Storage Foundation 7.3 Administrator's Guide - AIX
- Section I. Introducing Storage Foundation
- Overview of Storage Foundation
- How Dynamic Multi-Pathing works
- How Veritas Volume Manager works
- How Veritas Volume Manager works with the operating system
- How Veritas Volume Manager handles storage management
- Volume layouts in Veritas Volume Manager
- Online relayout
- Volume resynchronization
- Hot-relocation
- Dirty region logging
- Volume snapshots
- FastResync
- Volume sets
- How VxVM handles hardware clones or snapshots
- How Veritas File System works
- Section II. Provisioning storage
- Provisioning new storage
- Advanced allocation methods for configuring storage
- Customizing allocation behavior
- Setting default values for vxassist
- Using rules to make volume allocation more efficient
- Understanding persistent attributes
- Customizing disk classes for allocation
- Specifying allocation constraints for vxassist operations with the use clause and the require clause
- Management of the use and require type of persistent attributes
- Creating volumes of a specific layout
- Creating a volume on specific disks
- Creating volumes on specific media types
- Specifying ordered allocation of storage to volumes
- Site-based allocation
- Changing the read policy for mirrored volumes
- Customizing allocation behavior
- Creating and mounting VxFS file systems
- Creating a VxFS file system
- Converting a file system to VxFS
- Mounting a VxFS file system
- log mount option
- delaylog mount option
- tmplog mount option
- logiosize mount option
- nodatainlog mount option
- blkclear mount option
- mincache mount option
- convosync mount option
- ioerror mount option
- largefiles and nolargefiles mount options
- cio mount option
- mntlock mount option
- ckptautomnt mount option
- Combining mount command options
- Unmounting a file system
- Resizing a file system
- Displaying information on mounted file systems
- Monitoring free space
- Extent attributes
- Section III. Administering multi-pathing with DMP
- Administering Dynamic Multi-Pathing
- Discovering and configuring newly added disk devices
- Partial device discovery
- About discovering disks and dynamically adding disk arrays
- About third-party driver coexistence
- How to administer the Device Discovery Layer
- Listing all the devices including iSCSI
- Listing all the Host Bus Adapters including iSCSI
- Listing the ports configured on a Host Bus Adapter
- Listing the targets configured from a Host Bus Adapter or a port
- Listing the devices configured from a Host Bus Adapter and target
- Getting or setting the iSCSI operational parameters
- Listing all supported disk arrays
- Displaying details about an Array Support Library
- Excluding support for a disk array library
- Re-including support for an excluded disk array library
- Listing excluded disk arrays
- Listing disks claimed in the DISKS category
- Adding unsupported disk arrays to the DISKS category
- Removing disks from the DISKS category
- Foreign devices
- Making devices invisible to VxVM
- Making devices visible to VxVM
- About enabling and disabling I/O for controllers and storage processors
- About displaying DMP database information
- Displaying the paths to a disk
- Administering DMP using the vxdmpadm utility
- Retrieving information about a DMP node
- Displaying consolidated information about the DMP nodes
- Displaying the members of a LUN group
- Displaying paths controlled by a DMP node, controller, enclosure, or array port
- Displaying information about controllers
- Displaying information about enclosures
- Displaying information about array ports
- Displaying information about devices controlled by third-party drivers
- Displaying extended device attributes
- Suppressing or including devices from VxVM control
- Gathering and displaying I/O statistics
- Setting the attributes of the paths to an enclosure
- Displaying the redundancy level of a device or enclosure
- Specifying the minimum number of active paths
- Displaying the I/O policy
- Specifying the I/O policy
- Disabling I/O for paths, controllers, array ports, or DMP nodes
- Enabling I/O for paths, controllers, array ports, or DMP nodes
- Renaming an enclosure
- Configuring the response to I/O failures
- Configuring the I/O throttling mechanism
- Configuring Low Impact Path Probing (LIPP)
- Configuring Subpaths Failover Groups (SFG)
- Displaying recovery option values
- Configuring DMP path restoration policies
- Stopping the DMP path restoration thread
- Displaying the status of the DMP path restoration thread
- Configuring Array Policy Modules
- Discovering and configuring newly added disk devices
- Dynamic Reconfiguration of devices
- About online dynamic reconfiguration
- Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool
- Manually reconfiguring a LUN online that is under DMP control
- Overview of manually reconfiguring a LUN
- Manually removing LUNs dynamically from an existing target ID
- Manually adding new LUNs dynamically to a new target ID
- About detecting target ID reuse if the operating system device tree is not cleaned up
- Scanning an operating system device tree after adding or removing LUNs
- Manually cleaning up the operating system device tree after removing LUNs
- Manually replacing a host bus adapter online
- Changing the characteristics of a LUN from the array side
- Upgrading the array controller firmware online
- Managing devices
- Displaying disk information
- Changing the disk device naming scheme
- About disk installation and formatting
- Adding and removing disks
- Renaming a disk
- Event monitoring
- Administering Dynamic Multi-Pathing
- Section IV. Administering Storage Foundation
- Administering sites and remote mirrors
- About sites and remote mirrors
- Making an existing disk group site consistent
- Configuring a new disk group as a Remote Mirror configuration
- Fire drill - testing the configuration
- Changing the site name
- Administering the Remote Mirror configuration
- Examples of storage allocation by specifying sites
- Displaying site information
- Failure and recovery scenarios
- Administering sites and remote mirrors
- Section V. Optimizing I/O performance
- Section VI. Using Point-in-time copies
- Understanding point-in-time copy methods
- About point-in-time copies
- When to use point-in-time copies
- About Storage Foundation point-in-time copy technologies
- Volume-level snapshots
- Storage Checkpoints
- About FileSnaps
- About snapshot file systems
- Administering volume snapshots
- About volume snapshots
- Traditional third-mirror break-off snapshots
- Full-sized instant snapshots
- Creating instant snapshots
- Adding an instant snap DCO and DCO volume
- Creating and managing space-optimized instant snapshots
- Creating and managing full-sized instant snapshots
- Creating and managing third-mirror break-off snapshots
- Creating and managing linked break-off snapshot volumes
- Creating multiple instant snapshots
- Creating instant snapshots of volume sets
- Adding snapshot mirrors to a volume
- Removing a snapshot mirror
- Removing a linked break-off snapshot volume
- Adding a snapshot to a cascaded snapshot hierarchy
- Refreshing an instant space-optimized snapshot
- Reattaching an instant full-sized or plex break-off snapshot
- Reattaching a linked break-off snapshot volume
- Restoring a volume from an instant space-optimized snapshot
- Dissociating an instant snapshot
- Removing an instant snapshot
- Splitting an instant snapshot hierarchy
- Displaying instant snapshot information
- Controlling instant snapshot synchronization
- Listing the snapshots created on a cache
- Tuning the autogrow attributes of a cache
- Monitoring and displaying cache usage
- Growing and shrinking a cache
- Removing a cache
- Creating instant snapshots
- Linked break-off snapshots
- Cascaded snapshots
- Creating multiple snapshots
- Restoring the original volume from a snapshot
- Adding a version 0 DCO and DCO volume
- Administering Storage Checkpoints
- About Storage Checkpoints
- Storage Checkpoint administration
- Storage Checkpoint space management considerations
- Restoring from a Storage Checkpoint
- Storage Checkpoint quotas
- Administering FileSnaps
- Administering snapshot file systems
- Understanding point-in-time copy methods
- Section VII. Optimizing storage with Storage Foundation
- Understanding storage optimization solutions in Storage Foundation
- Migrating data from thick storage to thin storage
- Maintaining Thin Storage with Thin Reclamation
- Reclamation of storage on thin reclamation arrays
- Identifying thin and thin reclamation LUNs
- Displaying VxFS file system usage on thin reclamation LUNs
- Reclaiming space on a file system
- Reclaiming space on a disk, disk group, or enclosure
- About the reclamation log file
- Monitoring Thin Reclamation using the vxtask command
- Configuring automatic reclamation
- Veritas InfoScale 4k sector device support solution
- Section VIII. Maximizing storage utilization
- Understanding storage tiering with SmartTier
- Creating and administering volume sets
- Multi-volume file systems
- About multi-volume file systems
- About volume types
- Features implemented using multi-volume file system (MVFS) support
- Creating multi-volume file systems
- Converting a single volume file system to a multi-volume file system
- Adding a volume to and removing a volume from a multi-volume file system
- Volume encapsulation
- Reporting file extents
- Load balancing
- Converting a multi-volume file system to a single volume file system
- Administering SmartTier
- About SmartTier
- Supported SmartTier document type definitions
- Placement classes
- Administering placement policies
- File placement policy grammar
- File placement policy rules
- Calculating I/O temperature and access temperature
- Multiple criteria in file placement policy rule statements
- Multiple file selection criteria in SELECT statement clauses
- Multiple placement classes in <ON> clauses of CREATE statements and in <TO> clauses of RELOCATE statements
- Multiple placement classes in <FROM> clauses of RELOCATE and DELETE statements
- Multiple conditions in <WHEN> clauses of RELOCATE and DELETE statements
- File placement policy rule and statement ordering
- File placement policies and extending files
- Using SmartTier with solid state disks
- Sub-file relocation
- Administering hot-relocation
- About hot-relocation
- How hot-relocation works
- Configuring a system for hot-relocation
- Displaying spare disk information
- Marking a disk as a hot-relocation spare
- Removing a disk from use as a hot-relocation spare
- Excluding a disk from hot-relocation use
- Making a disk available for hot-relocation use
- Configuring hot-relocation to use only spare disks
- Moving relocated subdisks
- Modifying the behavior of hot-relocation
- Deduplicating data
- Compressing files
- About compressing files
- Compressing files with the vxcompress command
- Interaction of compressed files and other commands
- Interaction of compressed files and other features
- Interaction of compressed files and applications
- Use cases for compressing files
- Section IX. Administering storage
- Administering VxVM volumes as paging devices
- Managing volumes and disk groups
- Rules for determining the default disk group
- Moving volumes or disks
- Monitoring and controlling tasks
- Using vxnotify to monitor configuration changes
- Performing online relayout
- Adding a mirror to a volume
- Configuring SmartMove
- Removing a mirror
- Setting tags on volumes
- Managing disk groups
- Disk group versions
- Displaying disk group information
- Creating a disk group
- Removing a disk from a disk group
- Deporting a disk group
- Importing a disk group
- Handling of minor number conflicts
- Moving disk groups between systems
- Importing a disk group containing hardware cloned disks
- Setting up configuration database copies (metadata) for a disk group
- Renaming a disk group
- Handling conflicting configuration copies
- Disabling a disk group
- Destroying a disk group
- Backing up and restoring disk group configuration data
- Working with existing ISP disk groups
- Managing plexes and subdisks
- Decommissioning storage
- Using DMP with a SAN boot disk
- Configuring DMP for SAN booting
- Administering the root volume group (rootvg) under DMP control
- Running the bosboot command when LVM rootvg is enabled for DMP
- Extending an LVM rootvg that is enabled for DMP
- Reducing the native rootvg that is enabled for DMP
- Mirroring the root volume group
- Removing the mirror for the root volume group (rootvg)
- Cloning a LVM rootvg that is enabled for DMP
- Cleaning up the alternate disk volume group when LVM rootvg is enabled for DMP
- Using mksysb when the root volume group is under DMP control
- Upgrading Storage Foundation and AIX on a DMP-enabled rootvg
- Quotas
- About Veritas File System quota limits
- About quota files on Veritas File System
- About Veritas File System quota commands
- About quota checking with Veritas File System
- Using Veritas File System quotas
- Turning on Veritas File System quotas
- Turning on Veritas File System quotas at mount time
- Editing Veritas File System quotas
- Modifying Veritas File System quota time limits
- Viewing Veritas File System disk quotas and usage
- Displaying blocks owned by users or groups
- Turning off Veritas File System quotas
- Support for 64-bit Quotas
- File Change Log
- Section X. Reference
- Appendix A. Reverse path name lookup
- Appendix B. Tunable parameters
- About tuning Storage Foundation
- Tuning the VxFS file system
- DMP tunable parameters
- Methods to change Dynamic Multi-Pathing tunable parameters
- DMP driver tunables
- Tunable parameters for VxVM
- Methods to change Veritas Volume Manager tunable parameters
- Appendix C. Command reference
RELOCATE statement examples
The following example illustrates an unconditional relocation statement, which is the simplest form of the RELOCATE policy rule statement:
<RELOCATE>
<FROM>
<SOURCE>
<CLASS>tier1</CLASS>
</SOURCE>
</FROM>
<TO>
<DESTINATION>
<CLASS>tier2</CLASS>
</DESTINATION>
</TO>
</RELOCATE>The files designated by the rule's SELECT statement that reside on volumes in placement class tier1 at the time the fsppadm enforce command executes would be unconditionally relocated to volumes in placement class tier2 as long as space permitted. This type of rule might be used, for example, with applications that create and access new files but seldom access existing files once they have been processed. A CREATE statement would specify creation on tier1 volumes, which are presumably high performance or high availability, or both. Each instantiation of fsppadm enforce would relocate files created since the last run to tier2 volumes.
The following example illustrates a more comprehensive form of the RELOCATE statement that uses access age as the criterion for relocating files from tier1 volumes to tier2 volumes. This rule is designed to maintain free space on tier1 volumes by relocating inactive files to tier2 volumes:
<RELOCATE>
<FROM>
<SOURCE>
<CLASS>tier1</CLASS>
</SOURCE>
</FROM>
<TO>
<DESTINATION>
<CLASS>tier2</CLASS>
</DESTINATION>
</TO>
<WHEN>
<SIZE Units="MB">
<MIN Flags="gt">1</MIN>
<MAX Flags="lt">1000</MAX>
</SIZE>
<ACCAGE Units="days">
<MIN Flags="gt">30</MIN>
</ACCAGE>
</WHEN>
</RELOCATE>Files designated by the rule's SELECT statement are relocated from tier1 volumes to tier2 volumes if they are between 1 MB and 1000 MB in size and have not been accessed for 30 days. VxFS relocates qualifying files in the order in which it encounters them as it scans the file system's directory tree. VxFS stops scheduling qualifying files for relocation when when it calculates that already-scheduled relocations would result in tier2 volumes being fully occupied.
The following example illustrates a possible companion rule that relocates files from tier2 volumes to tier1 ones based on their I/O temperatures. This rule might be used to return files that had been relocated to tier2 volumes due to inactivity to tier1 volumes when application activity against them increases. Using I/O temperature rather than access age as the relocation criterion reduces the chance of relocating files that are not actually being used frequently by applications. This rule does not cause files to be relocated unless there is sustained activity against them over the most recent two-day period.
<RELOCATE>
<FROM>
<SOURCE>
<CLASS>tier2</CLASS>
</SOURCE>
</FROM>
<TO>
<DESTINATION>
<CLASS>tier1</CLASS>
</DESTINATION>
</TO>
<WHEN>
<IOTEMP Type="nrbytes">
<MIN Flags="gt">5</MIN>
<PERIOD>2</PERIOD>
</IOTEMP>
</WHEN>
</RELOCATE>This rule relocates files that reside on tier2 volumes to tier1 volumes if their I/O temperatures are above 5 for the two day period immediately preceding the issuing of the fsppadm enforce command. VxFS relocates qualifying files in the order in which it encounters them during its file system directory tree scan. When tier1 volumes are fully occupied, VxFS stops scheduling qualifying files for relocation.
VxFS file placement policies are able to control file placement across any number of placement classes. The following example illustrates a rule for relocating files with low I/O temperatures from tier1 volumes to tier2 volumes, and to tier3 volumes when tier2 volumes are fully occupied:
<RELOCATE>
<FROM>
<SOURCE>
<CLASS>tier1</CLASS>
</SOURCE>
</FROM>
<TO>
<DESTINATION>
<CLASS>tier2</CLASS>
</DESTINATION>
<DESTINATION>
<CLASS>tier3</CLASS>
</DESTINATION>
</TO>
<WHEN>
<IOTEMP Type="nrbytes">
<MAX Flags="lt">4</MAX>
<PERIOD>3</PERIOD>
</IOTEMP>
</WHEN>
</RELOCATE>This rule relocates files whose 3-day I/O temperatures are less than 4 and which reside on tier1 volumes. When VxFS calculates that already-relocated files would result in tier2 volumes being fully occupied, VxFS relocates qualifying files to tier3 volumes instead. VxFS relocates qualifying files as it encounters them in its scan of the file system directory tree.
The <FROM> clause in the RELOCATE statement is optional. If the clause is not present, VxFS evaluates files designated by the rule's SELECT statement for relocation no matter which volumes they reside on when the fsppadm enforce command is issued. The following example illustrates a fragment of a policy rule that relocates files according to their sizes, no matter where they reside when the fsppadm enforce command is issued:
<RELOCATE>
<TO>
<DESTINATION>
<CLASS>tier1</CLASS>
</DESTINATION>
</TO>
<WHEN>
<SIZE Units="MB">
<MAX Flags="lt">10</MAX>
</SIZE>
</WHEN>
</RELOCATE>
<RELOCATE>
<TO>
<DESTINATION>
<CLASS>tier2</CLASS>
</DESTINATION>
</TO>
<WHEN>
<SIZE Units="MB">
<MIN Flags="gteq">10</MIN>
<MAX Flags="lt">100</MAX>
</SIZE>
</WHEN>
</RELOCATE>
<RELOCATE>
<TO>
<DESTINATION>
<CLASS>tier3</CLASS>
</DESTINATION>
</TO>
<WHEN>
<SIZE Units="MB">
<MIN Flags="gteq">100</MIN>
</SIZE>
</WHEN>
</RELOCATE>This rule relocates files smaller than 10 megabytes to tier1 volumes, files between 10 and 100 megabytes to tier2 volumes, and files larger than 100 megabytes to tier3 volumes. VxFS relocates all qualifying files that do not already reside on volumes in their DESTINATION placement classes when the fsppadm enforce command is issued.
The following example compresses while relocating all of the files from tier2 with the extension dbf to tier4 if the file was accessed over 30 days ago:
<SELECT Flags="Data">
<PATTERN> *.dbf </PATTERN>
</SELECT>
<RELOCATE>
<FROM>
<SOURCE>
<CLASS> tier2 </CLASS>
</SOURCE>
</FROM>
<TO Flags="compress">
<DESTINATION>
<CLASS> tier4 </CLASS>
</DESTINATION>
</TO>
<WHEN>
<ACCAGE Units="days">
<MIN Flags="gt">30</MIN>
</ACCAGE>
</WHEN>
</RELOCATE>The following example uncompresses while relocating all of the files from tier3 with the extension dbf to tier1 if the file was accessed over 1 hour ago:
<SELECT Flags="Data">
<PATTERN> *.dbf </PATTERN>
</SELECT>
<RELOCATE>
<FROM>
<SOURCE>
<CLASS> tier3 </CLASS>
</SOURCE>
</FROM>
<TO Flags="uncompress">
<DESTINATION>
<CLASS> tier1 </CLASS>
</DESTINATION>
</TO>
<WHEN>
<ACCAGE Units="hours">
<MIN Flags="gt">1</MIN>
</ACCAGE>
</WHEN>
</RELOCATE>