsupported disk arrays to the DISKS category
- Removing disks from the DISKS category
- Foreign devices
- Making devices invisible to VxVM
- Making devices visible to VxVM
- About enabling and disabling I/O for controllers and storage processors
- About displaying DMP database information
- Displaying the paths to a disk
- Administering DMP using the vxdmpadm utility
- Retrieving information about a DMP node
- Displaying consolidated information about the DMP nodes
- Displaying the members of a LUN group
- Displaying paths controlled by a DMP node, controller, enclosure, or array port
- Displaying information about controllers
- Displaying information about enclosures
- Displaying information about array ports
- Displaying information about devices controlled by third-party drivers
- Displaying extended device attributes
- Suppressing or including devices from VxVM control
- Gathering and displaying I/O statistics
- Setting the attributes of the paths to an enclosure
- Displaying the redundancy level of a device or enclosure
- Specifying the minimum number of active paths
- Displaying the I/O policy
- Specifying the I/O policy
- Disabling I/O for paths, controllers, array ports, or DMP nodes
- Enabling I/O for paths, controllers, array ports, or DMP nodes
- Renaming an enclosure
- Configuring the response to I/O failures
- Configuring the I/O throttling mechanism
- Configuring Low Impact Path Probing (LIPP)
- Configuring Subpaths Failover Groups (SFG)
- Displaying recovery option values
- Configuring DMP path restoration policies
- Stopping the DMP path restoration thread
- Displaying the status of the DMP path restoration thread
- Configuring Array Policy Modules
- Discovering and configuring newly added disk devices
- Dynamic Reconfiguration of devices
- About online dynamic reconfiguration
- Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool
- Manually reconfiguring a LUN online that is under DMP control
- Overview of manually reconfiguring a LUN
- Manually removing LUNs dynamically from an existing target ID
- Manually adding new LUNs dynamically to a new target ID
- About detecting target ID reuse if the operating system device tree is not cleaned up
- Scanning an operating system device tree after adding or removing LUNs
- Manually cleaning up the operating system device tree after removing LUNs
- Manually replacing a host bus adapter online
- Changing the characteristics of a LUN from the array side
- Upgrading the array controller firmware online
- Managing devices
- Displaying disk information
- Changing the disk device naming scheme
- About disk installation and formatting
- Adding and removing disks
- Renaming a disk
- Event monitoring
- Administering Dynamic Multi-Pathing
- Section IV. Administering Storage Foundation
- Administering sites and remote mirrors
- About sites and remote mirrors
- Making an existing disk group site consistent
- Configuring a new disk group as a Remote Mirror configuration
- Fire drill - testing the configuration
- Changing the site name
- Administering the Remote Mirror configuration
- Examples of storage allocation by specifying sites
- Displaying site information
- Failure and recovery scenarios
- Administering sites and remote mirrors
- Section V. Optimizing I/O performance
- Section VI. Using Point-in-time copies
- Understanding point-in-time copy methods
- About point-in-time copies
- When to use point-in-time copies
- About Storage Foundation point-in-time copy technologies
- Volume-level snapshots
- Storage Checkpoints
- About FileSnaps
- About snapshot file systems
- Administering volume snapshots
- About volume snapshots
- Traditional third-mirror break-off snapshots
- Full-sized instant snapshots
- Creating instant snapshots
- Adding an instant snap DCO and DCO volume
- Creating and managing space-optimized instant snapshots
- Creating and managing full-sized instant snapshots
- Creating and managing third-mirror break-off snapshots
- Creating and managing linked break-off snapshot volumes
- Creating multiple instant snapshots
- Creating instant snapshots of volume sets
- Adding snapshot mirrors to a volume
- Removing a snapshot mirror
- Removing a linked break-off snapshot volume
- Adding a snapshot to a cascaded snapshot hierarchy
- Refreshing an instant space-optimized snapshot
- Reattaching an instant full-sized or plex break-off snapshot
- Reattaching a linked break-off snapshot volume
- Restoring a volume from an instant space-optimized snapshot
- Dissociating an instant snapshot
- Removing an instant snapshot
- Splitting an instant snapshot hierarchy
- Displaying instant snapshot information
- Controlling instant snapshot synchronization
- Listing the snapshots created on a cache
- Tuning the autogrow attributes of a cache
- Monitoring and displaying cache usage
- Growing and shrinking a cache
- Removing a cache
- Creating instant snapshots
- Linked break-off snapshots
- Cascaded snapshots
- Creating multiple snapshots
- Restoring the original volume from a snapshot
- Adding a version 0 DCO and DCO volume
- Administering Storage Checkpoints
- About Storage Checkpoints
- Storage Checkpoint administration
- Storage Checkpoint space management considerations
- Restoring from a Storage Checkpoint
- Storage Checkpoint quotas
- Administering FileSnaps
- Administering snapshot file systems
- Understanding point-in-time copy methods
- Section VII. Optimizing storage with Storage Foundation
- Understanding storage optimization solutions in Storage Foundation
- Migrating data from thick storage to thin storage
- Maintaining Thin Storage with Thin Reclamation
- Reclamation of storage on thin reclamation arrays
- Identifying thin and thin reclamation LUNs
- Displaying VxFS file system usage on thin reclamation LUNs
- Reclaiming space on a file system
- Reclaiming space on a disk, disk group, or enclosure
- About the reclamation log file
- Monitoring Thin Reclamation using the vxtask command
- Configuring automatic reclamation
- Veritas InfoScale 4k sector device support solution
- Section VIII. Maximizing storage utilization
- Understanding storage tiering with SmartTier
- Creating and administering volume sets
- Multi-volume file systems
- About multi-volume file systems
- About volume types
- Features implemented using multi-volume file system (MVFS) support
- Creating multi-volume file systems
- Converting a single volume file system to a multi-volume file system
- Adding a volume to and removing a volume from a multi-volume file system
- Volume encapsulation
- Reporting file extents
- Load balancing
- Converting a multi-volume file system to a single volume file system
- Administering SmartTier
- About SmartTier
- Supported SmartTier document type definitions
- Placement classes
- Administering placement policies
- File placement policy grammar
- File placement policy rules
- Calculating I/O temperature and access temperature
- Multiple criteria in file placement policy rule statements
- Multiple file selection criteria in SELECT statement clauses
- Multiple placement classes in <ON> clauses of CREATE statements and in <TO> clauses of RELOCATE statements
- Multiple placement classes in <FROM> clauses of RELOCATE and DELETE statements
- Multiple conditions in <WHEN> clauses of RELOCATE and DELETE statements
- File placement policy rule and statement ordering
- File placement policies and extending files
- Using SmartTier with solid state disks
- Sub-file relocation
- Administering hot-relocation
- About hot-relocation
- How hot-relocation works
- Configuring a system for hot-relocation
- Displaying spare disk information
- Marking a disk as a hot-relocation spare
- Removing a disk from use as a hot-relocation spare
- Excluding a disk from hot-relocation use
- Making a disk available for hot-relocation use
- Configuring hot-relocation to use only spare disks
- Moving relocated subdisks
- Modifying the behavior of hot-relocation
- Deduplicating data
- Compressing files
- About compressing files
- Compressing files with the vxcompress command
- Interaction of compressed files and other commands
- Interaction of compressed files and other features
- Interaction of compressed files and applications
- Use cases for compressing files
- Section IX. Administering and protecting storage
- Administering VxVM volumes as paging devices
- Managing volumes and disk groups
- Rules for determining the default disk group
- Moving volumes or disks
- Monitoring and controlling tasks
- Using vxnotify to monitor configuration changes
- Performing online relayout
- Adding a mirror to a volume
- Configuring SmartMove
- Removing a mirror
- Setting tags on volumes
- Managing disk groups
- Disk group versions
- Displaying disk group information
- Creating a disk group
- Removing a disk from a disk group
- Deporting a disk group
- Importing a disk group
- Handling of minor number conflicts
- Moving disk groups between systems
- Importing a disk group containing hardware cloned disks
- Setting up configuration database copies (metadata) for a disk group
- Renaming a disk group
- Handling conflicting configuration copies
- Disabling a disk group
- Destroying a disk group
- Backing up and restoring disk group configuration data
- Working with existing ISP disk groups
- Managing plexes and subdisks
- Decommissioning storage
- Using DMP with a SAN boot disk
- Configuring DMP for SAN booting
- Administering the root volume group (rootvg) under DMP control
- Running the bosboot command when LVM rootvg is enabled for DMP
- Extending an LVM rootvg that is enabled for DMP
- Reducing the native rootvg that is enabled for DMP
- Mirroring the root volume group
- Removing the mirror for the root volume group (rootvg)
- Cloning a LVM rootvg that is enabled for DMP
- Cleaning up the alternate disk volume group when LVM rootvg is enabled for DMP
- Using mksysb when the root volume group is under DMP control
- Upgrading Storage Foundation and AIX on a DMP-enabled rootvg
- Quotas
- About Veritas File System quota limits
- About quota files on Veritas File System
- About Veritas File System quota commands
- About quota checking with Veritas File System
- Using Veritas File System quotas
- Turning on Veritas File System quotas
- Turning on Veritas File System quotas at mount time
- Editing Veritas File System quotas
- Modifying Veritas File System quota time limits
- Viewing Veritas File System disk quotas and usage
- Displaying blocks owned by users or groups
- Turning off Veritas File System quotas
- Support for 64-bit Quotas
- File Change Log
- Section X. Reference
- Appendix A. Reverse path name lookup
- Appendix B. Tunable parameters
- About tuning Storage Foundation
- Tuning the VxFS file system
- DMP tunable parameters
- Methods to change Dynamic Multi-Pathing tunable parameters
- DMP driver tunables
- Tunable parameters for VxVM
- Methods to change Veritas Volume Manager tunable parameters
- Appendix C. Command reference
- Appendix D. Executive Order logging
DMP tunable parameters
DMP provides various parameters that you can use to tune your environment.
Table: DMP parameters that are tunable shows the DMP parameters that can be tuned. You can set a tunable parameter online, without a reboot.
Table: DMP parameters that are tunable
Parameter | Description |
|---|---|
dmp_cache_open | If this parameter is set to on, the first open of a device is cached. This caching enhances the performance of device discovery by minimizing the overhead that is caused by subsequent opens on the device. If this parameter is set to off, caching is not performed. The default value is on. |
dmp_daemon_count | The number of kernel threads that are available for servicing path error handling, path restoration, and other DMP administrative tasks. |
dmp_delayq_interval | How long DMP should wait before retrying I/O after an array fails over to a standby path. Some disk arrays are not capable of accepting I/O requests immediately after failover. The default value is 15 seconds. |
dmp_display_alua_states | For ALUA arrays, this tunable displays the asymmetric access state instead of PRIMARY or SECONDARY state in the PATH-TYPE[M] column. The asymmetric access state can be:
The default tunable value is on. |
dmp_fast_recovery | Whether DMP should try to obtain SCSI error information directly from the HBA interface. Setting the value to on can potentially provide faster error recovery, if the HBA interface supports the error enquiry feature. If this parameter is set to off, the HBA interface is not used. The default setting is on. |
dmp_health_time | DMP detects intermittently failing paths, and prevents I/O requests from being sent on them. The value of dmp_health_time represents the time in seconds for which a path must stay healthy. If a path's state changes back from enabled to disabled within this time period, DMP marks the path as intermittently failing, and does not re-enable the path for I/O until dmp_path_age seconds elapse. The default value is 60 seconds. A value of 0 prevents DMP from detecting intermittently failing paths. |
dmp_log_level | The level of detail that is displayed for DMP console messages. The following level values are defined: 1 - Displays all DMP log messages that are critical. 2 - Displays level 1 messages plus messages that relate to path or disk addition or removal, SCSI errors, IO errors and DMP node migration. 3 - Displays level 1 and 2 messages plus messages that relate to path throttling, suspect path, idle path and insane path logic. 4 - Displays level 1, 2 and 3 messages plus messages that relate to setting or changing attributes on a path and tunable related changes. 5 or higher - Displays level 1, 2, 3 and 4 messages plus more verbose messages. The default value is 1. |
dmp_low_impact_probe | Determines if the path probing by restore daemon is optimized or not. Set it to on to enable optimization and off to disable. Path probing is optimized only when restore policy is check_disabled or during check_disabled phase of check_periodic policy. |
dmp_lun_retry_timeout | Specifies a retry period for handling transient errors that are not handled by the HBA and the SCSI driver. Specify the time in seconds. In general, no such special handling is required. Therefore, the default value of the dmp_lun_retry_timeout tunable parameter is 30. When all paths to a disk fail, DMP fails the I/Os to the application. The paths are checked for connectivity only once. In special cases when DMP needs to handle the transient errors, configure DMP to delay failing the I/Os to the application for a short interval. Set the dmp_lun_retry_timeout tunable parameter to a non-zero value to specify the interval. If all of the paths to the LUN fail and I/Os need to be serviced, then DMP probes the paths every five seconds for the specified interval. If the paths are restored within the interval, DMP detects this and retries the I/Os. DMP does not fail I/Os to a disk with all failed paths until the specified dmp_lun_retry_timeout interval or until the I/O succeeds on one of the paths, whichever happens first. |
dmp_monitor_fabric | Determines if DMP should register for HBA events from SNIA HAB APIs. These events improve the failover performance by proactively avoiding the I/O paths that have impending failure. The default setting is off. Veritas recommends that this setting remain off to avoid performance issues on the AIX platform. |
dmp_monitor_ownership | Determines whether the ownership monitoring is enabled for ALUA arrays. When this tunable is set to on, DMP polls the devices for LUN ownership changes. The polling interval is specified by the dmp_restore_interval tunable. The default value is on. When the dmp_monitor_ownership tunable is off, DMP does not poll the devices for LUN ownership changes. |
dmp_native_support | Determines whether DMP will do multi-pathing for native devices. Set the tunable to on to have DMP do multi-pathing for native devices. When Dynamic Multi-Pathing is installed as a component of Storage Foundation, the default value is off. When Dynamic Multi-Pathing is installed as a stand-alone product, the default value is on. |
dmp_path_age | The time for which an intermittently failing path needs to be monitored as healthy before DMP again tries to schedule I/O requests on it. The default value is 300 seconds. A value of 0 prevents DMP from detecting intermittently failing paths. |
dmp_pathswitch_blks_shift | The default number of contiguous I/O blocks that are sent along a DMP path to an array before switching to the next available path. The value is expressed as the integer exponent of a power of 2; for example 9 represents 512 blocks. The default value is 9. In this case, 512 blocks (256k) of contiguous I/O are sent over a DMP path before switching. For intelligent disk arrays with internal data caches, better throughput may be obtained by increasing the value of this tunable. For example, for the HDS 9960 A/A array, the optimal value is between 15 and 17 for an I/O activity pattern that consists mostly of sequential reads or writes. This parameter only affects the behavior of the balanced I/O policy. A value of 0 disables multi-pathing for the policy unless the vxdmpadm command is used to specify a different partition size for an array. |
dmp_probe_idle_lun | If DMP statistics gathering is enabled, set this tunable to on (default) to have the DMP path restoration thread probe idle LUNs. Set this tunable to off to turn off this feature. (Idle LUNs are VM disks on which no I/O requests are scheduled.) The value of this tunable is only interpreted when DMP statistics gathering is enabled. Turning off statistics gathering also disables idle LUN probing. |
dmp_probe_threshold | If the dmp_low_impact_probe is turned on, dmp_probe_threshold determines the number of paths to probe before deciding on changing the state of other paths in the same subpath failover group. The default value is 5. |
dmp_restore_cycles | If the DMP restore policy is The default value is 10. |
dmp_restore_interval | The interval attribute specifies how often the path restoration thread examines the paths. Specify the time in seconds. The default value is 300. The value of this tunable can also be set using the vxdmpadm start restore command. |
dmp_restore_policy | The DMP restore policy, which can be set to one of the following values:
The default value is The value of this tunable can also be set using the vxdmpadm start restore command. |
dmp_restore_state | If this parameter is set to enabled, it enables the path restoration thread to be started. See Configuring DMP path restoration policies. If this parameter is set to disabled, it stops and disables the path restoration thread. If this parameter is set to stopped, it stops the path restoration thread until the next device discovery cycle. The default is enabled. |
dmp_scsi_timeout | Determines the timeout value to be set for any SCSI command that is sent via DMP. If the HBA does not receive a response for a SCSI command that it has sent to the device within the timeout period, the SCSI command is returned with a failure error code. The default value is 30 seconds. |
dmp_sfg_threshold | Determines the minimum number of paths that should be failed in a failover group before DMP starts suspecting other paths in the same failover group. The value of 0 disables the failover logic based on subpath failover groups. The default value is 1. |
dmp_stat_interval | The time interval between gathering DMP statistics. |
More Information