Veritas InfoScale™ 8.0 Troubleshooting Guide - AIX
- Introduction
- Section I. Troubleshooting Veritas File System
- Section II. Troubleshooting Veritas Volume Manager
- Recovering from hardware failure
- About recovery from hardware failure
- Listing unstartable volumes
- Displaying volume and plex states
- The plex state cycle
- Recovering an unstartable mirrored volume
- Recovering an unstartable volume with a disabled plex in the RECOVER state
- Forcibly restarting a disabled volume
- Clearing the failing flag on a disk
- Reattaching failed disks
- Recovering from a failed plex attach or synchronization operation
- Failures on RAID-5 volumes
- Recovering from an incomplete disk group move
- Restarting volumes after recovery when some nodes in the cluster become unavailable
- Recovery from failure of a DCO volume
- Recovering from instant snapshot failure
- Recovering from the failure of vxsnap prepare
- Recovering from the failure of vxsnap make for full-sized instant snapshots
- Recovering from the failure of vxsnap make for break-off instant snapshots
- Recovering from the failure of vxsnap make for space-optimized instant snapshots
- Recovering from the failure of vxsnap restore
- Recovering from the failure of vxsnap refresh
- Recovering from copy-on-write failure
- Recovering from I/O errors during resynchronization
- Recovering from I/O failure on a DCO volume
- Recovering from failure of vxsnap upgrade of instant snap data change objects (DCOs)
- Recovering from failed vxresize operation
- Recovering from boot disk failure
- Managing commands, tasks, and transactions
- Backing up and restoring disk group configurations
- Troubleshooting issues with importing disk groups
- Recovering from CDS errors
- Logging and error messages
- Troubleshooting Veritas Volume Replicator
- Recovery from RLINK connect problems
- Recovery from configuration errors
- Errors during an RLINK attach
- Errors during modification of an RVG
- Recovery on the Primary or Secondary
- About recovery from a Primary-host crash
- Recovering from Primary data volume error
- Primary SRL volume error cleanup and restart
- Primary SRL volume error at reboot
- Primary SRL volume overflow recovery
- Primary SRL header error cleanup and recovery
- Secondary data volume error cleanup and recovery
- Secondary SRL volume error cleanup and recovery
- Secondary SRL header error cleanup and recovery
- Secondary SRL header error at reboot
- Recovering from hardware failure
- Section III. Troubleshooting Dynamic Multi-Pathing
- Section IV. Troubleshooting Storage Foundation Cluster File System High Availability
- Troubleshooting Storage Foundation Cluster File System High Availability
- About troubleshooting Storage Foundation Cluster File System High Availability
- Troubleshooting CFS
- Troubleshooting fenced configurations
- Troubleshooting Cluster Volume Manager in Veritas InfoScale products clusters
- CVM group is not online after adding a node to the Veritas InfoScale products cluster
- Shared disk group cannot be imported in Veritas InfoScale products cluster
- Unable to start CVM in Veritas InfoScale products cluster
- Removing preexisting keys
- CVMVolDg not online even though CVMCluster is online in Veritas InfoScale products cluster
- Troubleshooting Storage Foundation Cluster File System High Availability
- Section V. Troubleshooting Cluster Server
- Troubleshooting and recovery for VCS
- VCS message logging
- Log unification of VCS agent's entry points
- Enhancing First Failure Data Capture (FFDC) to troubleshoot VCS resource's unexpected behavior
- GAB message logging
- Enabling debug logs for agents
- Enabling debug logs for IMF
- Enabling debug logs for the VCS engine
- About debug log tags usage
- Gathering VCS information for support analysis
- Gathering LLT and GAB information for support analysis
- Gathering IMF information for support analysis
- Message catalogs
- Troubleshooting the VCS engine
- Troubleshooting Low Latency Transport (LLT)
- Troubleshooting Group Membership Services/Atomic Broadcast (GAB)
- Troubleshooting VCS startup
- Troubleshooting Intelligent Monitoring Framework (IMF)
- Troubleshooting service groups
- VCS does not automatically start service group
- System is not in RUNNING state
- Service group not configured to run on the system
- Service group not configured to autostart
- Service group is frozen
- Failover service group is online on another system
- A critical resource faulted
- Service group autodisabled
- Service group is waiting for the resource to be brought online/taken offline
- Service group is waiting for a dependency to be met.
- Service group not fully probed.
- Service group does not fail over to the forecasted system
- Service group does not fail over to the BiggestAvailable system even if FailOverPolicy is set to BiggestAvailable
- Restoring metering database from backup taken by VCS
- Initialization of metering database fails
- Troubleshooting resources
- Troubleshooting I/O fencing
- Node is unable to join cluster while another node is being ejected
- The vxfentsthdw utility fails when SCSI TEST UNIT READY command fails
- Manually removing existing keys from SCSI-3 disks
- System panics to prevent potential data corruption
- Cluster ID on the I/O fencing key of coordinator disk does not match the local cluster's ID
- Fencing startup reports preexisting split-brain
- Registered keys are lost on the coordinator disks
- Replacing defective disks when the cluster is offline
- The vxfenswap utility exits if rcp or scp commands are not functional
- Troubleshooting CP server
- Troubleshooting server-based fencing on the Veritas InfoScale products cluster nodes
- Issues during online migration of coordination points
- Troubleshooting notification
- Troubleshooting and recovery for global clusters
- Troubleshooting the steward process
- Troubleshooting licensing
- Validating license keys
- Licensing error messages
- [Licensing] Insufficient memory to perform operation
- [Licensing] No valid VCS license keys were found
- [Licensing] Unable to find a valid base VCS license key
- [Licensing] License key cannot be used on this OS platform
- [Licensing] VCS evaluation period has expired
- [Licensing] License key can not be used on this system
- [Licensing] Unable to initialize the licensing framework
- [Licensing] QuickStart is not supported in this release
- [Licensing] Your evaluation period for the feature has expired. This feature will not be enabled the next time VCS starts
- Verifying the metered or forecasted values for CPU, Mem, and Swap
- VCS message logging
- Troubleshooting and recovery for VCS
- Section VI. Troubleshooting SFDB
Command logs
The vxcmdlog command allows you to log the invocation of other Veritas Volume Manager (VxVM) commands to a file.
The following examples demonstrate the usage of vxcmdlog:
vxcmdlog -l | List current settings for command logging. |
vxcmdlog -m on | Turn on command logging. |
vxcmdlog -s 512k | Set the maximum command log file size to 512K. |
vxcmdlog -n 10 | Set the maximum number of historic command log files to 10. |
vxcmdlog -n no_limit | Remove any limit on the number of historic command log files. |
vxcmdlog -m off | Turn off command logging. |
By default command logging is turned on. Command lines are logged to the file cmdlog, in the directory /etc/vx/log. This path name is a symbolic link to a directory whose location depends on the operating system. If required, you can redefine the directory which is linked.
If you want to preserve the settings of the vxcmdlog utility, you must also copy the settings file, .cmdlog, to the new directory.
Warning:
The .cmdlog file is a binary and should not be edited.
The size of the command log is checked after an entry has been written so the actual size may be slightly larger than that specified. When the log reaches a maximum size, the current command log file, cmdlog, is renamed as the next available historic log file, cmdlog.number, where number is an integer from 1 up to the maximum number of historic log files that is currently defined, and a new current log file is created.
A limited number of historic log files is preserved to avoid filling up the file system. If the maximum number of historic log files has been reached, the oldest historic log file is removed, and the current log file is renamed as that file.
Each log file contains a header that records the host name, host ID, and the date and time that the log was created.
The following are sample entries from a command log file:
# 0, 2329, Wed Feb 12 21:19:31 2003
/usr/sbin/vxdctl mode
# 17051, 2635, Wed Feb 12 21:19:33 2003
/usr/sbin/vxdisk -q -o alldgs list
# 0, 2722, Wed Feb 12 21:19:34 2003
/etc/vx/diag.d/vxprivutil dumpconfig /dev/vx/rdmp/Disk_4
# 26924, 3001, Thu Feb 13 19:30:57 2003
/usr/sbin/vxdisk list Disk_1Each entry usually contains a client ID that identifies the command connection to the vxconfigd daemon, the process ID of the command that is running, a time stamp, and the command line including any arguments.
If the client ID is 0, as in the third entry shown here, this means that the command did not open a connection to vxconfigd.
The client ID is the same as that recorded for the corresponding transactions in the transactions log.
Most command scripts are not logged, but the command binaries that they call are logged. Exceptions are the vxdisksetup, vxinstall, and vxdiskunsetup scripts, which are logged.
If there is an error reading from the settings file, command logging switches to its built-in default settings. This may mean, for example, that logging remains enabled after being disabled using vxcmdlog -m off command. If this happens, use the vxcmdlog utility to recreate the settings file, or restore the file from a backup.
See the vxcmdlog(1M) manual page.