InfoScale™ 9.0 Storage Foundation Cluster File System High Availability Configuration and Upgrade Guide - Linux
- Section I. Introduction to SFCFSHA
- Introducing Storage Foundation Cluster File System High Availability
- Section II. Configuration of SFCFSHA
- Preparing to configure
- Preparing to configure SFCFSHA clusters for data integrity
- About planning to configure I/O fencing
- Setting up the CP server
- Planning your CP server setup
- Installing the CP server using the installer
- Configuring the CP server cluster in secure mode
- Setting up shared storage for the CP server database
- Configuring the CP server using the installer program
- Configuring the CP server manually
- Verifying the CP server configuration
- Configuring SFCFSHA
- Overview of tasks to configure SFCFSHA using the product installer
- Starting the software configuration
- Specifying systems for configuration
- Configuring the cluster name
- Configuring private heartbeat links
- Configuring the virtual IP of the cluster
- Configuring SFCFSHA in secure mode
- Configuring a secure cluster node by node
- Adding VCS users
- Configuring SMTP email notification
- Configuring SNMP trap notification
- Configuring global clusters
- Completing the SFCFSHA configuration
- About the License Audit Tool
- Verifying and updating licenses on the system
- Configuring SFDB
- Configuring SFCFSHA clusters for data integrity
- Setting up disk-based I/O fencing using installer
- Setting up server-based I/O fencing using installer
- Setting up non-SCSI-3 I/O fencing in virtual environments using installer
- Setting up majority-based I/O fencing using installer
- Enabling or disabling the preferred fencing policy
- Performing an automated SFCFSHA configuration using response files
- Performing an automated I/O fencing configuration using response files
- Configuring I/O fencing using response files
- Response file variables to configure disk-based I/O fencing
- Sample response file for configuring disk-based I/O fencing
- Configuring CP server using response files
- Response file variables to configure server-based I/O fencing
- Sample response file for configuring server-based I/O fencing
- Response file variables to configure non-SCSI-3 I/O fencing
- Sample response file for configuring non-SCSI-3 I/O fencing
- Response file variables to configure majority-based I/O fencing
- Sample response file for configuring majority-based I/O fencing
- Manually configuring SFCFSHA clusters for data integrity
- Setting up disk-based I/O fencing manually
- Setting up server-based I/O fencing manually
- Preparing the CP servers manually for use by the SFCFSHA cluster
- Generating the client key and certificates manually on the client nodes
- Configuring server-based fencing on the SFCFSHA cluster manually
- Configuring CoordPoint agent to monitor coordination points
- Verifying server-based I/O fencing configuration
- Setting up non-SCSI-3 fencing in virtual environments manually
- Setting up majority-based I/O fencing manually
- Section III. Upgrade of SFCFSHA
- Planning to upgrade SFCFSHA
- About the upgrade
- Supported upgrade paths
- Transitioning between the InfoScale products
- Considerations for upgrading SFCFSHA to 9.0 on systems configured with an Oracle resource
- Preparing to upgrade SFCFSHA
- Considerations for upgrading REST server
- Using Install Bundles to simultaneously install or upgrade full releases (base, maintenance, rolling patch), and individual patches
- Performing a full upgrade of SFCFSHA using the installer
- Performing a rolling upgrade of SFCFSHA
- Performing a phased upgrade of SFCFSHA
- About phased upgrade
- Performing a phased upgrade using the product installer
- Moving the service groups to the second subcluster
- Upgrading the operating system on the first subcluster
- Upgrading the SFCFSHA stack on the first subcluster
- Preparing the second subcluster
- Activating the first subcluster
- Upgrading the operating system on the second subcluster
- Upgrading the second subcluster
- Completing the phased upgrade
- Performing an automated SFCFSHA upgrade using response files
- Upgrading SFCFSHA using YUM
- Upgrading Volume Replicator
- Upgrading VirtualStore
- Performing post-upgrade tasks
- Resetting DAS disk names to include host name in FSS environments
- Re-joining the backup boot disk group into the current disk group
- Reverting to the backup boot disk group after an unsuccessful upgrade
- CVM master node needs to assume the logowner role for VCS managed VVR resources
- Consideration when KMS is used for volume encryption
- Planning to upgrade SFCFSHA
- Section IV. Post-configuration tasks
- Section V. Configuration of disaster recovery environments
- Section VI. Adding and removing nodes
- Adding a node to SFCFSHA clusters
- About adding a node to a cluster
- Before adding a node to a cluster
- Adding a node to a cluster using the Veritas InfoScale installer
- Adding the node to a cluster manually
- Starting Veritas Volume Manager (VxVM) on the new node
- Configuring cluster processes on the new node
- Setting up the node to run in secure mode
- Starting fencing on the new node
- After adding the new node
- Configuring Cluster Volume Manager (CVM) and Cluster File System (CFS) on the new node
- Configuring the ClusterService group for the new node
- Adding a node using response files
- Configuring server-based fencing on the new node
- Adding nodes to a cluster that is using authentication for SFDB tools
- Updating the Storage Foundation for Databases (SFDB) repository after adding a node
- Sample configuration file for adding a node to the cluster
- Removing a node from SFCFSHA clusters
- About removing a node from a cluster
- Removing a node from a cluster
- Modifying the VCS configuration files on existing nodes
- Modifying the Cluster Volume Manager (CVM) configuration on the existing nodes to remove references to the deleted node
- Removing the node configuration from the CP server
- Removing security credentials from the leaving node
- Updating the Storage Foundation for Databases (SFDB) repository after removing a node
- Sample configuration file for removing a node from the cluster
- Adding a node to SFCFSHA clusters
- Section VII. Configuration and Upgrade reference
- Appendix A. Installation scripts
- Appendix B. Configuration files
- Appendix C. Configuring the secure shell or the remote shell for communications
- About configuring secure shell or remote shell communication modes before installing products
- Manually configuring passwordless ssh
- Setting up ssh and rsh connection using the installer -comsetup command
- Setting up ssh and rsh connection using the pwdutil.pl utility
- Restarting the ssh session
- Enabling rsh for Linux
- Appendix D. High availability agent information
- Appendix E. Sample SFCFSHA cluster setup diagrams for CP server-based I/O fencing
- Appendix F. Configuring LLT over UDP
- Using the UDP layer for LLT
- Manually configuring LLT over UDP using IPv4
- Broadcast address in the /etc/llttab file
- The link command in the /etc/llttab file
- The set-addr command in the /etc/llttab file
- Selecting UDP ports
- Configuring the netmask for LLT
- Configuring the broadcast address for LLT
- Sample configuration: direct-attached links
- Sample configuration: links crossing IP routers
- Using the UDP layer of IPv6 for LLT
- Manually configuring LLT over UDP using IPv6
- About configuring LLT over UDP multiport
- Appendix G. Using LLT over RDMA
- Using LLT over RDMA
- About RDMA over RoCE or InfiniBand networks in a clustering environment
- How LLT supports RDMA capability for faster interconnects between applications
- Using LLT over RDMA: supported use cases
- Configuring LLT over RDMA
- Choosing supported hardware for LLT over RDMA
- Installing RDMA, InfiniBand or Ethernet drivers and utilities
- Configuring RDMA over an Ethernet network
- Configuring RDMA over an InfiniBand network
- Tuning system performance
- Manually configuring LLT over RDMA
- LLT over RDMA sample /etc/llttab
- Verifying LLT configuration
- Troubleshooting LLT over RDMA
- IP addresses associated to the RDMA NICs do not automatically plumb on node restart
- Ping test fails for the IP addresses configured over InfiniBand interfaces
- After a node restart, by default the Mellanox card with Virtual Protocol Interconnect (VPI) gets configured in InfiniBand mode
- The LLT module fails to start
Generating the key and certificates manually for the CP server
CP server uses the HTTPS protocol to establish secure communication with client nodes. HTTPS is a secure means of communication, which happens over a secure communication channel that is established using the SSL/TLS protocol.
HTTPS uses x509 standard certificates and the constructs from a Public Key Infrastructure (PKI) to establish secure communication between the CP server and client. Similar to a PKI, the CP server, and its clients have their own set of certificates signed by a Certification Authority (CA). The server and its clients trust the certificate.
Every CP server acts as a certification authority for itself and for all its client nodes. The CP server has its own CA key and CA certificate and a server certificate generated, which is generated from a server private key. The server certificate is issued to the Universally Unique Identifier (UUID) of the CP server. All the IP addresses or domain names that the CP server listens on are mentioned in the Subject Alternative Name section of the CP server's server certificate
The OpenSSL library must be installed on the CP server to create the keys or certificates.. If OpenSSL is not installed, then you cannot create keys or certificates. The vxcps.conf file points to the configuration file that determines which keys or certificates are used by the CP server when SSL is initialized. The configuration value is stored in the ssl_conf_file and the default value is /etc/vxcps_ssl.properties.
To manually generate keys and certificates for the CP server:
- Create directories for the security files on the CP server.
# mkdir -p /var/VRTScps/security/keys /var/VRTScps/security/certs
- Generate an OpenSSL config file, which includes the VIPs.
The CP server listens to requests from client nodes on these VIPs. The server certificate includes VIPs, FQDNs, and host name of the CP server. Clients can reach the CP server by using any of these values. However, Arctera recommends that client nodes use the IP address to communicate to the CP server.
The sample configuration uses the following values:
Config file name: https_ssl_cert.conf
VIP: 192.168.1.201
FQDN: cpsone.company.com
Host name: cpsone
Note the IP address, VIP, and FQDN values used in the [alt_names] section of the configuration file are sample values. Replace the sample values with your configuration values. Do not change the rest of the values in the configuration file.
[req] distinguished_name = req_distinguished_name req_extensions = v3_req [req_distinguished_name] countryName = Country Name (2 letter code) countryName_default = US localityName = Locality Name (eg, city) organizationalUnitName = Organizational Unit Name (eg, section) commonName = Common Name (eg, YOUR name) commonName_max = 64 emailAddress = Email Address emailAddress_max = 40 [v3_req] keyUsage = keyEncipherment, dataEncipherment extendedKeyUsage = serverAuth subjectAltName = @alt_names [alt_names] DNS.1 = cpsone.company.com DNS.2 = cpsone DNS.3 = 192.168.1.201
- Generate a 4096-bit CA key that is used to create the CA certificate.
The key must be stored at
/var/VRTScps/security/keys/ca.key. Ensure that only root users can access the CA key, as the key can be misused to create fake certificates and compromise security.# /opt/VRTSperl/non-perl-libs/bin/openssl genrsa -out /var/VRTScps/security/keys/ca.key 4096
- Generate a self-signed CA certificate.
# /opt/VRTSperl/non-perl-libs/bin/openssl req -new -x509 -days days -sha256 -key /var/VRTScps/security/keys/ca.key -subj \
'/C=countryname/L=localityname/OU=COMPANY/CN=CACERT' -out \
/var/VRTScps/security/certs/ca.crt
Where, days is the days you want the certificate to remain valid, countryname is the name of the country, localityname is the city, CACERT is the certificate name.
- Generate a 2048-bit private key for CP server.
The key must be stored at
/var/VRTScps/security/keys/server_private key.# /opt/VRTSperl/non-perl-libs/bin/openssl genrsa -out \
/var/VRTScps/security/keys/server_private.key 2048
- Generate a Certificate Signing Request (CSR) for the server certificate.
The Certified Name (CN) in the certificate is the UUID of the CP server.
# /opt/VRTSperl/non-perl-libs/bin/openssl req -new -sha256 -key /var/VRTScps/security/keys/server_private.key \
-config https_ssl_cert.conf -subj \
'/C=CountryName/L=LocalityName/OU=COMPANY/CN=UUID' \
-out /var/VRTScps/security/certs/server.csr
Where, countryname is the name of the country, localityname is the city, UUID is the certificate name.
- Generate the server certificate by using the key certificate of the CA.
# /opt/VRTSperl/non-perl-libs/bin/openssl x509 -req -days days -sha256 -in /var/VRTScps/security/certs/server.csr \
-CA /var/VRTScps/security/certs/ca.crt -CAkey \
/var/VRTScps/security/keys/ca.key \
-set_serial 01 -extensions v3_req -extfile https_ssl_cert.conf \
-out /var/VRTScps/security/certs/server.crt
Where, days is the days you want the certificate to remain valid, https_ssl_cert.conf is the configuration file name.
You successfully created the key and certificate required for the CP server.
- Ensure that no other user except the root user can read the keys and certificates.
- Complete the CP server configuration.
More Information