InfoScale™ 9.0 Virtualization Guide - AIX
- Section I. Overview
- Storage Foundation and High Availability Solutions in AIX PowerVM virtual environments
- Overview of the InfoScale Virtualization Guide
- About the AIX PowerVM virtualization technology
- About InfoScale products support for the AIX PowerVM environment
- About IBM LPARs with N_Port ID Virtualization (NPIV)
- About Veritas Extension for Oracle Disk Manager
- Virtualization use cases addressed by InfoScale
- Storage Foundation and High Availability Solutions in AIX PowerVM virtual environments
- Section II. Implementation
- Setting up Storage Foundation and High Availability Solutions in AIX PowerVM virtual environments
- Supported configurations for Virtual I/O servers (VIOS) on AIX
- Dynamic Multi-Pathing in the logical partition (LPAR)
- Dynamic Multi-Pathing in the Virtual I/O server (VIOS)
- InfoScale products in the logical partition (LPAR)
- Storage Foundation Cluster File System High Availability in the logical partition (LPAR)
- Dynamic Multi-Pathing in the Virtual I/O server (VIOS) and logical partition (LPAR)
- Dynamic Multi-Pathing in the Virtual I/O server (VIOS) and InfoScale products in the logical partition (LPAR)
- Cluster Server in the logical partition (LPAR)
- Cluster Server in the management LPAR
- Cluster Server in a cluster across logical partitions (LPARs) and physical machines
- Support for N_Port ID Virtualization (NPIV) in IBM Virtual I/O Server (VIOS) environments
- About setting up logical partitions (LPARs) with InfoScale products
- Configuring IBM PowerVM LPAR guest for disaster recovery
- Installing and configuring Storage Foundation and High Availability (SFHA) Solutions in the logical partition (LPAR)
- Installing and configuring storage solutions in the Virtual I/O server (VIOS)
- Installing and configuring Cluster Server for logical partition and application availability
- Enabling Veritas Extension for ODM file access from WPAR with VxFS
- Supported configurations for Virtual I/O servers (VIOS) on AIX
- Setting up Storage Foundation and High Availability Solutions in AIX PowerVM virtual environments
- Section III. Use cases for AIX PowerVM virtual environments
- Application to spindle visibility
- Simplified storage management in VIOS
- About simplified management
- About Dynamic Multi-Pathing in a Virtual I/O server
- About the Volume Manager (VxVM) component in a Virtual I/O server
- Configuring Dynamic Multi-Pathing (DMP) on Virtual I/O server
- Configuring Dynamic Multi-Pathing (DMP) pseudo devices as virtual SCSI devices
- Extended attributes in VIO client for a virtual SCSI disk
- Virtual IO client adapter settings for Dynamic Multi-Pathing (DMP) in dual-VIOS configurations
- Using DMP to provide multi-pathing for the root volume group (rootvg)
- Boot device management on NPIV presented devices
- Virtual machine (logical partition) availability
- Simplified management and high availability for IBM Workload Partitions
- About IBM Workload Partitions
- About using IBM Workload Partitions (WPARs) with InfoScale products
- Implementing InfoScale support for WPARs
- How Cluster Server (VCS) works with Workload Patitions (WPARs)
- Configuring VCS in WPARs
- Configuring AIX WPARs for disaster recovery using VCS
- High availability and live migration
- About Live Partition Mobility (LPM)
- About the partition migration process and simplified management
- About Storage Foundation and High Availability (SFHA) Solutions support for Live Partition Mobility
- Providing high availability with live migration in a Cluster Server environment
- Providing logical partition (LPAR) failover with live migration
- Limitations and unsupported LPAR features
- Multi-tier business service support
- Server consolidation
- About IBM LPARs with virtual SCSI devices
- Using Storage Foundation in the logical partition (LPAR) with virtual SCSI devices
- Using Storage Foundation with virtual SCSI devices
- Setting up DMP for vSCSI devices in the logical partition (LPAR)
- About disabling DMP for vSCSI devices in the logical partition (LPAR)
- Preparing to install or upgrade Storage Foundation with DMP disabled for vSCSI devices in the logical partition (LPAR)
- Disabling DMP multi-pathing for vSCSI devices in the logical partition (LPAR) after installation or upgrade
- Adding and removing DMP support for vSCSI devices for an array
- How DMP handles I/O for vSCSI devices
- Using VCS with virtual SCSI devices
- About server consolidation
- About IBM Virtual Ethernet
- Physical to virtual migration (P2V)
- Section IV. Reference
Configuring IBM PowerVM LPAR guest for disaster recovery
The IBM PowerVM is configured for disaster recovery by replicating the boot disk by using the replication methods like Hitachi TrueCopy, EMC SRDF, IBM duplicating, cloning rootvg technology, and so on. The network configuration for the LPAR on the primary site may not be effective on the secondary site, if the two sites are in the different IP subnets. To apply the different network configurations on the different sites, you will need to make additional configuration changes to the LPAR resource.
To configure LPAR for disaster recovery, you need to configure VCS on both the sites in the management LPARs with the GCO option. See the Cluster Server Administrator's Guide for more information about the global clusters.
Perform the following steps to set up the LPAR guest (managed LPAR) for disaster recovery:
- On the primary and the secondary site, create the PowerVM LPAR guest using the Hardware Management Console (HMC) with the ethernet and the client Fibre Channel (FC) virtual adapter's configuration.
Note:
The installed OS in the LPAR guest is replicated using the IBM rootvg cloning technology or the DR strategy N_Port ID Virtualization (NPIV).
- On the LPAR guest, copy and install the
VRTSvcsnrfileset from the VCS installation media. This fileset installs thevcs-reconfigservice in the LPAR guest. This service ensures that the site-specific-network parameters are applied when the LPAR boots. You can install theVRTSvcsnrfileset by performing the following steps:# mkdir /<temp_dir> # cp <media>/pkgs/VRTSvcsnr.bff /<tmp_dir> # cd /<temp_dir> # installp -a -d VRTSvcsnr.bff VRTSvcsnr
- Create a VCS service group and add a VCS LPAR resource for the LPAR guest. Configure the DROpts attribute of the LPAR resource with the site-specific values for each of the following: IPAddress, Netmask, Gateway, DNSServers (nameserver), DNSSearchPath, Device, Domain, and HostName.
Set the value of the ConfigureNetwork attribute to 1 from the DROpts attribute to make the changes effective. The LPAR agent does not apply to the DROpts attributes for the guest LPAR, if the value of the ConfigureNetwork attribute is 0. For more info about DROpts attribute see the Cluster Server Bundled Agents Reference Guide.
- [ This step is optional:] To perform the rootvg replication using NPIV, the boot disk LUN is mapped directly to the guest LPARs via NPIV, and the source production rootvg LUN is replicated using the hardware technologies like Hitachi TrueCopy, EMC SRDF, and so on for the DR Site. Subsequently, add the appropriate VCS replication resource to the LPAR DR service group. Examples of hardware replication agents are SRDF for EMC SRDF, HTC for Hitachi TrueCopy, MirrorView for EMC MirrorView, and so on. VCS LPAR resource depends on the replication resource.
For more information about the appropriate VCS replication agent that is used to configure the replication resource, you can visit our website at the following URL: https://sort.veritas.com/agents
The replication resource ensures that when the resource is online in a site, the underlying replicated devices are in the primary mode, and the remote devices are in the secondary mode. Thus, when the LPAR resource is online, the underlying storage is always in the read-write mode.
- Repeat step 1 through step 4 on the secondary site.
Figure: Sample resource dependency diagram for NPIV base rootvg replication using the hardware replication technology
When the LPAR is online, the LPAR agent creates a private VLAN (with VLAN ID 123) between the management LPAR and the managed LPAR. The VLAN is used to pass the network parameters specified in the DROpts attribute to the managed LPAR. When the managed LPAR boots, it starts the vcs-reconfig service that requests for the network configuration from the management LPAR. As a result, the network configuration is resent, as a part of the response through the same VLAN. The vcs-reconfig service subsequently applies this configuration when the appropriate commands are run.