Veritas InfoScale™ 8.0 Troubleshooting Guide - AIX
- Introduction
- Section I. Troubleshooting Veritas File System
- Section II. Troubleshooting Veritas Volume Manager
- Recovering from hardware failure
- About recovery from hardware failure
- Listing unstartable volumes
- Displaying volume and plex states
- The plex state cycle
- Recovering an unstartable mirrored volume
- Recovering an unstartable volume with a disabled plex in the RECOVER state
- Forcibly restarting a disabled volume
- Clearing the failing flag on a disk
- Reattaching failed disks
- Recovering from a failed plex attach or synchronization operation
- Failures on RAID-5 volumes
- Recovering from an incomplete disk group move
- Restarting volumes after recovery when some nodes in the cluster become unavailable
- Recovery from failure of a DCO volume
- Recovering from instant snapshot failure
- Recovering from the failure of vxsnap prepare
- Recovering from the failure of vxsnap make for full-sized instant snapshots
- Recovering from the failure of vxsnap make for break-off instant snapshots
- Recovering from the failure of vxsnap make for space-optimized instant snapshots
- Recovering from the failure of vxsnap restore
- Recovering from the failure of vxsnap refresh
- Recovering from copy-on-write failure
- Recovering from I/O errors during resynchronization
- Recovering from I/O failure on a DCO volume
- Recovering from failure of vxsnap upgrade of instant snap data change objects (DCOs)
- Recovering from failed vxresize operation
- Recovering from boot disk failure
- Managing commands, tasks, and transactions
- Backing up and restoring disk group configurations
- Troubleshooting issues with importing disk groups
- Recovering from CDS errors
- Logging and error messages
- Troubleshooting Veritas Volume Replicator
- Recovery from RLINK connect problems
- Recovery from configuration errors
- Errors during an RLINK attach
- Errors during modification of an RVG
- Recovery on the Primary or Secondary
- About recovery from a Primary-host crash
- Recovering from Primary data volume error
- Primary SRL volume error cleanup and restart
- Primary SRL volume error at reboot
- Primary SRL volume overflow recovery
- Primary SRL header error cleanup and recovery
- Secondary data volume error cleanup and recovery
- Secondary SRL volume error cleanup and recovery
- Secondary SRL header error cleanup and recovery
- Secondary SRL header error at reboot
- Recovering from hardware failure
- Section III. Troubleshooting Dynamic Multi-Pathing
- Section IV. Troubleshooting Storage Foundation Cluster File System High Availability
- Troubleshooting Storage Foundation Cluster File System High Availability
- About troubleshooting Storage Foundation Cluster File System High Availability
- Troubleshooting CFS
- Troubleshooting fenced configurations
- Troubleshooting Cluster Volume Manager in Veritas InfoScale products clusters
- CVM group is not online after adding a node to the Veritas InfoScale products cluster
- Shared disk group cannot be imported in Veritas InfoScale products cluster
- Unable to start CVM in Veritas InfoScale products cluster
- Removing preexisting keys
- CVMVolDg not online even though CVMCluster is online in Veritas InfoScale products cluster
- Troubleshooting Storage Foundation Cluster File System High Availability
- Section V. Troubleshooting Cluster Server
- Troubleshooting and recovery for VCS
- VCS message logging
- Log unification of VCS agent's entry points
- Enhancing First Failure Data Capture (FFDC) to troubleshoot VCS resource's unexpected behavior
- GAB message logging
- Enabling debug logs for agents
- Enabling debug logs for IMF
- Enabling debug logs for the VCS engine
- About debug log tags usage
- Gathering VCS information for support analysis
- Gathering LLT and GAB information for support analysis
- Gathering IMF information for support analysis
- Message catalogs
- Troubleshooting the VCS engine
- Troubleshooting Low Latency Transport (LLT)
- Troubleshooting Group Membership Services/Atomic Broadcast (GAB)
- Troubleshooting VCS startup
- Troubleshooting Intelligent Monitoring Framework (IMF)
- Troubleshooting service groups
- VCS does not automatically start service group
- System is not in RUNNING state
- Service group not configured to run on the system
- Service group not configured to autostart
- Service group is frozen
- Failover service group is online on another system
- A critical resource faulted
- Service group autodisabled
- Service group is waiting for the resource to be brought online/taken offline
- Service group is waiting for a dependency to be met.
- Service group not fully probed.
- Service group does not fail over to the forecasted system
- Service group does not fail over to the BiggestAvailable system even if FailOverPolicy is set to BiggestAvailable
- Restoring metering database from backup taken by VCS
- Initialization of metering database fails
- Troubleshooting resources
- Troubleshooting I/O fencing
- Node is unable to join cluster while another node is being ejected
- The vxfentsthdw utility fails when SCSI TEST UNIT READY command fails
- Manually removing existing keys from SCSI-3 disks
- System panics to prevent potential data corruption
- Cluster ID on the I/O fencing key of coordinator disk does not match the local cluster's ID
- Fencing startup reports preexisting split-brain
- Registered keys are lost on the coordinator disks
- Replacing defective disks when the cluster is offline
- The vxfenswap utility exits if rcp or scp commands are not functional
- Troubleshooting CP server
- Troubleshooting server-based fencing on the Veritas InfoScale products cluster nodes
- Issues during online migration of coordination points
- Troubleshooting notification
- Troubleshooting and recovery for global clusters
- Troubleshooting the steward process
- Troubleshooting licensing
- Validating license keys
- Licensing error messages
- [Licensing] Insufficient memory to perform operation
- [Licensing] No valid VCS license keys were found
- [Licensing] Unable to find a valid base VCS license key
- [Licensing] License key cannot be used on this OS platform
- [Licensing] VCS evaluation period has expired
- [Licensing] License key can not be used on this system
- [Licensing] Unable to initialize the licensing framework
- [Licensing] QuickStart is not supported in this release
- [Licensing] Your evaluation period for the feature has expired. This feature will not be enabled the next time VCS starts
- Verifying the metered or forecasted values for CPU, Mem, and Swap
- VCS message logging
- Troubleshooting and recovery for VCS
- Section VI. Troubleshooting SFDB
Resynchronizing parity on a RAID-5 volume
In most cases, a RAID-5 volume does not have stale parity. Stale parity only occurs after all RAID-5 log plexes for the RAID-5 volume have failed, and then only if there is a system failure. Even if a RAID-5 volume has stale parity, it is usually repaired as part of the volume start process.
If a volume without valid RAID-5 logs is started and the process is killed before the volume is resynchronized, the result is an active volume with stale parity.
The following example is output from the vxprint -ht command for a stale RAID-5 volume:
V NAME RVG/VSET/COKSTATE STATE LENGTH READPOL PREFPLEX UTYPE PL NAME VOLUME KSTATE STATE LENGTH LAYOUT NCOL/WID MODE SD NAME PLEX DISK DISKOFFS LENGTH [COL/]OFF DEVICE MODE SV NAME PLEX VOLNAME NVOLLAYR LENGTH [COL/]OFF AM/NM MODE ... v r5vol - ENABLED NEEDSYNC 204800 RAID - raid5 pl r5vol-01 r5vol ENABLED ACTIVE 204800 RAID 3/16 RW sd disk01-01 r5vol-01 disk01 0 102400 0/0 hdisk3 ENA sd disk02-01 r5vol-01 disk02 0 102400 1/0 hdisk4 dS sd disk03-01 r5vol-01 disk03 0 102400 2/0 hdisk5 ENA ...
This output lists the volume state as NEEDSYNC, indicating that the parity needs to be resynchronized. The state could also have been SYNC, indicating that a synchronization was attempted at start time and that a synchronization process should be doing the synchronization. If no such process exists or if the volume is in the NEEDSYNC state, a synchronization can be manually started by using the resync keyword for the vxvol command.
Parity is regenerated by issuing VOL_R5_RESYNC ioctls to the RAID-5 volume. The resynchronization process starts at the beginning of the RAID-5 volume and resynchronizes a region equal to the number of sectors specified by the -o iosize option. If the -o iosize option is not specified, the default maximum I/O size is used. The resync operation then moves onto the next region until the entire length of the RAID-5 volume has been resynchronized.
For larger volumes, parity regeneration can take a long time. It is possible that the system may shut down, or the system may crashe before the operation is completed. In case of a system shutdown, the progress of parity regeneration must be kept across reboots. Otherwise, the process has to start all over again.
To avoid the restart process, parity regeneration is checkpointed. This means that the offset up to which the parity has been regenerated is saved in the configuration database. The -o checkpt=size option controls how often the checkpoint is saved. If the option is not specified, the default checkpoint size is used.
Because saving the checkpoint offset requires a transaction, making the checkpoint size too small can extend the time required to regenerate parity. After a system reboot, a RAID-5 volume that has a checkpoint offset smaller than the volume length starts a parity resynchronization at the checkpoint offset.
To resynchronize parity on a RAID-5 volume
- Type the following command:
# vxvol -g diskgroup resync r5vol