Veritas InfoScale™ 7.4.1 Virtualization Guide - Linux on ESXi
- Section I. Overview
- About Veritas InfoScale solutions in a VMware environment
- Section II. Deploying Veritas InfoScale products in a VMware environment
- Getting started
- Understanding Storage Configuration
- Configuring storage
- Enabling disk UUID on virtual machines
- Installing Array Support Library (ASL) for VMDK on cluster nodes
- Excluding the boot disk from the Volume Manager configuration
- Creating the VMDK files
- Mapping the VMDKs to each virtual machine (VM)
- Enabling the multi-write flag
- Getting consistent names across nodes
- Creating a file system
- Section III. Use cases for Veritas InfoScale product components in a VMware environment
- Application availability using Cluster Server
- Multi-tier business service support
- Improving storage visibility, availability, and I/O performance using Dynamic Multi-Pathing
- Use cases for Dynamic Multi-Pathing (DMP) in the VMware environment
- How DMP works
- Achieving storage visibility using Dynamic Multi-Pathing in the hypervisor
- Achieving storage availability using Dynamic Multi-Pathing in the hypervisor
- Improving I/O performance with Dynamic Multi-Pathing in the hypervisor
- Achieving simplified management using Dynamic Multi-Pathing in the hypervisor and guest
- Improving data protection, storage optimization, data migration, and database performance
- Use cases for InfoScale product components in a VMware guest
- Protecting data with InfoScale product components in the VMware guest
- Optimizing storage with InfoScale product components in the VMware guest
- About SmartTier in the VMware environment
- About compression with InfoScale product components in the VMware guest
- About thin reclamation with InfoScale product components in the VMware guest
- About SmartMove with InfoScale product components in the VMware guest
- About SmartTier for Oracle with InfoScale product components in the VMware guest
- Migrating data with InfoScale product components in the VMware guest
- Improving database performance with InfoScale product components in the VMware guest
- Setting up virtual machines for fast failover using Storage Foundation Cluster File System High Availability on VMware disks
- About use cases for InfoScale Enterprise in the VMware guest
- Storage Foundation Cluster File System High Availability operation in VMware virtualized environments
- Storage Foundation functionality and compatibility matrix
- About setting up Storage Foundation Cluster File High System High Availability on VMware ESXi
- Planning a Storage Foundation Cluster File System High Availability (SFCFSHA) configuration
- Enable Password-less SSH
- Enabling TCP traffic to coordination point (CP) Server and management ports
- Configuring coordination point (CP) servers
- Deploying Storage Foundation Cluster File System High Availability (SFCFSHA) software
- Configuring Storage Foundation Cluster File System High Availability (SFCFSHA)
- Configuring non-SCSI3 fencing
- Section IV. Reference
How DMP monitors I/O on paths
DMP maintains a pool of kernel threads that are used to perform such tasks as error processing, path restoration, statistics collection, and SCSI request callbacks.
One kernel thread responds to I/O failures on a path by initiating a probe of the host bus adapter (HBA) that corresponds to the path. Another thread then takes the appropriate action according to the response from the HBA. The action taken can be to retry the I/O request on the path, or to fail the path and reschedule the I/O on an alternate path.
The restore kernel task is woken periodically (by default, every 5 minutes) to check the health of the paths, and to resume I/O on paths that have been restored. As some paths may suffer from intermittent failure, I/O is only resumed on a path if the path has remained healthy for a given period of time (by default, 5 minutes). DMP can be configured with different policies for checking the paths.
The statistics-gathering task records the start and end time of each I/O request, and the number of I/O failures and retries on each path. DMP can be configured to use this information to prevent the SCSI driver being flooded by I/O requests. This feature is known as I/O throttling.