Veritas InfoScale™ 8.0.2 Storage and Availability Management for Oracle Databases - AIX, Linux, Solaris
- Section I. Storage Foundation High Availability (SFHA) management solutions for Oracle databases
- Overview of Storage Foundation for Databases
- Introducing Storage Foundation High Availability (SFHA) Solutions for Oracle
- About Veritas File System
- About Veritas Volume Manager
- About Dynamic Multi-Pathing (DMP)
- About Cluster Server
- About Cluster Server agents
- About Veritas InfoScale Operations Manager
- Feature support for Oracle across Veritas InfoScale 8.0.2 products
- Use cases for Veritas InfoScale products
- Overview of Storage Foundation for Databases
- Section II. Deploying Oracle with Veritas InfoScale products
- Deployment options for Oracle in a Storage Foundation environment
- Oracle deployment options in a Storage Foundation environment
- Oracle single instance in a Storage Foundation environment
- Single instance Oracle with off-host in a Storage Foundation environment
- Single instance Oracle in a highly available cluster with Storage Foundation High Availability
- Single instance Oracle in a parallel cluster with SF Cluster File System HA environment
- About Oracle RAC in a Storage Foundation for Oracle RAC environment
- About Oracle in a replicated Storage Foundation environment
- Deploying Oracle and Storage Foundation in a virtualization environment
- Deploying Oracle with Storage Foundation SmartMove and Thin Provisioning
- Deploying Oracle with Storage Foundation
- Tasks for deploying Oracle databases
- Planning your Oracle storage
- About selecting a volume layout for deploying Oracle
- Setting up disk group for deploying Oracle
- Creating volumes for deploying Oracle
- Creating VxFS file system for deploying Oracle
- Mounting the file system for deploying Oracle
- Installing Oracle and creating database
- Deploying Oracle in an off-host configuration with Storage Foundation
- Deploying Oracle with High Availability
- Deploying Oracle with Volume Replicator (VVR) for disaster recovery
- Deployment options for Oracle in a Storage Foundation environment
- Section III. Configuring Storage Foundation for Database (SFDB) tools
- Configuring and managing the Storage Foundation for Databases repository database
- About the Storage Foundation for Databases (SFDB) repository
- Requirements for Storage Foundation for Databases (SFDB) tools
- Storage Foundation for Databases (SFDB) tools availability
- Configuring the Storage Foundation for Databases (SFDB) tools repository
- Backing up and restoring the Storage Foundation for Databases (SFDB) repository
- Updating the Storage Foundation for Databases (SFDB) repository after adding a node
- Updating the Storage Foundation for Databases (SFDB) repository after removing a node
- Removing the Storage Foundation for Databases (SFDB) repository
- Configuring authentication for Storage Foundation for Databases (SFDB) tools
- Configuring and managing the Storage Foundation for Databases repository database
- Section IV. Improving Oracle database performance
- About database accelerators
- Improving database performance with Veritas Extension for Oracle Disk Manager
- About Oracle Disk Manager in the Veritas InfoScale products environment
- Setting up Veritas Extension for Oracle Disk Manager in SFHA environment
- Configuring the Veritas Extension for Oracle Disk Manager in SFHA environment
- How to prepare existing database storage for Oracle Disk Manager in SFHA environment
- Verifying that Oracle Disk Manager is configured in SFHA environment
- Disabling the Oracle Disk Manager feature in SFHA environment
- Improving database performance with Veritas Cached Oracle Disk Manager
- About Cached ODM in SFHA environment
- Configuring Cached ODM in SFHA environment
- Administering Cached ODM settings with Cached ODM Advisor in SFHA environment
- Generating reports of candidate datafiles by using Cached ODM Advisor in SFHA environment
- Generating a basic report of the current read activity by using Cached ODM Advisor in SFHA environment
- Generating summary reports of historical activity by using Cached ODM Advisor in SFHA environment
- Generating historical activity reports on individual datafiles by using Cached ODM Advisor in SFHA environment
- Enabling and disabling Cached ODM on data files by using Cached ODM Advisor in SFHA environment
- Display the Cached ODM states of the database files by using Cached ODM Advisor in SFHA environment
- Show Cached ODM statistics by using Cached ODM Advisor in SFHA environment
- Displaying ODM I/O statistics by using Cached ODM Advisor in SFHA environment
- Generating reports of candidate datafiles by using Cached ODM Advisor in SFHA environment
- Improving database performance with Quick I/O
- About Quick I/O
- Creating Oracle database files as Quick I/O files using qiomkfile
- Preallocating space for Quick I/O files using the setext command
- Accessing regular VxFS files as Quick I/O files
- Converting Oracle files to Quick I/O files
- About sparse files
- Handling Oracle temporary tablespaces and Quick I/O
- Displaying Quick I/O status and file attributes
- Extending a Quick I/O file
- Using Oracle's AUTOEXTEND with Quick I/O files
- Recreating Quick I/O files after restoring a database
- Disabling Quick I/O
- Creating Quick I/O files in Solaris local zone
- Improving database performance with Cached Quick I/O
- Section V. Using point-in-time copies
- Understanding point-in-time copy methods
- About point-in-time copies
- When to use point-in-time copies
- About Storage Foundation point-in-time copy technologies
- Point-in-time copy solutions supported by SFDB tools
- About snapshot modes supported by Storage Foundation for Databases (SFDB) tools
- Volume-level snapshots
- About Reverse Resynchronization in volume-level snapshots (FlashSnap)
- Storage Checkpoints
- About FileSnaps
- Considerations for Oracle point-in-time copies
- Administering third-mirror break-off snapshots
- Administering space-optimized snapshots
- Planning to create an instant space-optimized snapshot
- Preparing a legacy volume for the creation of an instant snapshot
- Creating a shared cache object
- Creating a clone of an Oracle database by using space-optimized snapshots
- Creating multiple clones using FlashSnap snapshots
- Recovering the clone database manually
- Administering Storage Checkpoints
- About Storage Checkpoints
- Database Storage Checkpoints for recovery
- Creating a Database Storage Checkpoint
- Deleting a Database Storage Checkpoint
- Mounting a Database Storage Checkpoint
- Unmounting a Database Storage Checkpoint
- Creating a database clone using a Database Storage Checkpoint
- Restoring database from a Database Storage Checkpoint
- Gathering data for offline-mode Database Storage Checkpoints
- Administering FileSnap snapshots
- Backing up and restoring with Netbackup in an SFHA environment
- Understanding point-in-time copy methods
- Section VI. Optimizing storage costs for Oracle
- Understanding storage tiering with SmartTier
- Configuring and administering SmartTier
- Configuring SmartTier for Oracle
- SmartTier for Oracle command requirements
- Defining database parameters
- Configuring storage classes
- Converting a Veritas File System (VxFS) to a VxFS multi-volume file system
- Classifying volumes into a storage class
- Displaying free space on your storage class
- Adding new volumes to a storage class
- Removing volumes from a storage class
- Optimizing database storage using SmartTier for Oracle
- Running reports using SmartTier for Oracle
- Extent balancing in a database environment using SmartTier for Oracle
- Running sub-file database object reports using SmartTier for Oracle
- Optimizing sub-file database object placement using SmartTier for Oracle
- Configuring SmartTier for Oracle
- SmartTier use cases for Oracle
- Compressing files and databases to optimize storage costs
- Using the Compression Advisor tool
- About the Compression Advisor tool
- Compressing Oracle archive logs using Compression Advisor
- Displaying compression candidate data files using Compression Advisor
- Compressing Oracle data files using Compression Advisor
- Displaying compressed data files using Compression Advisor
- Uncompressing Oracle data files using Compression Advisor
- Compression Advisor command reference
- Section VII. Managing Oracle disaster recovery
- Section VIII. Storage Foundation for Databases administrative reference
- Storage Foundation for Databases command reference
- Tuning for Storage Foundation for Databases
- Additional documentation
- About tuning Veritas Volume Manager (VxVM)
- About tuning VxFS
- About tuning Oracle databases
- About tuning AIX Virtual Memory Manager
- About tuning Solaris for Oracle
- Troubleshooting SFDB tools
- About troubleshooting Storage Foundation for Databases (SFDB) tools
- About the vxdbd daemon
- Troubleshooting vxdbd
- Resources for troubleshooting SFDB tools
- Troubleshooting SmartTier for Oracle
- Upgrading Storage Foundation for Databases (SFDB) tools from 5.0.x to 8.0.2 (2184482)
- Troubleshooting Reverse Resynchronization
- Manual recovery of Oracle database
- Storage Foundation for Databases command reference for the releases prior to 6.0
- About SFDB commands backward compatibility
- Storage Foundation for Databases (SFDB) tools features which are no longer supported
- Preparing storage for Database FlashSnap
- About creating database snapshots
- FlashSnap commands
- Creating a snapplan (dbed_vmchecksnap)
- Validating a snapplan (dbed_vmchecksnap)
- Displaying, copying, and removing a snapplan (dbed_vmchecksnap)
- Creating a snapshot (dbed_vmsnap)
- Backing up the database from snapshot volumes (dbed_vmclonedb)
- Cloning a database (dbed_vmclonedb)
- Resynchronizing the snapshot to your database
- Removing a snapshot volume
- Guidelines for Oracle recovery
- Database Storage Checkpoint Commands
- Creating or updating the repository using dbed_update
- Creating Storage Checkpoints using dbed_ckptcreate
- Displaying Storage Checkpoints using dbed_ckptdisplay
- Mounting Storage Checkpoints using dbed_ckptmount
- Unmounting Storage Checkpoints using dbed_ckptumount
- Performing Storage Rollback using dbed_ckptrollback
- Removing Storage Checkpoints using dbed_ckptremove
- Cloning the Oracle instance using dbed_clonedb
- Section IX. Reference
- Appendix A. VCS Oracle agents
- Appendix B. Sample configuration files for clustered deployments
- Appendix C. Database FlashSnap status information
- Appendix D. Using third party software to back up files
Creating a snapshot mirror of a volume or volume set used by the database
With Database FlashSnap, you can mirror the volumes used by the database to a separate set of disks, and those mirrors can be used to create a snapshot of the database. These snapshot volumes can be split and placed in a separate disk group. This snapshot disk group can be imported on a separate host, which shares the same storage with the primary host. The snapshot volumes can be resynchronized periodically with the primary volumes to get recent changes of the datafiles. If the primary datafiles become corrupted, you can quickly restore them from the snapshot volumes. Snapshot volumes can be used for a variety of purposes, including backup and recovery, and creating a clone database.
You must create snapshot mirrors for all of the volumes used by the database datafiles before you can create a snapshot of the database. This section describes the procedure used to create snapshot mirrors of volumes.
Use the vxsnap command to create a snapshot mirror or synchronize a snapshot mirror.
Prerequisites |
|
Usage Notes |
Note: Database FlashSnap commands support third-mirror break-off snapshots only. The snapshot mirror must be in the SNAPDONE state. |
The following sample procedure is for existing volumes without existing snapshot plexes or associated snapshot volumes. In this procedure, volume_name is the name of either a volume or a volume set.
Note:
You must be logged in as superuser (root) to issue the commands in the following procedure.
To create a snapshot mirror of a volume or volume set
- To prepare the volume for being snapshot, use the vxsnap prepare command:
# vxsnap -g diskgroup prepare volume \ alloc="storage_attribute ..."
The vxsnap prepare command automatically creates a DCO and DCO volumes and associates them with the volume, and enables Persistent FastResync on the volume. Persistent FastResync is also set automatically on any snapshots that are generated from a volume on which this feature is enabled.
For enabling persistent FastResync on a volume either from the command line or from within a script, use the vxsnap prepare command as described above.
- To verify that FastResync is enabled on the volume, use the vxprint command:
# vxprint -g diskgroup -F%fastresync volume_name
This returns on if FastResync is on. Otherwise, it returns off.
- To verify that a DCO and DCO log volume are attached to the volume, use the vxprint command:
# vxprint -g diskgroup -F%hasdcolog volume_name
This returns on if a DCO and DCO log volume are attached to the volume. Otherwise, it returns off.
- Create a mirror of a volume:
# vxsnap -g diskgroup addmir volume_name alloc=diskname
Example of creating 3 mirrors for a particular volume:
# vxsnap -g diskgroup addmir datavol \ nmirror=3 alloc=disk1,disk2,disk3
- List the available mirrors:
# vxprint -g diskgroup -F%name -e"pl_v_name in \"volume_name\""
- If you require a backup of the data in the snapshot, use an appropriate utility or operating system command to copy the contents of the snapshot to tape or to some other backup medium.
Enable database FlashSnap to locate the correct mirror plexes when creating snapshots:
Set the dbed_flashsnap tag for the data plex you want to use for breaking off the mirror. You can choose any tag name you like, but it needs to match the SNAPSHOT_PLEX_TAG attribute specified in the configuration or snapplan.
# vxedit -g diskgroup set putil2=dbed_flashsnap plex_name
Verify that the dbed_flashsnap tag has been set to the desired data plex:
# vxprint -g diskgroup -F%name -e"pl_v_name in \ \"volume_name\" && p2 in \"dbed_flashsnap\""