InfoScale™ 9.0 Cluster Server Administrator's Guide - AIX
- Section I. Clustering concepts and terminology
- Introducing Cluster Server
- About Cluster Server
- About cluster control guidelines
- About the physical components of VCS
- Logical components of VCS
- About resources and resource dependencies
- Categories of resources
- About resource types
- About service groups
- Types of service groups
- About the ClusterService group
- About the cluster UUID
- About agents in VCS
- About agent functions
- About resource monitoring
- Agent classifications
- VCS agent framework
- About cluster control, communications, and membership
- About security services
- Components for administering VCS
- Putting the pieces together
- About cluster topologies
- VCS configuration concepts
- Introducing Cluster Server
- Section II. Administration - Putting VCS to work
- About the VCS user privilege model
- Administering the cluster from the command line
- About administering VCS from the command line
- About installing a VCS license
- Administering LLT
- Administering the AMF kernel driver
- Starting VCS
- Stopping VCS
- Stopping VCS without evacuating service groups
- Stopping the VCS engine and related processes
- Logging on to VCS
- About managing VCS configuration files
- About managing VCS users from the command line
- About querying VCS
- About administering service groups
- Adding and deleting service groups
- Modifying service group attributes
- Bringing service groups online
- Taking service groups offline
- Switching service groups
- Migrating service groups
- Freezing and unfreezing service groups
- Enabling and disabling service groups
- Enabling and disabling priority based failover for a service group
- Clearing faulted resources in a service group
- Flushing service groups
- Linking and unlinking service groups
- Administering agents
- About administering resources
- About adding resources
- Adding resources
- Deleting resources
- Adding, deleting, and modifying resource attributes
- Defining attributes as local
- Defining attributes as global
- Enabling and disabling intelligent resource monitoring for agents manually
- Enabling and disabling IMF for agents by using script
- Linking and unlinking resources
- Bringing resources online
- Taking resources offline
- Probing a resource
- Clearing a resource
- About administering resource types
- Administering systems
- About administering clusters
- Configuring and unconfiguring the cluster UUID value
- Retrieving version information
- Adding and removing systems
- Changing ports for VCS
- Setting cluster attributes from the command line
- About initializing cluster attributes in the configuration file
- Enabling and disabling secure mode for the cluster
- Migrating from secure mode to secure mode with FIPS
- Using the -wait option in scripts that use VCS commands
- Running HA fire drills
- Configuring applications and resources in VCS
- Configuring resources and applications
- VCS bundled agents for UNIX
- Configuring NFS service groups
- About NFS
- Configuring NFS service groups
- Sample configurations
- Sample configuration for a single NFS environment without lock recovery
- Sample configuration for a single NFS environment with lock recovery
- Sample configuration for a single NFSv4 environment
- Sample configuration for a multiple NFSv4 environment
- Sample configuration for a multiple NFS environment without lock recovery
- Sample configuration for a multiple NFS environment with lock recovery
- Sample configuration for configuring NFS with separate storage
- Sample configuration when configuring all NFS services in a parallel service group
- About configuring the RemoteGroup agent
- About configuring Samba service groups
- Configuring the Coordination Point agent
- About migration of data from LVM volumes to VxVM volumes
- About testing resource failover by using HA fire drills
- Section III. VCS communication and operations
- About communications, membership, and data protection in the cluster
- About cluster communications
- About cluster membership
- About membership arbitration
- About membership arbitration components
- About server-based I/O fencing
- About majority-based fencing
- About making CP server highly available
- About the CP server database
- Recommended CP server configurations
- About the CP server service group
- About the CP server user types and privileges
- About secure communication between the VCS cluster and CP server
- About data protection
- About I/O fencing configuration files
- Examples of VCS operation with I/O fencing
- About cluster membership and data protection without I/O fencing
- Examples of VCS operation without I/O fencing
- Summary of best practices for cluster communications
- Administering I/O fencing
- About administering I/O fencing
- About the vxfentsthdw utility
- General guidelines for using the vxfentsthdw utility
- About the vxfentsthdw command options
- Testing the coordinator disk group using the -c option of vxfentsthdw
- Performing non-destructive testing on the disks using the -r option
- Testing the shared disks using the vxfentsthdw -m option
- Testing the shared disks listed in a file using the vxfentsthdw -f option
- Testing all the disks in a disk group using the vxfentsthdw -g option
- Testing a disk with existing keys
- Testing disks with the vxfentsthdw -o option
- About the vxfenadm utility
- About the vxfenclearpre utility
- About the vxfenswap utility
- About administering the coordination point server
- CP server operations (cpsadm)
- Cloning a CP server
- Adding and removing VCS cluster entries from the CP server database
- Adding and removing a VCS cluster node from the CP server database
- Adding or removing CP server users
- Listing the CP server users
- Listing the nodes in all the VCS clusters
- Listing the membership of nodes in the VCS cluster
- Preempting a node
- Registering and unregistering a node
- Enable and disable access for a user to a VCS cluster
- Starting and stopping CP server outside VCS control
- Checking the connectivity of CP servers
- Adding and removing virtual IP addresses and ports for CP servers at run-time
- Taking a CP server database snapshot
- Replacing coordination points for server-based fencing in an online cluster
- Refreshing registration keys on the coordination points for server-based fencing
- About configuring a CP server to support IPv6 or dual stack
- Deployment and migration scenarios for CP server
- About migrating between disk-based and server-based fencing configurations
- Migrating from disk-based to server-based fencing in an online cluster
- Migrating from server-based to disk-based fencing in an online cluster
- Migrating between fencing configurations using response files
- Sample response file to migrate from disk-based to server-based fencing
- Sample response file to migrate from server-based fencing to disk-based fencing
- Sample response file to migrate from single CP server-based fencing to server-based fencing
- Response file variables to migrate between fencing configurations
- Enabling or disabling the preferred fencing policy
- About I/O fencing log files
- Controlling VCS behavior
- VCS behavior on resource faults
- About controlling VCS behavior at the service group level
- About the AutoRestart attribute
- About controlling failover on service group or system faults
- About defining failover policies
- About AdaptiveHA
- About system zones
- About sites
- Load-based autostart
- About freezing service groups
- About controlling Clean behavior on resource faults
- Clearing resources in the ADMIN_WAIT state
- About controlling fault propagation
- Customized behavior diagrams
- About preventing concurrency violation
- VCS behavior for resources that support the intentional offline functionality
- VCS behavior when a service group is restarted
- About controlling VCS behavior at the resource level
- Changing agent file paths and binaries
- VCS behavior on loss of storage connectivity
- Service group workload management
- Sample configurations depicting workload management
- The role of service group dependencies
- About communications, membership, and data protection in the cluster
- Section IV. Administration - Beyond the basics
- VCS event notification
- VCS event triggers
- About VCS event triggers
- Using event triggers
- List of event triggers
- About the dumptunables trigger
- About the globalcounter_not_updated trigger
- About the injeopardy event trigger
- About the loadwarning event trigger
- About the multinicb event trigger
- About the nofailover event trigger
- About the postoffline event trigger
- About the postonline event trigger
- About the preonline event trigger
- About the resadminwait event trigger
- About the resfault event trigger
- About the resnotoff event trigger
- About the resrestart event trigger
- About the resstatechange event trigger
- About the sysoffline event trigger
- About the sysup trigger
- About the sysjoin trigger
- About the unable_to_restart_agent event trigger
- About the unable_to_restart_had event trigger
- About the violation event trigger
- Virtual Business Services
- Section V. Cluster configurations for disaster recovery
- Connecting clusters–Creating global clusters
- How VCS global clusters work
- VCS global clusters: The building blocks
- Visualization of remote cluster objects
- About global service groups
- About global cluster management
- About serialization - The Authority attribute
- About resiliency and "Right of way"
- VCS agents to manage wide-area failover
- About the Steward process: Split-brain in two-cluster global clusters
- Secure communication in global clusters
- Prerequisites for global clusters
- About planning to set up global clusters
- Setting up a global cluster
- Configuring application and replication for global cluster setup
- Configuring clusters for global cluster setup
- Configuring global cluster components at the primary site
- Installing and configuring VCS at the secondary site
- Securing communication between the wide-area connectors
- Gcoconfig utility support
- Configuring remote cluster objects
- Configuring additional heartbeat links (optional)
- Configuring the Steward process (optional)
- Configuring service groups for global cluster setup
- Configuring a service group as a global service group
- About IPv6 support with global clusters
- About cluster faults
- About setting up a disaster recovery fire drill
- Multi-tiered application support using the RemoteGroup agent in a global environment
- Test scenario for a multi-tiered environment
- Administering global clusters from the command line
- About administering global clusters from the command line
- About global querying in a global cluster setup
- Administering global service groups in a global cluster setup
- Administering resources in a global cluster setup
- Administering clusters in global cluster setup
- Administering heartbeats in a global cluster setup
- Setting up replicated data clusters
- Setting up campus clusters
- Connecting clusters–Creating global clusters
- Section VI. Troubleshooting and performance
- VCS performance considerations
- How cluster components affect performance
- How cluster operations affect performance
- VCS performance consideration when booting a cluster system
- VCS performance consideration when a resource comes online
- VCS performance consideration when a resource goes offline
- VCS performance consideration when a service group comes online
- VCS performance consideration when a service group goes offline
- VCS performance consideration when a resource fails
- VCS performance consideration when a system fails
- VCS performance consideration when a network link fails
- VCS performance consideration when a system panics
- VCS performance consideration when a service group switches over
- VCS performance consideration when a service group fails over
- About scheduling class and priority configuration
- CPU binding of HAD
- VCS agent statistics
- About VCS tunable parameters
- Troubleshooting and recovery for VCS
- VCS message logging
- Log unification of VCS agent's entry points
- Enhancing First Failure Data Capture (FFDC) to troubleshoot VCS resource's unexpected behavior
- GAB message logging
- Enabling debug logs for agents
- Enabling debug logs for IMF
- Enabling debug logs for the VCS engine
- Enabling debug logs for VxAT
- About debug log tags usage
- Gathering VCS information for support analysis
- Gathering LLT and GAB information for support analysis
- Gathering IMF information for support analysis
- Message catalogs
- Troubleshooting the VCS engine
- Troubleshooting Low Latency Transport (LLT)
- Troubleshooting Group Membership Services/Atomic Broadcast (GAB)
- Troubleshooting VCS startup
- Troubleshooting Intelligent Monitoring Framework (IMF)
- Troubleshooting service groups
- VCS does not automatically start service group
- System is not in RUNNING state
- Service group not configured to run on the system
- Service group not configured to autostart
- Service group is frozen
- Failover service group is online on another system
- A critical resource faulted
- Service group autodisabled
- Service group is waiting for the resource to be brought online/taken offline
- Service group is waiting for a dependency to be met.
- Service group not fully probed.
- Service group does not fail over to the forecasted system
- Service group does not fail over to the BiggestAvailable system even if FailOverPolicy is set to BiggestAvailable
- Restoring metering database from backup taken by VCS
- Initialization of metering database fails
- Error message appears during service group failover or switch
- Troubleshooting resources
- Troubleshooting sites
- Troubleshooting I/O fencing
- Node is unable to join cluster while another node is being ejected
- The vxfentsthdw utility fails when SCSI TEST UNIT READY command fails
- Manually removing existing keys from SCSI-3 disks
- System panics to prevent potential data corruption
- Cluster ID on the I/O fencing key of coordinator disk does not match the local cluster's ID
- Fencing startup reports preexisting split-brain
- Registered keys are lost on the coordinator disks
- Replacing defective disks when the cluster is offline
- The vxfenswap utility exits if rcp or scp commands are not functional
- Troubleshooting CP server
- Troubleshooting server-based fencing on the VCS cluster nodes
- Issues during online migration of coordination points
- Troubleshooting notification
- Troubleshooting and recovery for global clusters
- Troubleshooting the steward process
- Troubleshooting licensing
- Validating license keys
- Licensing error messages
- [Licensing] Insufficient memory to perform operation
- [Licensing] No valid VCS license keys were found
- [Licensing] Unable to find a valid base VCS license key
- [Licensing] License key cannot be used on this OS platform
- [Licensing] VCS evaluation period has expired
- [Licensing] License key can not be used on this system
- [Licensing] Unable to initialize the licensing framework
- [Licensing] QuickStart is not supported in this release
- [Licensing] Your evaluation period for the feature has expired. This feature will not be enabled the next time VCS starts
- Troubleshooting secure configurations
- VCS message logging
- VCS performance considerations
- Section VII. Appendixes
Cloning a CP server
Cloning a CP server greatly reduces the time and effort of assigning a new CP server to your cluster. Since the cloning replicates the existing CP server, you are saved from running the vxfenswap utilities on each node connected to the CP server. Therefore, you can perform the CP server maintenance without much hassle.
In this procedure, the following terminology is used to refer to the existing and cloned CP servers:
cps1: Indicates the existing CP server
cps2: Indicates the clone of cps1
Prerequisite: Before cloning a CP server, make sure that the existing CP server cps1 is up and running and fencing is configured on at least one client of cps1 in order to verify that the client can talk to cps2 .
To clone the CP server (cps1):
- Install and configure Cluster Server (VCS) on the system where you want to clone cps1.
Refer the InfoScale Installation Guide for procedure on installing the Cluster Server
- Copy the cps1 database and UUID to the system where you want to clone cps1. You can copy the database and UUID from
/etc/VRTScps/db. - Copy CP server configuration file of cps1 from
/etc/vxcps.confto the target system for cps2. - Copy the CP server and fencing certificates and keys on cps1 from
/var/VRTScps/securityand/var/VRTSvxfen/securitydirectories respectively to the target system for cps2. - Copy main.cf of cps1 to the target system for cps2 at
/etc/VRTSvcs/conf/config/main.cf. - On the target system for cps2, stop VCS and perform the following in main.cf:
Replace all the instances of system name with cps2 system name.
Change the device attribute under NIC and IP resources to cps2 values.
- Copy
/opt/VRTScps/bin/QuorumTypes.cffrom cps1 to the target cps2 system. - Offline CP server service group if it is online on cps1.
# /opt/VRTSvcs/bin/hagrp -offline CPSSG -sys <cps1>
- Start VCS on the target system for cps2. The CP server service group must come online on target system for cps2 and the system becomes a clone of cps1.
# /opt/VRTSvcs/bin/hastart
- Run the following command on cps2 to verify if the clone was successful and is running well.
# cpsadm -s <server_vip> -a ping_cps CPS INFO V-97-1400-458 CP server successfully pinged
- Verify if the Co-ordination Point agent service group is Online on the client clusters.
# /opt/VRTSvcs/bin/hares -state Resource Attribute System Value RES_phantom_vxfen State system1 ONLINE coordpoint State system1 ONLINE # /opt/VRTSvcs/bin/hagrp -state Group Attribute System Value vxfen State system1 |ONLINE|
Note:
The cloned cps2 system must be in the same subnet of cps1. Make sure that the port (default 443) used for CP server configuration is free for cps2).