Please enter search query.
Search <book_title>...
Storage Foundation and High Availability 8.0.2 Configuration and Upgrade Guide - Linux
Last Published:
2023-06-05
Product(s):
InfoScale & Storage Foundation (8.0.2)
Platform: Linux
- Section I. Introduction to SFHA
- Introducing Storage Foundation and High Availability
- Section II. Configuration of SFHA
- Preparing to configure
- Preparing to configure SFHA clusters for data integrity
- About planning to configure I/O fencing
- Setting up the CP server
- Planning your CP server setup
- Installing the CP server using the installer
- Configuring the CP server cluster in secure mode
- Setting up shared storage for the CP server database
- Configuring the CP server using the installer program
- Configuring the CP server manually
- Configuring CP server using response files
- Verifying the CP server configuration
- Configuring SFHA
- Configuring Storage Foundation High Availability using the installer
- Overview of tasks to configure SFHA using the product installer
- Required information for configuring Storage Foundation and High Availability Solutions
- Starting the software configuration
- Specifying systems for configuration
- Configuring the cluster name
- Configuring private heartbeat links
- Configuring the virtual IP of the cluster
- Configuring SFHA in secure mode
- Configuring a secure cluster node by node
- Adding VCS users
- Configuring SMTP email notification
- Configuring SNMP trap notification
- Configuring global clusters
- Completing the SFHA configuration
- About Veritas License Audit Tool
- Verifying and updating licenses on the system
- Configuring SFDB
- Configuring Storage Foundation High Availability using the installer
- Configuring SFHA clusters for data integrity
- Setting up disk-based I/O fencing using installer
- Setting up server-based I/O fencing using installer
- Setting up non-SCSI-3 I/O fencing in virtual environments using installer
- Setting up majority-based I/O fencing using installer
- Enabling or disabling the preferred fencing policy
- Manually configuring SFHA clusters for data integrity
- Setting up disk-based I/O fencing manually
- Setting up server-based I/O fencing manually
- Preparing the CP servers manually for use by the SFHA cluster
- Generating the client key and certificates manually on the client nodes
- Configuring server-based fencing on the SFHA cluster manually
- Configuring CoordPoint agent to monitor coordination points
- Verifying server-based I/O fencing configuration
- Setting up non-SCSI-3 fencing in virtual environments manually
- Setting up majority-based I/O fencing manually
- Performing an automated SFHA configuration using response files
- Performing an automated I/O fencing configuration using response files
- Configuring I/O fencing using response files
- Response file variables to configure disk-based I/O fencing
- Sample response file for configuring disk-based I/O fencing
- Response file variables to configure server-based I/O fencing
- Sample response file for configuring server-based I/O fencing
- Response file variables to configure non-SCSI-3 I/O fencing
- Sample response file for configuring non-SCSI-3 I/O fencing
- Response file variables to configure majority-based I/O fencing
- Sample response file for configuring majority-based I/O fencing
- Section III. Upgrade of SFHA
- Planning to upgrade SFHA
- About the upgrade
- Supported upgrade paths
- Considerations for upgrading SFHA to 8.0.2 on systems configured with an Oracle resource
- Preparing to upgrade SFHA
- Considerations for upgrading REST server
- Using Install Bundles to simultaneously install or upgrade full releases (base, maintenance, rolling patch), and individual patches
- Upgrading Storage Foundation and High Availability
- Performing a rolling upgrade of SFHA
- Performing a phased upgrade of SFHA
- About phased upgrade
- Performing a phased upgrade using the product installer
- Moving the service groups to the second subcluster
- Upgrading the operating system on the first subcluster
- Upgrading the first subcluster
- Preparing the second subcluster
- Activating the first subcluster
- Upgrading the operating system on the second subcluster
- Upgrading the second subcluster
- Finishing the phased upgrade
- Performing an automated SFHA upgrade using response files
- Performing post-upgrade tasks
- Optional configuration steps
- Re-joining the backup boot disk group into the current disk group
- Reverting to the backup boot disk group after an unsuccessful upgrade
- Recovering VVR if automatic upgrade fails
- Post-upgrade tasks when VCS agents for VVR are configured
- Resetting DAS disk names to include host name in FSS environments
- Upgrading disk layout versions
- Upgrading VxVM disk group versions
- Updating variables
- Setting the default disk group
- About enabling LDAP authentication for clusters that run in secure mode
- Verifying the Storage Foundation and High Availability upgrade
- Planning to upgrade SFHA
- Section IV. Post-installation tasks
- Section V. Adding and removing nodes
- Adding a node to SFHA clusters
- About adding a node to a cluster
- Before adding a node to a cluster
- Adding a node to a cluster using the Veritas InfoScale installer
- Adding the node to a cluster manually
- Adding a node using response files
- Configuring server-based fencing on the new node
- After adding the new node
- Adding nodes to a cluster that is using authentication for SFDB tools
- Updating the Storage Foundation for Databases (SFDB) repository after adding a node
- Removing a node from SFHA clusters
- Removing a node from a SFHA cluster
- Verifying the status of nodes and service groups
- Deleting the departing node from SFHA configuration
- Modifying configuration files on each remaining node
- Removing the node configuration from the CP server
- Removing security credentials from the leaving node
- Unloading LLT and GAB and removing Veritas InfoScale Availability or Enterprise on the departing node
- Updating the Storage Foundation for Databases (SFDB) repository after removing a node
- Removing a node from a SFHA cluster
- Adding a node to SFHA clusters
- Section VI. Configuration and upgrade reference
- Appendix A. Installation scripts
- Appendix B. SFHA services and ports
- Appendix C. Configuration files
- Appendix D. Configuring the secure shell or the remote shell for communications
- About configuring secure shell or remote shell communication modes before installing products
- Manually configuring passwordless ssh
- Setting up ssh and rsh connection using the installer -comsetup command
- Setting up ssh and rsh connection using the pwdutil.pl utility
- Restarting the ssh session
- Enabling rsh for Linux
- Appendix E. Sample SFHA cluster setup diagrams for CP server-based I/O fencing
- Appendix F. Configuring LLT over UDP
- Using the UDP layer for LLT
- Manually configuring LLT over UDP using IPv4
- Broadcast address in the /etc/llttab file
- The link command in the /etc/llttab file
- The set-addr command in the /etc/llttab file
- Selecting UDP ports
- Configuring the netmask for LLT
- Configuring the broadcast address for LLT
- Sample configuration: direct-attached links
- Sample configuration: links crossing IP routers
- Using the UDP layer of IPv6 for LLT
- Manually configuring LLT over UDP using IPv6
- About configuring LLT over UDP multiport
- Appendix G. Using LLT over RDMA
- Using LLT over RDMA
- About RDMA over RoCE or InfiniBand networks in a clustering environment
- How LLT supports RDMA capability for faster interconnects between applications
- Using LLT over RDMA: supported use cases
- Configuring LLT over RDMA
- Choosing supported hardware for LLT over RDMA
- Installing RDMA, InfiniBand or Ethernet drivers and utilities
- Configuring RDMA over an Ethernet network
- Configuring RDMA over an InfiniBand network
- Tuning system performance
- Manually configuring LLT over RDMA
- LLT over RDMA sample /etc/llttab
- Verifying LLT configuration
- Troubleshooting LLT over RDMA
- IP addresses associated to the RDMA NICs do not automatically plumb on node restart
- Ping test fails for the IP addresses configured over InfiniBand interfaces
- After a node restart, by default the Mellanox card with Virtual Protocol Interconnect (VPI) gets configured in InfiniBand mode
- The LLT module fails to start
Moving the service groups to the second subcluster
Perform the following steps to establish the service group's status and to switch the service groups.
To move service groups to the second subcluster
- On the first subcluster, determine where the service groups are online.
# hagrp -state
The output resembles:
#Group Attribute System Value sg1 State node01 |ONLINE| sg1 State node02 |ONLINE| sg1 State node03 |ONLINE| sg1 State node04 |ONLINE| sg2 State node01 |ONLINE| sg2 State node02 |ONLINE| sg2 State node03 |ONLINE| sg2 State node04 |ONLINE| sg3 State node01 |ONLINE| sg3 State node02 |OFFLINE| sg3 State node03 |OFFLINE| sg3 State node04 |OFFLINE| sg4 State node01 |OFFLINE| sg4 State node02 |ONLINE| sg4 State node03 |OFFLINE| sg4 State node04 |OFFLINE|
- Offline the parallel service groups (sg1 and sg2) from the first subcluster. Switch the failover service groups (sg3 and sg4) from the first subcluster (node01 and node02) to the nodes on the second subcluster (node03 and node04). For SFHA, vxfen sg is the parallel service group.
# hagrp -offline sg1 -sys node01 # hagrp -offline sg2 -sys node01 # hagrp -offline sg1 -sys node02 # hagrp -offline sg2 -sys node02 # hagrp -switch sg3 -to node03 # hagrp -switch sg4 -to node04
- On the nodes in the first subcluster, unmount all the VxFS file systems that VCS does not manage, for example:
# df -h Filesystem Size Used Avail Use% Mounted on /dev/sda1 26G 3.3G 22G 14% / udev 1007M 352K 1006M 1% /dev tmpfs 4.0K 0 4.0K 0% /dev/vx /dev/vx/dsk/dg2/dg2vol1 3.0G 18M 2.8G 1% /mnt/dg2/dg2vol1 /dev/vx/dsk/dg2/dg2vol2 1.0G 18M 944M 2% /mnt/dg2/dg2vol2 /dev/vx/dsk/dg2/dg2vol3 10G 20M 9.4G 1% /mnt/dg2/dg2vol3 # umount /mnt/dg2/dg2vol1 # umount /mnt/dg2/dg2vol2 # umount /mnt/dg2/dg2vol3 - On the nodes in the first subcluster, use the following command to take all the cache area offline:
# sfcache offline cachename
- On the nodes in the first subcluster, stop all VxVM volumes (for each disk group) that VCS does not manage.
- Make the configuration writable on the first subcluster.
# haconf -makerw
- Freeze the nodes in the first subcluster.
# hasys -freeze -persistent node01 # hasys -freeze -persistent node02
- Dump the configuration and make it read-only.
# haconf -dump -makero
- Verify that the service groups are offline on the first subcluster that you want to upgrade.
# hagrp -state
Output resembles:
#Group Attribute System Value sg1 State node01 |OFFLINE| sg1 State node02 |OFFLINE| sg1 State node03 |ONLINE| sg1 State node04 |ONLINE| sg2 State node01 |OFFLINE| sg2 State node02 |OFFLINE| sg2 State node03 |ONLINE| sg2 State node04 |ONLINE| sg3 State node01 |OFFLINE| sg3 State node02 |OFFLINE| sg3 State node03 |ONLINE| sg3 State node04 |OFFLINE| sg4 State node01 |OFFLINE| sg4 State node02 |OFFLINE| sg4 State node03 |OFFLINE| sg4 State node04 |ONLINE|