InfoScale™ 9.0 Storage and Availability Management for DB2 Databases - AIX, Linux
- Section I. Storage Foundation High Availability (SFHA) management solutions for DB2 databases
- Overview of Storage Foundation for Databases
- Introducing Storage Foundation High Availability (SFHA) Solutions for DB2
- About the File System component
- About the Volume Manager component
- About Dynamic Multi-Pathing (DMP)
- About Cluster Server
- About Cluster Server agents
- About InfoScale Operations Manager
- Feature support for DB2 across InfoScale products
- Use cases for InfoScale products
- Overview of Storage Foundation for Databases
- Section II. Deploying DB2 with InfoScale products
- Deployment options for DB2 in a Storage Foundation environment
- DB2 deployment options in an InfoScale environment
- DB2 on a single system with Storage Foundation
- DB2 on a single system with off-host in a Storage Foundation environment
- DB2 in a highly available cluster with Storage Foundation High Availability
- DB2 in a parallel cluster with SF Cluster File System HA
- Deploying DB2 and Storage Foundation in a virtualization environment
- Deploying DB2 with Storage Foundation SmartMove and Thin Provisioning
- Deploying DB2 with Storage Foundation
- Deploying DB2 in an off-host configuration with Storage Foundation
- Deploying DB2 with High Availability
- Deployment options for DB2 in a Storage Foundation environment
- Section III. Configuring Storage Foundation for Database (SFDB) tools
- Configuring and managing the Storage Foundation for Databases repository database
- About the Storage Foundation for Databases (SFDB) repository
- Requirements for Storage Foundation for Databases (SFDB) tools
- Storage Foundation for Databases (SFDB) tools availability
- Configuring the Storage Foundation for Databases (SFDB) tools repository
- Updating the Storage Foundation for Databases (SFDB) repository after adding a node
- Updating the Storage Foundation for Databases (SFDB) repository after removing a node
- Removing the Storage Foundation for Databases (SFDB) repository
- Configuring authentication for Storage Foundation for Databases (SFDB) tools
- Configuring and managing the Storage Foundation for Databases repository database
- Section IV. Improving DB2 database performance
- About database accelerators
- Improving database performance with Quick I/O
- About Quick I/O
- How Quick I/O improves database performance
- Tasks for setting up Quick I/O in a database environment
- Preallocating space for Quick I/O files using the setext command
- Accessing regular VxFS files as Quick I/O files
- Converting DB2 containers to Quick I/O files
- About sparse files
- Displaying Quick I/O status and file attributes
- Extending a Quick I/O file
- Monitoring tablespace free space with DB2 and extending tablespace containers
- Recreating Quick I/O files after restoring a database
- Disabling Quick I/O
- Improving DB2 database performance with VxFS Concurrent I/O
- Section V. Using point-in-time copies
- Understanding point-in-time copy methods
- About point-in-time copies
- When to use point-in-time copies
- About Storage Foundation point-in-time copy technologies
- Point-in-time copy solutions supported by SFDB tools
- About snapshot modes supported by Storage Foundation for Databases (SFDB) tools
- Volume-level snapshots
- Storage Checkpoints
- Considerations for DB2 point-in-time copies
- Administering third-mirror break-off snapshots
- Administering Storage Checkpoints
- About Storage Checkpoints
- Database Storage Checkpoints for recovery
- Creating a Database Storage Checkpoint
- Deleting a Database Storage Checkpoint
- Mounting a Database Storage Checkpoint
- Unmounting a Database Storage Checkpoint
- Creating a database clone using a Database Storage Checkpoint
- Restoring database from a Database Storage Checkpoint
- Gathering data for offline-mode Database Storage Checkpoints
- Backing up and restoring with Netbackup in an SFHA environment
- Understanding point-in-time copy methods
- Section VI. Optimizing storage costs for DB2
- Section VII. Storage Foundation for Databases administrative reference
- Storage Foundation for Databases command reference
- Tuning for Storage Foundation for Databases
- Troubleshooting SFDB tools
Third-mirror break-off snapshots
A plex break-off snapshot uses an additional mirror to create the snapshot. Although you can create a plex break-off snapshot for a single plex volume, typically you take a snapshot of a mirrored volume. A mirrored volume has more than one plex or mirror, each of which is a copy of the data. The snapshot operation "breaks off" the plex, which becomes the snapshot volume. You can break off an existing plex or add a new plex specifically to serve as the snapshot mirror. Generally, you want to maintain redundancy for the original volume. If the original volume is a mirrored volume with two plexes, you add a third mirror for the snapshot. Hence, this type of snapshot is also known as a third-mirror snapshot.
The snapshot plex must be on a different disk from the existing plexes in the volume, within the same disk group. The disk must have enough disk space to contain the contents of the existing volume. If you have a one terabyte volume, you must have an additional one terabyte of disk space.
When you create the snapshot, the plexes are separated into two volumes. The original volume retains its original plex or plexes. The snapshot volume contains the snapshot plex. The original volume continues to take on I/O. The snapshot volume retains the data at the point of time when the snapshot was created, until you choose to perform processing on that volume.
You can make multiple snapshots, so you can have multiple copies of the original data.
Third-mirror break-off snapshots are suitable for write-intensive volumes (such as for database redo logs) where the copy-on-write mechanism of space-optimized or full-sized instant snapshots might degrade performance.