Dynamic Multi-Pathing 7.4.1 Administrator's Guide - Linux
- Understanding DMP
- Setting up DMP to manage native devices
- About setting up DMP to manage native devices
- Displaying the native multi-pathing configuration
- Migrating LVM volume groups to DMP
- Migrating to DMP from EMC PowerPath
- Migrating to DMP from Hitachi Data Link Manager (HDLM)
- Migrating to DMP from Linux Device Mapper Multipath
- Using Dynamic Multi-Pathing (DMP) devices with Oracle Automatic Storage Management (ASM)
- Enabling Dynamic Multi-Pathing (DMP) devices for use with Oracle Automatic Storage Management (ASM)
- Removing Dynamic Multi-Pathing (DMP) devices from the listing of Oracle Automatic Storage Management (ASM) disks
- Migrating Oracle Automatic Storage Management (ASM) disk groups on operating system devices to Dynamic Multi-Pathing (DMP) devices
- Adding DMP devices to an existing LVM volume group or creating a new LVM volume group
- Removing DMP support for native devices
- Administering DMP
- About enabling and disabling I/O for controllers and storage processors
- About displaying DMP database information
- Displaying the paths to a disk
- Setting customized names for DMP nodes
- Administering DMP using the vxdmpadm utility
- Retrieving information about a DMP node
- Displaying consolidated information about the DMP nodes
- Displaying the members of a LUN group
- Displaying paths controlled by a DMP node, controller, enclosure, or array port
- Displaying information about controllers
- Displaying information about enclosures
- Displaying information about array ports
- User-friendly CLI outputs for ALUA arrays
- Displaying information about devices controlled by third-party drivers
- Displaying extended device attributes
- Suppressing or including devices from VxVM control
- Gathering and displaying I/O statistics
- Setting the attributes of the paths to an enclosure
- Displaying the redundancy level of a device or enclosure
- Specifying the minimum number of active paths
- Displaying the I/O policy
- Specifying the I/O policy
- Disabling I/O for paths, controllers, array ports, or DMP nodes
- Enabling I/O for paths, controllers, array ports, or DMP nodes
- Renaming an enclosure
- Configuring the response to I/O failures
- Configuring the I/O throttling mechanism
- Configuring Subpaths Failover Groups (SFG)
- Configuring Low Impact Path Probing (LIPP)
- Displaying recovery option values
- Configuring DMP path restoration policies
- Stopping the DMP path restoration thread
- Displaying the status of the DMP path restoration thread
- Configuring Array Policy Modules
- Administering disks
- About disk management
- Discovering and configuring newly added disk devices
- Partial device discovery
- About discovering disks and dynamically adding disk arrays
- About third-party driver coexistence
- How to administer the Device Discovery Layer
- Listing all the devices including iSCSI
- Listing all the Host Bus Adapters including iSCSI
- Listing the ports configured on a Host Bus Adapter
- Listing the targets configured from a Host Bus Adapter or a port
- Listing the devices configured from a Host Bus Adapter and target
- Getting or setting the iSCSI operational parameters
- Listing all supported disk arrays
- Excluding support for a disk array library
- Re-including support for an excluded disk array library
- Listing excluded disk arrays
- Listing disks claimed in the DISKS category
- Displaying details about an Array Support Library
- Adding unsupported disk arrays to the DISKS category
- Removing disks from the DISKS category
- Foreign devices
- Changing the disk device naming scheme
- Discovering the association between enclosure-based disk names and OS-based disk names
- Dynamic Reconfiguration of devices
- About online Dynamic Reconfiguration
- Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool
- Manually reconfiguring a LUN online that is under DMP control
- Overview of manually reconfiguring a LUN
- Manually removing LUNs dynamically from an existing target ID
- Manually adding new LUNs dynamically to a new target ID
- About detecting target ID reuse if the operating system device tree is not cleaned up
- Scanning an operating system device tree after adding or removing LUNs
- Manually cleaning up the operating system device tree after removing LUNs
- Changing the characteristics of a LUN from the array side
- Upgrading the array controller firmware online
- Reformatting NVMe devices manually
- Event monitoring
- Performance monitoring and tuning
- About tuning Dynamic Multi-Pathing (DMP) with templates
- DMP tuning templates
- Example DMP tuning template
- Tuning a DMP host with a configuration attribute template
- Managing the DMP configuration files
- Resetting the DMP tunable parameters and attributes to the default values
- DMP tunable parameters and attributes that are supported for templates
- DMP tunable parameters
- Appendix A. DMP troubleshooting
- Appendix B. Reference
Displaying the paths to a disk
The vxdisk command is used to display the multi-pathing information for a particular metadevice. The metadevice is a device representation of a physical disk having multiple physical paths through the system's HBA controllers. In Dynamic Multi-Pathing (DMP,) all the physical disks in the system are represented as metadevices with one or more physical paths.
To display the multi-pathing information on a system
- Use the vxdisk path command to display the relationships between the device paths, disk access names, disk media names, and disk groups on a system as shown here:
# vxdisk path
SUBPATH DANAME DMNAME GROUP STATE sda sda mydg01 mydg ENABLED sdi sdi mydg01 mydg ENABLED sdb sdb mydg02 mydg ENABLED sdj sdj mydg02 mydg ENABLED . . .
This shows that two paths exist to each of the two disks, mydg01 and mydg02, and also indicates that each disk is in the ENABLED state.
To view multi-pathing information for a particular metadevice
- Use the following command:
# vxdisk list devicename
For example, to view multi-pathing information for the device sdl, use the following command:
# vxdisk list sdl
The output from the vxdisk list command displays the multi-pathing information, as shown in the following example:
Device: sdl devicetag: sdl type: sliced hostid: sys1 . . . Multipathing information: numpaths: 2 sdl state=enabled type=primary sdp state=disabled type=secondary
The numpaths line shows that there are 2 paths to the device. The next two lines in the "Multipathing information" section of the output show that one path is active (state=enabled) and that the other path has failed (state=disabled).
The type field is shown for disks on Active/Passive type disk arrays such as the EMC CLARiiON, Hitachi HDS 9200 and 9500, Sun StorEdge 6xxx, and Sun StorEdge T3 array. This field indicates the primary and secondary paths to the disk.
The type field is not displayed for disks on Active/Active type disk arrays such as the EMC Symmetrix, Hitachi HDS 99xx and Sun StorEdge 99xx Series, and IBM ESS Series. Such arrays have no concept of primary and secondary paths.
- Alternately, you can use the following command to view multi-pathing information:
# vxdmpadm getsubpaths dmpnodename=devicename
For example, to view multi-pathing information for emc_clariion0_431, use the following command:
# # vxdmpadm getsubpaths dmpnodename=emc_clariion0_431
Typical output from the vxdmpadm getsubpaths command is as follows:
NAME STATE[A] PATH-TYPE[M] CTLR-NAME ENCLR-TYPE ENCLR-NAME ATTRS PRIORITY =========================================================================================== sdac ENABLED Active/Non-Optimized c6 EMC_CLARiiON emc_clariion0 - - sdam ENABLED(A) Active/Optimized(P) c6 EMC_CLARiiON emc_clariion0 - - sdi ENABLED Active/Non-Optimized c1 EMC_CLARiiON emc_clariion0 - - sds ENABLED(A) Active/Optimized(P) c1 EMC_CLARiiON emc_clariion0 - -