Please enter search query.
Search <book_title>...
Veritas InfoScale™ 7.4 Solutions Guide - Linux
Last Published:
2019-07-18
Product(s):
InfoScale & Storage Foundation (7.4)
Platform: Linux
- Section I. Introducing Veritas InfoScale
- Section II. Solutions for Veritas InfoScale products
- Solutions for Veritas InfoScale products
- Use cases for Veritas InfoScale products
- Feature support across Veritas InfoScale 7.4 products
- Using SmartMove and Thin Provisioning with Sybase databases
- Running multiple parallel applications within a single cluster using the application isolation feature
- Scaling FSS storage capacity with dedicated storage nodes using application isolation feature
- Finding Veritas InfoScale product use cases information
- Solutions for Veritas InfoScale products
- Section III. Stack-level migration to IPv6 or dual stack
- Section IV. Improving database performance
- Overview of database accelerators
- Improving database performance with Veritas Concurrent I/O
- Improving database performance with atomic write I/O
- About the atomic write I/O
- Requirements for atomic write I/O
- Restrictions on atomic write I/O functionality
- How the atomic write I/O feature of Storage Foundation helps MySQL databases
- VxVM and VxFS exported IOCTLs
- Configuring atomic write I/O support for MySQL on VxVM raw volumes
- Configuring atomic write I/O support for MySQL on VxFS file systems
- Dynamically growing the atomic write capable file system
- Disabling atomic write I/O support
- Section V. Using point-in-time copies
- Understanding point-in-time copy methods
- Backing up and recovering
- Storage Foundation and High Availability Solutions backup and recovery methods
- Preserving multiple point-in-time copies
- Online database backups
- Backing up on an off-host cluster file system
- Database recovery using Storage Checkpoints
- Backing up and recovering in a NetBackup environment
- Off-host processing
- Creating and refreshing test environments
- Creating point-in-time copies of files
- Section VI. Maximizing storage utilization
- Optimizing storage tiering with SmartTier
- About SmartTier
- About VxFS multi-volume file systems
- About VxVM volume sets
- About volume tags
- SmartTier use cases for Sybase
- Setting up a filesystem for storage tiering with SmartTier
- Relocating old archive logs to tier two storage using SmartTier
- Relocating inactive tablespaces or segments to tier two storage
- Relocating active indexes to premium storage
- Relocating all indexes to premium storage
- Optimizing storage with Flexible Storage Sharing
- Optimizing storage tiering with SmartTier
- Section VII. Migrating data
- Understanding data migration
- Offline migration from LVM to VxVM
- Offline conversion of native file system to VxFS
- Online migration of a native file system to the VxFS file system
- About online migration of a native file system to the VxFS file system
- Administrative interface for online migration of a native file system to the VxFS file system
- Migrating a native file system to the VxFS file system
- Backing out an online migration of a native file system to the VxFS file system
- VxFS features not available during online migration
- Migrating storage arrays
- Migrating data between platforms
- Overview of the Cross-Platform Data Sharing (CDS) feature
- CDS disk format and disk groups
- Setting up your system to use Cross-platform Data Sharing (CDS)
- Maintaining your system
- Disk tasks
- Disk group tasks
- Changing the alignment of a disk group during disk encapsulation
- Changing the alignment of a non-CDS disk group
- Splitting a CDS disk group
- Moving objects between CDS disk groups and non-CDS disk groups
- Moving objects between CDS disk groups
- Joining disk groups
- Changing the default CDS setting for disk group creation
- Creating non-CDS disk groups
- Upgrading an older version non-CDS disk group
- Replacing a disk in a CDS disk group
- Setting the maximum number of devices for CDS disk groups
- Changing the DRL map and log size
- Creating a volume with a DRL log
- Setting the DRL map length
- Displaying information
- Determining the setting of the CDS attribute on a disk group
- Displaying the maximum number of devices in a CDS disk group
- Displaying map length and map alignment of traditional DRL logs
- Displaying the disk group alignment
- Displaying the log map length and alignment
- Displaying offset and length information in units of 512 bytes
- Default activation mode of shared disk groups
- Additional considerations when importing CDS disk groups
- File system considerations
- Considerations about data in the file system
- File system migration
- Specifying the migration target
- Using the fscdsadm command
- Checking that the metadata limits are not exceeded
- Maintaining the list of target operating systems
- Enforcing the established CDS limits on a file system
- Ignoring the established CDS limits on a file system
- Validating the operating system targets for a file system
- Displaying the CDS status of a file system
- Migrating a file system one time
- Migrating a file system on an ongoing basis
- When to convert a file system
- Converting the byte order of a file system
- Alignment value and block size
- Migrating a snapshot volume
- Migrating from Oracle ASM to Veritas File System
- Section VIII. Just in time availability solution for vSphere
- Section IX. Veritas InfoScale 4K sector device support solution
- Section X. Reference
Resynchronizing the data with the primary host
This procedure describes how to resynchronize the data in a snapshot with the primary host.
To resynchronize a snapshot with the primary database
- On the off-host processing host, shut down the replica database, and use the following command to unmount each of the snapshot volumes:
# umount mount_point
- On the off-host processing host, use the following command to deport the snapshot volume's disk group:
# vxdg deport snapvoldg
- On the primary host, re-import the snapshot volume's disk group using the following command:
# vxdg [-s] import snapvoldg
Note:
Specify the -s option if you are reimporting the disk group to be rejoined with a shared disk group in a cluster.
- On the primary host, use the following command to rejoin the snapshot volume's disk group with the original volume's disk group:
# vxdg join snapvoldg database_dg
- VxVM will recover the volumes automatically after the join unless it is set to not recover automatically. Check if the snapshot volumes are initially disabled and not recovered following the join.
If a volume is in the DISABLED state, use the following command on the primary host to recover and restart the snapshot volume:
# vxrecover -g database_dg -m snapvol
- Use the steps in Creating an off-host replica database to resynchronize the snapshot and make the snapshot available at off-host processing host again.
The snapshots are now ready to be re-used for backup or for other decision support applications.