InfoScale™ 9.0 Virtualization Guide - Linux
- Section I. Overview of InfoScale solutions used in Linux virtualization
- Overview of supported products and technologies
- Overview of the InfoScale Virtualization Guide
- About InfoScale support for Linux virtualization environments
- About KVM technology
- About InfoScale deployments in OpenShift Virtualization environments
- About InfoScale deployments in OpenStack environments
- Virtualization use cases addressed by InfoScale
- About virtual-to-virtual (in-guest) clustering and failover
- Overview of supported products and technologies
- Section II. Implementing a basic KVM environment
- Getting started with basic KVM
- Creating and launching a kernel-based virtual machine (KVM) host
- RHEL-based KVM installation and usage
- Setting up a kernel-based virtual machine (KVM) guest
- About setting up KVM with InfoScale solutions
- InfoScale configuration options for a KVM environment
- Dynamic Multi-Pathing in the KVM guest virtualized machine
- DMP in the KVM host
- SF in the virtualized guest machine
- Enabling I/O fencing in KVM guests
- SFCFSHA in the KVM host
- DMP in the KVM host and guest virtual machine
- DMP in the KVM host and SFHA in the KVM guest virtual machine
- VCS in the KVM host
- VCS in the guest
- VCS in a cluster across virtual machine guests and physical machines
- Installing InfoScale in a KVM environment
- Installing and configuring VCS in a kernel-based virtual machine (KVM) environment
- Configuring KVM resources
- Getting started with basic KVM
- Section III. Implementing InfoScale an OpenStack environment
- Section IV. Implementing Linux virtualization use cases
- Application visibility and device discovery
- Server consolidation
- Physical to virtual migration
- Simplified management
- Application availability using Cluster Server
- About application availability options
- Cluster Server in a KVM environment architecture summary
- Virtual-to-virtual clustering and failover
- I/O fencing support for virtual-to-virtual clustering
- Virtual-to-physical clustering and failover
- Recommendations for improved resiliency of InfoScale clusters in virtualized environments
- Virtual machine availability
- Virtual to virtual clustering in a Hyper-V environment
- Virtual to virtual clustering in an OVM environment
- Multi-tier business service support
- Managing Docker containers with InfoScale Enterprise
- About managing Docker containers with InfoScale Enterprise
- About the Cluster Server agents for Docker, Docker Daemon, and Docker Container
- Managing storage capacity for Docker containers
- Offline migration of Docker containers
- Disaster recovery of volumes and file systems in Docker environments
- Limitations while managing Docker containers
- Section V. Reference
- Appendix A. Troubleshooting
- InfoScale logs for CFS configurations in OpenStack environments
- Troubleshooting virtual machine live migration
- The KVMGuest resource may remain in the online state even if storage connectivity to the host is lost
- VCS initiates a virtual machine failover if a host on which a virtual machine is running loses network connectivity
- Appendix B. Sample configurations
- Appendix C. Where to find more information
- Appendix A. Troubleshooting
Virtual-to-virtual clustering and failover
Running Cluster Server (VCS) on multiple guest VMs enables guest-to-guest clustering. VCS can then monitor individual applications running within a guest VM and then fail over the application to another guest VM in the virtual-to-virtual cluster.
For clustering between guests for application high availability, the following I/O fencing configurations are supported:
SCSI-3 with underlying iSCSI devices
Non-SCSI-3
Coordination point server (CP server)
You can run VCS on each guest to provide high availability to applications running within a guest.
A VCS cluster is formed among the guests in this configuration. The guests in the cluster can be either on the same physical host or on different physical hosts. VCS is installed on the guests in the cluster. The VCS installation and configuration procedures on guests are similar to those on physical hosts. This VCS cluster manages and controls the applications and services that run within the guests. Any faulted application or service is failed over to another guest in the cluster. This configuration does not address guest VM failover scenarios, because VCS runs within the guest.
For a VCS cluster across guests on the same physical host, the following I/O fencing configurations are supported:
SCSI-3 with underlying iSCSI devices
Non-SCSI-3
Coordination point server (CP server)