Storage Foundation for Oracle® RAC 7.4.1 Administrator's Guide - Linux
- Section I. SF Oracle RAC concepts and administration
- Overview of Storage Foundation for Oracle RAC
- About Storage Foundation for Oracle RAC
- How SF Oracle RAC works (high-level perspective)
- Component products and processes of SF Oracle RAC
- Periodic health evaluation of SF Oracle RAC clusters
- About Virtual Business Services
- About Veritas InfoScale Operations Manager
- About Veritas Services and Operations Readiness Tools (SORT)
- Administering SF Oracle RAC and its components
- Administering SF Oracle RAC
- Setting the environment variables for SF Oracle RAC
- Starting or stopping SF Oracle RAC on each node
- Applying Oracle patches on SF Oracle RAC nodes
- Migrating Pluggable Databases (PDB) between Container Databases (CDB)
- Installing Veritas Volume Manager, Veritas File System, or ODM patches on SF Oracle RAC nodes
- Applying operating system updates on SF Oracle RAC nodes
- Adding storage to an SF Oracle RAC cluster
- Recovering from storage failure
- Backing up and restoring Oracle database using Veritas NetBackup
- Enhancing the performance of SF Oracle RAC clusters
- Administering SmartIO
- Creating snapshots for offhost processing
- Managing database storage efficiently using SmartTier
- Optimizing database storage using Thin Provisioning and SmartMove
- Scheduling periodic health checks for your SF Oracle RAC cluster
- Using environment variables to start and stop VCSMM modules
- Verifying the nodes in an SF Oracle RAC cluster
- Administering VCS
- About managing VCS modules
- Viewing available Veritas device drivers
- Starting and stopping VCS
- Environment variables to start and stop VCS modules
- Adding and removing LLT links
- Configuring aggregated interfaces under LLT
- Displaying the cluster details and LLT version for LLT links
- Configuring destination-based load balancing for LLT
- Enabling and disabling intelligent resource monitoring for agents manually
- Administering the AMF kernel driver
- Administering I/O fencing
- About administering I/O fencing
- About the vxfentsthdw utility
- General guidelines for using the vxfentsthdw utility
- About the vxfentsthdw command options
- Testing the coordinator disk group using the -c option of vxfentsthdw
- Performing non-destructive testing on the disks using the -r option
- Testing the shared disks using the vxfentsthdw -m option
- Testing the shared disks listed in a file using the vxfentsthdw -f option
- Testing all the disks in a disk group using the vxfentsthdw -g option
- Testing a disk with existing keys
- About the vxfenadm utility
- About the vxfenclearpre utility
- About the vxfenswap utility
- Enabling or disabling the preferred fencing policy
- About I/O fencing log files
- Migrating from disk-based fencing to server-based fencing using the installer
- Migrating from server-based fencing to disk-based fencing using the installer
- Administering the CP server
- Administering CFS
- Administering CVM
- Listing all the CVM shared disks
- Establishing CVM cluster membership manually
- Changing the CVM master manually
- Importing a shared disk group manually
- Deporting a shared disk group manually
- Starting shared volumes manually
- Verifying if CVM is running in an SF Oracle RAC cluster
- Verifying CVM membership state
- Verifying the state of CVM shared disk groups
- Verifying the activation mode
- Administering Flexible Storage Sharing
- About Flexible Storage Sharing disk support
- About the volume layout for Flexible Storage Sharing disk groups
- Setting the host prefix
- Exporting a disk for Flexible Storage Sharing
- Setting the Flexible Storage Sharing attribute on a disk group
- Using the host disk class and allocating storage
- Administering mirrored volumes using vxassist
- Displaying exported disks and network shared disk groups
- Tuning LLT for memory and performance in FSS environments
- Backing up and restoring disk group configuration data
- Administering SF Oracle RAC global clusters
- Administering SF Oracle RAC
- Overview of Storage Foundation for Oracle RAC
- Section II. Performance and troubleshooting
- Troubleshooting SF Oracle RAC
- About troubleshooting SF Oracle RAC
- Restarting the installer after a failed network connection
- Installer cannot create UUID for the cluster
- Troubleshooting SF Oracle RAC pre-installation check failures
- Troubleshooting LLT health check warning messages
- Troubleshooting I/O fencing
- SCSI reservation errors during bootup
- The vxfentsthdw utility fails when SCSI TEST UNIT READY command fails
- Node is unable to join cluster while another node is being ejected
- System panics to prevent potential data corruption
- Cluster ID on the I/O fencing key of coordinator disk does not match the local cluster's ID
- Fencing startup reports preexisting split-brain
- Registered keys are lost on the coordinator disks
- Replacing defective disks when the cluster is offline
- Troubleshooting I/O fencing health check warning messages
- Troubleshooting CP server
- Troubleshooting server-based fencing on the SF Oracle RAC cluster nodes
- Issues during online migration of coordination points
- Troubleshooting Cluster Volume Manager in SF Oracle RAC clusters
- Restoring communication between host and disks after cable disconnection
- Shared disk group cannot be imported in SF Oracle RAC cluster
- Error importing shared disk groups in SF Oracle RAC cluster
- Unable to start CVM in SF Oracle RAC cluster
- CVM group is not online after adding a node to the SF Oracle RAC cluster
- CVMVolDg not online even though CVMCluster is online in SF Oracle RAC cluster
- Shared disks not visible in SF Oracle RAC cluster
- Troubleshooting CFS
- Troubleshooting interconnects
- Troubleshooting Oracle
- Error when starting an Oracle instance in SF Oracle RAC
- Clearing Oracle group faults
- Oracle log files show shutdown called even when not shutdown manually
- DBCA fails while creating an Oracle RAC database
- Oracle's clusterware processes fail to start
- Oracle Clusterware fails after restart
- Troubleshooting the Virtual IP (VIP) configuration in an SF Oracle RAC cluster
- Troubleshooting Oracle Clusterware health check warning messages in SF Oracle RAC clusters
- Troubleshooting ODM in SF Oracle RAC clusters
- Troubleshooting Flex ASM in SF Oracle RAC clusters
- Prevention and recovery strategies
- Tunable parameters
- Troubleshooting SF Oracle RAC
- Section III. Reference
How SF Oracle RAC works (high-level perspective)
Oracle Real Application Clusters (RAC) is a parallel database environment that takes advantage of the processing power of multiple computers. Oracle stores data logically in the form of tablespaces and physically in the form of data files. The Oracle instance is a set of processes and shared memory that provide access to the physical database. Specifically, the instance involves server processes acting on behalf of clients to read data into shared memory and make modifications to it, and background processes that interact with each other and with the operating system to manage memory structure and do general housekeeping.
SF Oracle RAC provides the necessary infrastructure for running Oracle RAC and coordinates access to the shared data for each node to provide consistency and integrity. Each node adds its processing power to the cluster as a whole and can increase overall throughput or performance.
At a conceptual level, SF Oracle RAC is a cluster that manages applications (Oracle instances), networking, and storage components using resources contained in service groups. SF Oracle RAC clusters have the following properties:
A cluster interconnect enables cluster communications.
A public network connects each node to a LAN for client access.
Shared storage is accessible by each node that needs to run the application.
Figure: SF Oracle RAC basic layout and components displays the basic layout and individual components required for a SF Oracle RAC installation.
The basic layout has the following characteristics:
Multiple client applications that access nodes in the cluster over a public network.
Nodes that are connected by at least two private network links (also called cluster interconnects) that are connected to two different switches using 100BaseT or gigabit Ethernet controllers on each system.
If the private links are on a single switch, isolate them using VLAN.
Nodes that are connected to iSCSI or Fibre Channel shared storage devices over SAN.
All shared storage must support SCSI-3 PR.
Nodes must be connected with private network links using similar network devices and matching port numbers.
For example, if you use eth1 on one end of a link, the other end must also use eth1.
The Oracle Cluster Registry, vote disks, and data files configured on the shared storage that is available to each node. The shared storage can be a cluster file system or ASM disk groups created using raw VxVM volumes.
Three or an odd number of standard disks or LUNs (recommended number is three) used as coordinator disks or as coordination point (CP) servers for I/O fencing.
VCS manages the resources that are required by Oracle RAC. The resources must run in parallel on each node.
SF Oracle RAC includes the following technologies that are engineered to improve performance, availability, and manageability of Oracle RAC environments:
Cluster File System (CFS) and Cluster Volume Manager (CVM) technologies to manage multi-instance database access to shared storage.
An Oracle Disk Manager (ODM) library to maximize Oracle disk I/O performance.
Interfaces to Oracle Grid Infrastructure and RAC for managing cluster membership.
Figure: SF Oracle RAC architecture displays the technologies that make up the SF Oracle RAC internal architecture.
SF Oracle RAC provides an environment that can tolerate failures with minimal downtime and interruption to users. If a node fails as clients access the same database on multiple nodes, clients attached to the failed node can reconnect to a surviving node and resume access. Recovery after failure in the SF Oracle RAC environment is far quicker than recovery for a single-instance database because another Oracle instance is already up and running. The recovery process involves applying outstanding redo log entries of the failed node from the surviving nodes.