Dynamic Multi-Pathing 7.4.1 Administrator's Guide - Linux
- Understanding DMP
- Setting up DMP to manage native devices
- About setting up DMP to manage native devices
- Displaying the native multi-pathing configuration
- Migrating LVM volume groups to DMP
- Migrating to DMP from EMC PowerPath
- Migrating to DMP from Hitachi Data Link Manager (HDLM)
- Migrating to DMP from Linux Device Mapper Multipath
- Using Dynamic Multi-Pathing (DMP) devices with Oracle Automatic Storage Management (ASM)
- Enabling Dynamic Multi-Pathing (DMP) devices for use with Oracle Automatic Storage Management (ASM)
- Removing Dynamic Multi-Pathing (DMP) devices from the listing of Oracle Automatic Storage Management (ASM) disks
- Migrating Oracle Automatic Storage Management (ASM) disk groups on operating system devices to Dynamic Multi-Pathing (DMP) devices
- Adding DMP devices to an existing LVM volume group or creating a new LVM volume group
- Removing DMP support for native devices
- Administering DMP
- About enabling and disabling I/O for controllers and storage processors
- About displaying DMP database information
- Displaying the paths to a disk
- Setting customized names for DMP nodes
- Administering DMP using the vxdmpadm utility
- Retrieving information about a DMP node
- Displaying consolidated information about the DMP nodes
- Displaying the members of a LUN group
- Displaying paths controlled by a DMP node, controller, enclosure, or array port
- Displaying information about controllers
- Displaying information about enclosures
- Displaying information about array ports
- User-friendly CLI outputs for ALUA arrays
- Displaying information about devices controlled by third-party drivers
- Displaying extended device attributes
- Suppressing or including devices from VxVM control
- Gathering and displaying I/O statistics
- Setting the attributes of the paths to an enclosure
- Displaying the redundancy level of a device or enclosure
- Specifying the minimum number of active paths
- Displaying the I/O policy
- Specifying the I/O policy
- Disabling I/O for paths, controllers, array ports, or DMP nodes
- Enabling I/O for paths, controllers, array ports, or DMP nodes
- Renaming an enclosure
- Configuring the response to I/O failures
- Configuring the I/O throttling mechanism
- Configuring Subpaths Failover Groups (SFG)
- Configuring Low Impact Path Probing (LIPP)
- Displaying recovery option values
- Configuring DMP path restoration policies
- Stopping the DMP path restoration thread
- Displaying the status of the DMP path restoration thread
- Configuring Array Policy Modules
- Administering disks
- About disk management
- Discovering and configuring newly added disk devices
- Partial device discovery
- About discovering disks and dynamically adding disk arrays
- About third-party driver coexistence
- How to administer the Device Discovery Layer
- Listing all the devices including iSCSI
- Listing all the Host Bus Adapters including iSCSI
- Listing the ports configured on a Host Bus Adapter
- Listing the targets configured from a Host Bus Adapter or a port
- Listing the devices configured from a Host Bus Adapter and target
- Getting or setting the iSCSI operational parameters
- Listing all supported disk arrays
- Excluding support for a disk array library
- Re-including support for an excluded disk array library
- Listing excluded disk arrays
- Listing disks claimed in the DISKS category
- Displaying details about an Array Support Library
- Adding unsupported disk arrays to the DISKS category
- Removing disks from the DISKS category
- Foreign devices
- Changing the disk device naming scheme
- Discovering the association between enclosure-based disk names and OS-based disk names
- Dynamic Reconfiguration of devices
- About online Dynamic Reconfiguration
- Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool
- Manually reconfiguring a LUN online that is under DMP control
- Overview of manually reconfiguring a LUN
- Manually removing LUNs dynamically from an existing target ID
- Manually adding new LUNs dynamically to a new target ID
- About detecting target ID reuse if the operating system device tree is not cleaned up
- Scanning an operating system device tree after adding or removing LUNs
- Manually cleaning up the operating system device tree after removing LUNs
- Changing the characteristics of a LUN from the array side
- Upgrading the array controller firmware online
- Reformatting NVMe devices manually
- Event monitoring
- Performance monitoring and tuning
- About tuning Dynamic Multi-Pathing (DMP) with templates
- DMP tuning templates
- Example DMP tuning template
- Tuning a DMP host with a configuration attribute template
- Managing the DMP configuration files
- Resetting the DMP tunable parameters and attributes to the default values
- DMP tunable parameters and attributes that are supported for templates
- DMP tunable parameters
- Appendix A. DMP troubleshooting
- Appendix B. Reference
About enclosure-based naming
Enclosure-based naming provides an alternative to operating system-based device naming. In a Storage Area Network (SAN) that uses Fibre Channel switches, information about disk location provided by the operating system may not correctly indicate the physical location of the disks. Enclosure-based naming allows DMP to access enclosures as separate physical entities. By configuring redundant copies of your data on separate enclosures, you can safeguard against failure of one or more enclosures.
Figure: Example configuration for disk enclosures connected through a Fibre Channel switch shows a typical SAN environment where host controllers are connected to multiple enclosures through a Fibre Channel switch.
In such a configuration, enclosure-based naming can be used to refer to each disk within an enclosure. For example, the device names for the disks in enclosure enc0 are named enc0_0, enc0_1, and so on. The main benefit of this scheme is that it lets you quickly determine where a disk is physically located in a large SAN configuration.
In most disk arrays, you can use hardware-based storage management to represent several physical disks as one LUN to the operating system. In such cases, VxVM also sees a single logical disk device rather than its component disks. For this reason, when reference is made to a disk within an enclosure, this disk may be either a physical disk or a LUN.
Another important benefit of enclosure-based naming is that it enables VxVM to avoid placing redundant copies of data in the same enclosure. This is a good thing to avoid as each enclosure can be considered to be a separate fault domain. For example, if a mirrored volume were configured only on the disks in enclosure enc1, the failure of the cable between the switch and the enclosure would make the entire volume unavailable.
If required, you can replace the default name that DMP assigns to an enclosure with one that is more meaningful to your configuration.
Figure: Example HA configuration using multiple switches to provide redundant loop access shows a High Availability (HA) configuration where redundant-loop access to storage is implemented by connecting independent controllers on the host to separate switches with independent paths to the enclosures.
Such a configuration protects against the failure of one of the host controllers (c1 and c2), or of the cable between the host and one of the switches. In this example, each disk is known by the same name to VxVM for all of the paths over which it can be accessed. For example, the disk device enc0_0 represents a single disk for which two different paths are known to the operating system, such as sdf and sdm.
To take account of fault domains when configuring data redundancy, you can control how mirrored volumes are laid out across enclosures.