NetBackup™ Backup Planning and Performance Tuning Guide
- NetBackup capacity planning
- Primary server configuration guidelines
- Size guidance for the NetBackup primary server and domain
- Factors that limit job scheduling
- More than one backup job per second
- Stagger the submission of jobs for better load distribution
- NetBackup job delays
- Selection of storage units: performance considerations
- About file system capacity and NetBackup performance
- About the primary server NetBackup catalog
- Guidelines for managing the primary server NetBackup catalog
- Adjusting the batch size for sending metadata to the NetBackup catalog
- Methods for managing the catalog size
- Performance guidelines for NetBackup policies
- Legacy error log fields
- Media server configuration guidelines
- NetBackup hardware design and tuning considerations
- About NetBackup Media Server Deduplication (MSDP)
- Data segmentation
- Fingerprint lookup for deduplication
- Predictive and sampling cache scheme
- Data store
- Space reclamation
- System resource usage and tuning considerations
- Memory considerations
- I/O considerations
- Network considerations
- CPU considerations
- OS tuning considerations
- MSDP tuning considerations
- MSDP sizing considerations
- Cloud tier sizing and performance
- Accelerator performance considerations
- Media configuration guidelines
- About dedicated versus shared backup environments
- Suggestions for NetBackup media pools
- Disk versus tape: performance considerations
- NetBackup media not available
- About the threshold for media errors
- Adjusting the media_error_threshold
- About tape I/O error handling
- About NetBackup media manager tape drive selection
- How to identify performance bottlenecks
- Best practices
- Best practices: NetBackup SAN Client
- Best practices: NetBackup AdvancedDisk
- Best practices: Disk pool configuration - setting concurrent jobs and maximum I/O streams
- Best practices: About disk staging and NetBackup performance
- Best practices: Supported tape drive technologies for NetBackup
- Best practices: NetBackup tape drive cleaning
- Best practices: NetBackup data recovery methods
- Best practices: Suggestions for disaster recovery planning
- Best practices: NetBackup naming conventions
- Best practices: NetBackup duplication
- Best practices: NetBackup deduplication
- Best practices: Universal shares
- NetBackup for VMware sizing and best practices
- Best practices: Storage lifecycle policies (SLPs)
- Best practices: NetBackup NAS-Data-Protection (D-NAS)
- Best practices: NetBackup for Nutanix AHV
- Best practices: NetBackup Sybase database
- Best practices: Avoiding media server resource bottlenecks with Oracle VLDB backups
- Best practices: Avoiding media server resource bottlenecks with MSDPLB+ prefix policy
- Best practices: Cloud deployment considerations
- Measuring Performance
- Measuring NetBackup performance: overview
- How to control system variables for consistent testing conditions
- Running a performance test without interference from other jobs
- About evaluating NetBackup performance
- Evaluating NetBackup performance through the Activity Monitor
- Evaluating NetBackup performance through the All Log Entries report
- Table of NetBackup All Log Entries report
- Evaluating system components
- About measuring performance independent of tape or disk output
- Measuring performance with bpbkar
- Bypassing disk performance with the SKIP_DISK_WRITES touch file
- Measuring performance with the GEN_DATA directive (Linux/UNIX)
- Monitoring Linux/UNIX CPU load
- Monitoring Linux/UNIX memory use
- Monitoring Linux/UNIX disk load
- Monitoring Linux/UNIX network traffic
- Monitoring Linux/Unix system resource usage with dstat
- About the Windows Performance Monitor
- Monitoring Windows CPU load
- Monitoring Windows memory use
- Monitoring Windows disk load
- Increasing disk performance
- Tuning the NetBackup data transfer path
- About the NetBackup data transfer path
- About tuning the data transfer path
- Tuning suggestions for the NetBackup data transfer path
- NetBackup client performance in the data transfer path
- NetBackup network performance in the data transfer path
- NetBackup server performance in the data transfer path
- About shared memory (number and size of data buffers)
- Default number of shared data buffers
- Default size of shared data buffers
- Amount of shared memory required by NetBackup
- How to change the number of shared data buffers
- Notes on number data buffers files
- How to change the size of shared data buffers
- Notes on size data buffer files
- Size values for shared data buffers
- Note on shared memory and NetBackup for NDMP
- Recommended shared memory settings
- Recommended number of data buffers for SAN Client and FT media server
- Testing changes made to shared memory
- About NetBackup wait and delay counters
- Changing parent and child delay values for NetBackup
- About the communication between NetBackup client and media server
- Processes used in NetBackup client-server communication
- Roles of processes during backup and restore
- Finding wait and delay counter values
- Note on log file creation
- About tunable parameters reported in the bptm log
- Example of using wait and delay counter values
- Issues uncovered by wait and delay counter values
- Estimating the effect of multiple copies on backup performance
- Effect of fragment size on NetBackup restores
- Other NetBackup restore performance issues
- About shared memory (number and size of data buffers)
- NetBackup storage device performance in the data transfer path
- Tuning other NetBackup components
- When to use multiplexing and multiple data streams
- Effects of multiplexing and multistreaming on backup and restore
- How to improve NetBackup resource allocation
- Encryption and NetBackup performance
- Compression and NetBackup performance
- How to enable NetBackup compression
- Effect of encryption plus compression on NetBackup performance
- Information on NetBackup Java performance improvements
- Information on NetBackup Vault
- Fast recovery with Bare Metal Restore
- How to improve performance when backing up many small files
- How to improve FlashBackup performance
- Veritas NetBackup OpsCenter
- Tuning disk I/O performance
Storage Server IO
Storage unit Concurrent Jobs value and the disk pool Max IO Streams per volume value:
The Max IO Streams value for the disk pool sets the number of read/write operations that can run at the same time on the disk pool. The Concurrent Jobs value on the storage unit sets the maximum backup/restore jobs that can run at the same time to the storage unit. More than one storage unit can point to the same disk pool.
It is important that the total number of Concurrent Jobs from storage units that point to the same disk pool must not exceed the configured Max IO Streams value for the disk pool. So that secondary operations can perform, the total number of Concurrent Jobs set in the storage units that point to the same disk pool should not be higher than 90% of the total of the Max IO Streams value of the disk pool. This 10% allows the possibility of secondary operations running while backup/restore operations are maximized. Setting REPLICATION_TARGET_JOB_LIMIT to set limits on the number of A.I.R. Replication per target storage server helps to maximize the performance of each secondary operation. SLP parameters can be used to limit the number of secondary operations.
In summary, a disk pool is configured by default to have an unlimited value for Max IO Streams. It is recommended that the Max IO Streams for the pool be limited to a level that maximizes the number of jobs that can run, but is not too high that the disk pool performance is depreciated due to too many read/write operations occurring at the same time.
A storage unit that is configured to point to the disk pool should have a Concurrent Jobs value lower than the Max IO Streams value for the disk pool. The storage unit's Concurrent Jobs value will address backup jobs and restore jobs, but does not impact the number of secondary operations like duplications, replications, import type jobs. These secondary operations are managed by the SLPs and try to run as many as possible, usually dictated by the Max IO Streams count.
More information about configuring disk pools is also available:
See Best practices: Disk pool configuration - setting concurrent jobs and maximum I/O streams.