Storage Foundation 8.0.2 Administrator's Guide - AIX
- Section I. Introducing Storage Foundation
- Overview of Storage Foundation
- How Dynamic Multi-Pathing works
- How Veritas Volume Manager works
- How Veritas Volume Manager works with the operating system
- How Veritas Volume Manager handles storage management
- Volume layouts in Veritas Volume Manager
- Online relayout
- Volume resynchronization
- Hot-relocation
- Dirty region logging
- Volume snapshots
- FastResync
- Volume sets
- How VxVM handles hardware clones or snapshots
- How Veritas File System works
- Section II. Provisioning storage
- Provisioning new storage
- Advanced allocation methods for configuring storage
- Customizing allocation behavior
- Setting default values for vxassist
- Using rules to make volume allocation more efficient
- Understanding persistent attributes
- Customizing disk classes for allocation
- Specifying allocation constraints for vxassist operations with the use clause and the require clause
- Management of the use and require type of persistent attributes
- Creating volumes of a specific layout
- Creating a volume on specific disks
- Creating volumes on specific media types
- Specifying ordered allocation of storage to volumes
- Site-based allocation
- Changing the read policy for mirrored volumes
- Customizing allocation behavior
- Creating and mounting VxFS file systems
- Creating a VxFS file system
- Converting a file system to VxFS
- Mounting a VxFS file system
- log mount option
- delaylog mount option
- tmplog mount option
- logiosize mount option
- nodatainlog mount option
- blkclear mount option
- mincache mount option
- convosync mount option
- ioerror mount option
- largefiles and nolargefiles mount options
- cio mount option
- mntlock mount option
- ckptautomnt mount option
- Combining mount command options
- Unmounting a file system
- Resizing a file system
- Displaying information on mounted file systems
- Monitoring free space
- Extent attributes
- Section III. Administering multi-pathing with DMP
- Administering Dynamic Multi-Pathing
- Discovering and configuring newly added disk devices
- Partial device discovery
- About discovering disks and dynamically adding disk arrays
- About third-party driver coexistence
- How to administer the Device Discovery Layer
- Listing all the devices including iSCSI
- Listing all the Host Bus Adapters including iSCSI
- Listing the ports configured on a Host Bus Adapter
- Listing the targets configured from a Host Bus Adapter or a port
- Listing the devices configured from a Host Bus Adapter and target
- Getting or setting the iSCSI operational parameters
- Listing all supported disk arrays
- Displaying details about an Array Support Library
- Excluding support for a disk array library
- Re-including support for an excluded disk array library
- Listing excluded disk arrays
- Listing disks claimed in the DISKS category
- Adding unsupported disk arrays to the DISKS category
- Removing disks from the DISKS category
- Foreign devices
- Making devices invisible to VxVM
- Making devices visible to VxVM
- About enabling and disabling I/O for controllers and storage processors
- About displaying DMP database information
- Displaying the paths to a disk
- Administering DMP using the vxdmpadm utility
- Retrieving information about a DMP node
- Displaying consolidated information about the DMP nodes
- Displaying the members of a LUN group
- Displaying paths controlled by a DMP node, controller, enclosure, or array port
- Displaying information about controllers
- Displaying information about enclosures
- Displaying information about array ports
- Displaying information about devices controlled by third-party drivers
- Displaying extended device attributes
- Suppressing or including devices from VxVM control
- Gathering and displaying I/O statistics
- Setting the attributes of the paths to an enclosure
- Displaying the redundancy level of a device or enclosure
- Specifying the minimum number of active paths
- Displaying the I/O policy
- Specifying the I/O policy
- Disabling I/O for paths, controllers, array ports, or DMP nodes
- Enabling I/O for paths, controllers, array ports, or DMP nodes
- Renaming an enclosure
- Configuring the response to I/O failures
- Configuring the I/O throttling mechanism
- Configuring Low Impact Path Probing (LIPP)
- Configuring Subpaths Failover Groups (SFG)
- Displaying recovery option values
- Configuring DMP path restoration policies
- Stopping the DMP path restoration thread
- Displaying the status of the DMP path restoration thread
- Configuring Array Policy Modules
- Discovering and configuring newly added disk devices
- Dynamic Reconfiguration of devices
- About online dynamic reconfiguration
- Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool
- Manually reconfiguring a LUN online that is under DMP control
- Overview of manually reconfiguring a LUN
- Manually removing LUNs dynamically from an existing target ID
- Manually adding new LUNs dynamically to a new target ID
- About detecting target ID reuse if the operating system device tree is not cleaned up
- Scanning an operating system device tree after adding or removing LUNs
- Manually cleaning up the operating system device tree after removing LUNs
- Manually replacing a host bus adapter online
- Changing the characteristics of a LUN from the array side
- Upgrading the array controller firmware online
- Managing devices
- Displaying disk information
- Changing the disk device naming scheme
- About disk installation and formatting
- Adding and removing disks
- Renaming a disk
- Event monitoring
- Administering Dynamic Multi-Pathing
- Section IV. Administering Storage Foundation
- Administering sites and remote mirrors
- About sites and remote mirrors
- Making an existing disk group site consistent
- Configuring a new disk group as a Remote Mirror configuration
- Fire drill - testing the configuration
- Changing the site name
- Administering the Remote Mirror configuration
- Examples of storage allocation by specifying sites
- Displaying site information
- Failure and recovery scenarios
- Administering sites and remote mirrors
- Section V. Optimizing I/O performance
- Section VI. Using Point-in-time copies
- Understanding point-in-time copy methods
- About point-in-time copies
- When to use point-in-time copies
- About Storage Foundation point-in-time copy technologies
- Volume-level snapshots
- Storage Checkpoints
- About FileSnaps
- About snapshot file systems
- Administering volume snapshots
- About volume snapshots
- Traditional third-mirror break-off snapshots
- Full-sized instant snapshots
- Creating instant snapshots
- Adding an instant snap DCO and DCO volume
- Creating and managing space-optimized instant snapshots
- Creating and managing full-sized instant snapshots
- Creating and managing third-mirror break-off snapshots
- Creating and managing linked break-off snapshot volumes
- Creating multiple instant snapshots
- Creating instant snapshots of volume sets
- Adding snapshot mirrors to a volume
- Removing a snapshot mirror
- Removing a linked break-off snapshot volume
- Adding a snapshot to a cascaded snapshot hierarchy
- Refreshing an instant space-optimized snapshot
- Reattaching an instant full-sized or plex break-off snapshot
- Reattaching a linked break-off snapshot volume
- Restoring a volume from an instant space-optimized snapshot
- Dissociating an instant snapshot
- Removing an instant snapshot
- Splitting an instant snapshot hierarchy
- Displaying instant snapshot information
- Controlling instant snapshot synchronization
- Listing the snapshots created on a cache
- Tuning the autogrow attributes of a cache
- Monitoring and displaying cache usage
- Growing and shrinking a cache
- Removing a cache
- Creating instant snapshots
- Linked break-off snapshots
- Cascaded snapshots
- Creating multiple snapshots
- Restoring the original volume from a snapshot
- Adding a version 0 DCO and DCO volume
- Administering Storage Checkpoints
- About Storage Checkpoints
- Storage Checkpoint administration
- Storage Checkpoint space management considerations
- Restoring from a Storage Checkpoint
- Storage Checkpoint quotas
- Administering FileSnaps
- Administering snapshot file systems
- Understanding point-in-time copy methods
- Section VII. Optimizing storage with Storage Foundation
- Understanding storage optimization solutions in Storage Foundation
- Migrating data from thick storage to thin storage
- Maintaining Thin Storage with Thin Reclamation
- Reclamation of storage on thin reclamation arrays
- Identifying thin and thin reclamation LUNs
- Displaying VxFS file system usage on thin reclamation LUNs
- Reclaiming space on a file system
- Reclaiming space on a disk, disk group, or enclosure
- About the reclamation log file
- Monitoring Thin Reclamation using the vxtask command
- Configuring automatic reclamation
- Veritas InfoScale 4k sector device support solution
- Section VIII. Maximizing storage utilization
- Understanding storage tiering with SmartTier
- Creating and administering volume sets
- Multi-volume file systems
- About multi-volume file systems
- About volume types
- Features implemented using multi-volume file system (MVFS) support
- Creating multi-volume file systems
- Converting a single volume file system to a multi-volume file system
- Adding a volume to and removing a volume from a multi-volume file system
- Volume encapsulation
- Reporting file extents
- Load balancing
- Converting a multi-volume file system to a single volume file system
- Administering SmartTier
- About SmartTier
- Supported SmartTier document type definitions
- Placement classes
- Administering placement policies
- File placement policy grammar
- File placement policy rules
- Calculating I/O temperature and access temperature
- Multiple criteria in file placement policy rule statements
- Multiple file selection criteria in SELECT statement clauses
- Multiple placement classes in <ON> clauses of CREATE statements and in <TO> clauses of RELOCATE statements
- Multiple placement classes in <FROM> clauses of RELOCATE and DELETE statements
- Multiple conditions in <WHEN> clauses of RELOCATE and DELETE statements
- File placement policy rule and statement ordering
- File placement policies and extending files
- Using SmartTier with solid state disks
- Sub-file relocation
- Administering hot-relocation
- About hot-relocation
- How hot-relocation works
- Configuring a system for hot-relocation
- Displaying spare disk information
- Marking a disk as a hot-relocation spare
- Removing a disk from use as a hot-relocation spare
- Excluding a disk from hot-relocation use
- Making a disk available for hot-relocation use
- Configuring hot-relocation to use only spare disks
- Moving relocated subdisks
- Modifying the behavior of hot-relocation
- Deduplicating data
- Compressing files
- About compressing files
- Compressing files with the vxcompress command
- Interaction of compressed files and other commands
- Interaction of compressed files and other features
- Interaction of compressed files and applications
- Use cases for compressing files
- Section IX. Administering and protecting storage
- Administering VxVM volumes as paging devices
- Managing volumes and disk groups
- Rules for determining the default disk group
- Moving volumes or disks
- Monitoring and controlling tasks
- Using vxnotify to monitor configuration changes
- Performing online relayout
- Adding a mirror to a volume
- Configuring SmartMove
- Removing a mirror
- Setting tags on volumes
- Managing disk groups
- Disk group versions
- Displaying disk group information
- Creating a disk group
- Removing a disk from a disk group
- Deporting a disk group
- Importing a disk group
- Handling of minor number conflicts
- Moving disk groups between systems
- Importing a disk group containing hardware cloned disks
- Setting up configuration database copies (metadata) for a disk group
- Renaming a disk group
- Handling conflicting configuration copies
- Disabling a disk group
- Destroying a disk group
- Backing up and restoring disk group configuration data
- Working with existing ISP disk groups
- Managing plexes and subdisks
- Decommissioning storage
- Using DMP with a SAN boot disk
- Configuring DMP for SAN booting
- Administering the root volume group (rootvg) under DMP control
- Running the bosboot command when LVM rootvg is enabled for DMP
- Extending an LVM rootvg that is enabled for DMP
- Reducing the native rootvg that is enabled for DMP
- Mirroring the root volume group
- Removing the mirror for the root volume group (rootvg)
- Cloning a LVM rootvg that is enabled for DMP
- Cleaning up the alternate disk volume group when LVM rootvg is enabled for DMP
- Using mksysb when the root volume group is under DMP control
- Upgrading Storage Foundation and AIX on a DMP-enabled rootvg
- Quotas
- About Veritas File System quota limits
- About quota files on Veritas File System
- About Veritas File System quota commands
- About quota checking with Veritas File System
- Using Veritas File System quotas
- Turning on Veritas File System quotas
- Turning on Veritas File System quotas at mount time
- Editing Veritas File System quotas
- Modifying Veritas File System quota time limits
- Viewing Veritas File System disk quotas and usage
- Displaying blocks owned by users or groups
- Turning off Veritas File System quotas
- Support for 64-bit Quotas
- File Change Log
- Section X. Reference
- Appendix A. Reverse path name lookup
- Appendix B. Tunable parameters
- About tuning Storage Foundation
- Tuning the VxFS file system
- DMP tunable parameters
- Methods to change Dynamic Multi-Pathing tunable parameters
- DMP driver tunables
- Tunable parameters for VxVM
- Methods to change Veritas Volume Manager tunable parameters
- Appendix C. Command reference
- Appendix D. Executive Order logging
COMPRESS statement
The COMPRESS statement in a file placement policy rule specifies in-place file compression on multi-volume or single-volume file systems. The placement policy becomes assigned to the selected file, and allocation for the compressed extents is done from the same tier specified in the <SOURCE> element of the <FROM> clause. SmartTier performs in-place compression of the entire file, even if the file spans across multiple tiers.
Note:
SmartTier does not schedule compression activity. If you did not integrate your Veritas InfoScale product with the Veritas Operations Manager (VOM), then you must automate compression activity by using techniques such as scheduling through cron jobs.
The following XML snippet illustrates the general form of the COMPRESS statement:
<COMPRESS>
<FROM>
<SOURCE>
<CLASS> placement_class_name </CLASS>
</SOURCE>
<SOURCE> additional_placement_class_specifications
</SOURCE>
</FROM>
<WHEN> compression_conditions </WHEN>
</COMPRESS>A COMPRESS statement contains the following clauses:
<FROM> | An optional clause that contains a list of placement classes from whose volumes designated files should be compressed if the files meet the conditions specified in the <WHEN> clause. No priority is associated with the ordering of placement classes listed in a <FROM> clause. If a file to which the rule applies is located on a volume in any specified placement class, the file is considered for compression. If a COMPRESS statement contains a <FROM> clause, VxFS only considers files that reside on volumes in placement classes specified in the clause for compression. If no <FROM> clause is present, qualifying files are compressed regardless of where the files reside. |
<WHEN> | An optional clause that indicates the conditions under which files to which the rule applies should be compressed. Files that have been unaccessed or unmodified for a specified period, reached a certain size, or reached a specific I/O temperature or access temperature level may be compressed. If a COMPRESS statement does not contain a <WHEN> clause, files to which the rule applies are compressed unconditionally. A <WHEN> clause may be included in a COMPRESS statement to specify that files should be compressed only if any or all of four types of criteria are met. Files can be specified for compression if they satisfy one or more criteria. |
The following are the criteria that can be specified for the <WHEN> clause:
<ACCAGE> | This criterion is met when files are inactive for a designated period or during a designated period relative to the time at which the fsppadm enforce command was issued. |
<MODAGE> | This criterion is met when files are unmodified for a designated period or during a designated period relative to the time at which the fsppadm enforce command was issued. |
<SIZE> | This criterion is met when files exceed or drop below a designated size or fall within a designated size range. |
<IOTEMP> | This criterion is met when files exceed or drop below a designated I/O temperature, or fall within a designated I/O temperature range. A file's I/O temperature is a measure of the I/O activity against it during the period designated by the <PERIOD>element prior to the time at which the fsppadm enforce command was issued. |
<ACCESSTEMP> | This criterion is met when files exceed or drop below a specified average access temperature, or fall within a specified access temperature range. A file's access temperature is similar to its I/O temperature, except that access temperature is computed using the number of I/O requests to the file, rather than the number of bytes transferred. |
Note:
The use of <IOTEMP> and <ACCESSTEMP> for data placement on VxFS servers that are used as NFS servers may not be very effective due to NFS caching. NFS client side caching and the way that NFS works can result in I/O initiated from an NFS client not producing NFS server side I/O. As such, any temperature measurements in place on the server side will not correctly reflect the I/O behavior that is specified by the placement policy.
If the server is solely used as an NFS server, this problem can potentially be mitigated by suitably adjusting or lowering the temperature thresholds. However, adjusting the thresholds may not always create the desired effect. In addition, if the same mount point is used both as an NFS export as well as a local mount, the temperature-based placement decisions will not be very effective due to the NFS cache skew.
The following XML snippet illustrates the general form of the <WHEN> clause in a COMPRESS statement:
<WHEN>
<ACCAGE Units="units_value">
<MIN Flags="comparison_operator">
min_access_age</MIN>
<MAX Flags="comparison_operator">
max_access_age</MAX>
</ACCAGE>
<MODAGE Units="units_value">
<MIN Flags="comparison_operator">
min_modification_age</MIN>
<MAX Flags="comparison_operator">
max_modification_age</MAX>
</MODAGE>
<SIZE " Units="units_value">
<MIN Flags="comparison_operator">
min_size</MIN>
<MAX Flags="comparison_operator">
max_size</MAX>
</SIZE>
<IOTEMP Type="read_write_preference" Prefer="temperature_preference">
<MIN Flags="comparison_operator">
min_I/O_temperature</MIN>
<MAX Flags="comparison_operator">
max_I/O_temperature</MAX>
<PERIOD Units="days_or_hours"> days_or_hours_of_interest </PERIOD>
</IOTEMP>
<ACCESSTEMP Type="read_write_preference"
Prefer="temperature_preference">
<MIN Flags="comparison_operator">
min_access_temperature</MIN>
<MAX Flags="comparison_operator">
max_access_temperature</MAX>
<PERIOD Units="days_or_hours"> days_or_hours_of_interest </PERIOD>
</ACCESSTEMP>
</WHEN>The access age (<ACCAGE>) element refers to the amount of time since a file was last accessed. VxFS computes access age by subtracting a file's time of last access, atime, from the time when the fsppadm enforce command was issued. The <MIN> and <MAX> XML elements in an <ACCAGE> clause, denote the minimum and maximum access age thresholds for compression, respectively. These elements are optional, but at least one must be included. Using the Units XML attribute, the <MIN> and <MAX> elements may be specified in the following units:
hours | Hours |
days | Days. A day is considered to be 24 hours prior to the time that the fsppadm enforce command was issued. |
Both the <MIN> and <MAX> elements require Flags attributes to direct their operation.
For <MIN>, the following Flags attributes values may be specified:
gt | The time of last access must be greater than the specified interval. |
eq | The time of last access must be equal to the specified interval. |
gteq | The time of last access must be greater than or equal to the specified interval. |
For <MAX>, the following Flags attributes values may be specified.
lt | The time of last access must be less than the specified interval. |
lteq | The time of last access must be less than or equal to the specified interval. |
Including a <MIN> element in a <WHEN> clause causes VxFS to compress files to which the rule applies that have been inactive for longer than the specified interval. Such a rule would typically be used to compress inactive files to less expensive storage tiers. Conversely, including <MAX> causes files accessed within the specified interval to be compressed. It would typically be used to move inactive files against which activity had recommenced to higher performance or more reliable storage. Including both <MIN> and <MAX> causes VxFS to compress files whose access age lies between the two.
The modification age compression criterion, <MODAGE>, is similar to access age, except that files' POSIX mtime values are used in computations. You would typically specify the <MODAGE> criterion to cause compression of recently modified files to higher performance or more reliable storage tiers in anticipation that the files would be accessed recurrently in the near future.
The file size compression criterion, <SIZE>, causes files to be compressed if the files are larger or smaller than the values specified in the <MIN> and <MAX> compression criteria, respectively, at the time that the fsppadm enforce command was issued. Specifying both criteria causes VxFS to schedule compression for files whose sizes lie between the two. Using the Units attribute, threshold file sizes may be specified in the following units:
bytes | Bytes |
KB | Kilobytes |
MB | Megabytes |
GB | Gigabytes |