Veritas InfoScale™ 7.4.1 Virtualization Guide - Linux on ESXi
- Section I. Overview
- About Veritas InfoScale solutions in a VMware environment
- Section II. Deploying Veritas InfoScale products in a VMware environment
- Getting started
- Understanding Storage Configuration
- Configuring storage
- Enabling disk UUID on virtual machines
- Installing Array Support Library (ASL) for VMDK on cluster nodes
- Excluding the boot disk from the Volume Manager configuration
- Creating the VMDK files
- Mapping the VMDKs to each virtual machine (VM)
- Enabling the multi-write flag
- Getting consistent names across nodes
- Creating a file system
- Section III. Use cases for Veritas InfoScale product components in a VMware environment
- Application availability using Cluster Server
- Multi-tier business service support
- Improving storage visibility, availability, and I/O performance using Dynamic Multi-Pathing
- Use cases for Dynamic Multi-Pathing (DMP) in the VMware environment
- How DMP works
- Achieving storage visibility using Dynamic Multi-Pathing in the hypervisor
- Achieving storage availability using Dynamic Multi-Pathing in the hypervisor
- Improving I/O performance with Dynamic Multi-Pathing in the hypervisor
- Achieving simplified management using Dynamic Multi-Pathing in the hypervisor and guest
- Improving data protection, storage optimization, data migration, and database performance
- Use cases for InfoScale product components in a VMware guest
- Protecting data with InfoScale product components in the VMware guest
- Optimizing storage with InfoScale product components in the VMware guest
- About SmartTier in the VMware environment
- About compression with InfoScale product components in the VMware guest
- About thin reclamation with InfoScale product components in the VMware guest
- About SmartMove with InfoScale product components in the VMware guest
- About SmartTier for Oracle with InfoScale product components in the VMware guest
- Migrating data with InfoScale product components in the VMware guest
- Improving database performance with InfoScale product components in the VMware guest
- Setting up virtual machines for fast failover using Storage Foundation Cluster File System High Availability on VMware disks
- About use cases for InfoScale Enterprise in the VMware guest
- Storage Foundation Cluster File System High Availability operation in VMware virtualized environments
- Storage Foundation functionality and compatibility matrix
- About setting up Storage Foundation Cluster File High System High Availability on VMware ESXi
- Planning a Storage Foundation Cluster File System High Availability (SFCFSHA) configuration
- Enable Password-less SSH
- Enabling TCP traffic to coordination point (CP) Server and management ports
- Configuring coordination point (CP) servers
- Deploying Storage Foundation Cluster File System High Availability (SFCFSHA) software
- Configuring Storage Foundation Cluster File System High Availability (SFCFSHA)
- Configuring non-SCSI3 fencing
- Section IV. Reference
About point-in-time copies
Storage Foundation offers a flexible and efficient means of managing business-critical data. Storage Foundation lets you capture an online image of an actively changing database at a given instant, called a point-in-time copy.
More and more, the expectation is that the data must be continuously available (24x7) for transaction processing, decision making, intellectual property creation, and so forth. Protecting the data from loss or destruction is also increasingly important. Formerly, data was taken out of service so that the data did not change while data backups occured; however, this option does not meet the need for minimal down time.
A point-in-time copy enables you to maximize the online availability of the data. You can perform system backup, upgrade, or perform other maintenance tasks on the point-in-time copies. The point-in-time copies can be processed on the same host as the active data, or a different host. If required, you can offload processing of the point-in-time copies onto another host to avoid contention for system resources on your production server. This method is called off-host processing. If implemented correctly, off-host processing solutions have almost no impact on the performance of the primary production system.