Legal Notice

Copyright © 2016 Veritas Technologies LLC. All rights reserved.

Veritas, the Veritas Logo, and NetBackup are trademarks or registered trademarks of Veritas Technologies LLC or its affiliates in the U.S. and other countries. Other names may be trademarks of their respective owners.

This product may contain third party software for which Veritas is required to provide attribution to the third party ("Third Party Programs"). Some of the Third Party Programs are available under open source or free software licenses. The License Agreement accompanying the Software does not alter any rights or obligations you may have under those open source or free software licenses. Refer to the third party legal notices document accompanying this Veritas product or available at:

https://www.veritas.com/about/legal/license-agreements

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation/reverse engineering. No part of this document may be reproduced in any form by any means without prior written authorization of Veritas Technologies LLC and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. VERITAS TECHNOLOGIES LLC SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19 "Commercial Computer Software - Restricted Rights" and DFARS 227.7202, et seq. "Commercial Computer Software and Commercial Computer Software Documentation," as applicable, and any successor regulations, whether delivered by Veritas as on premises or hosted services. Any use, modification, reproduction release, performance, display or disclosure of the Licensed Software and Documentation by the U.S. Government shall be solely in accordance with the terms of this Agreement.

Veritas Technologies LLC
500 E Middlefield Road
Mountain View, CA 94043

http://www.veritas.com
Technical Support

Technical Support maintains support centers globally. All support services will be delivered in accordance with your support agreement and the then-current enterprise technical support policies. For information about our support offerings and how to contact Technical Support, visit our website:

https://www.veritas.com/support

You can manage your Veritas account information at the following URL:

https://my.veritas.com

If you have questions regarding an existing support agreement, please email the support agreement administration team for your region as follows:

Worldwide (except Japan) CustomerCare@veritas.com
Japan CustomerCare_Japan@veritas.com

Documentation

Make sure that you have the current version of the documentation. Each document displays the date of the last update on page 2. The latest documentation is available on the Veritas website:

https://sort.veritas.com/documents

Documentation feedback

Your feedback is important to us. Suggest improvements or report errors or omissions to the documentation. Include the document title, document version, chapter title, and section title of the text on which you are reporting. Send feedback to:

NB.docs@veritas.com

You can also see documentation information or ask a question on the Veritas community site:

http://www.veritas.com/community/

Veritas Services and Operations Readiness Tools (SORT)

Veritas Services and Operations Readiness Tools (SORT) is a website that provides information and tools to automate and simplify certain time-consuming administrative tasks. Depending on the product, SORT helps you prepare for installations and upgrades, identify risks in your datacenters, and improve operational efficiency. To see what services and tools SORT provides for your product, see the data sheet:

Chapter 1 Introduction ... 7
Recent changes to this guide ... 7
Troubleshooting a problem ... 7
Problem report for Technical Support .. 10
About gathering information for NetBackup-Java applications 11

Chapter 2 Troubleshooting procedures ... 14
About troubleshooting procedures ... 15
Troubleshooting NetBackup problems .. 17
 Verifying that all processes are running on UNIX servers 19
 Verifying that all processes are running on Windows servers 22
Troubleshooting installation problems ... 25
Troubleshooting configuration problems ... 26
Device configuration problem resolution .. 28
Testing the master server and clients ... 31
Testing the media server and clients ... 35
Resolving network communication problems with UNIX clients 38
Resolving network communication problems with Windows clients 43
About troubleshooting networks and host names ... 47
Verifying host name and service entries in NetBackup 51
 Example of host name and service entries on UNIX master server and client .. 55
 Example of host name and service entries on UNIX master server and media server ... 56
 Example of host name and service entries on UNIX PC clients .. 57
 Example of host name and service entries on UNIX server that connects to multiple networks ... 58
About the bpclntcmd utility .. 60
Using the Host Properties window to access configuration settings 62
Resolving full disk problems ... 63
Frozen media troubleshooting considerations .. 64
 Logs for troubleshooting frozen media .. 65
Chapter 3 Using NetBackup utilities ... 92

About NetBackup troubleshooting utilities 92
About the analysis utilities for NetBackup debug logs 93
About the Logging Assistant ... 97
About network troubleshooting utilities ... 98
About the NetBackup support utility (nbsu) 99
 Output from the NetBackup support utility (nbsu) 101
 Status code information gathered by the NetBackup support utility
 (nbsu) .. 103
 Example of a progress display for the NetBackup support utility
 (nbsu) .. 104
About the NetBackup consistency check utility (NBCC) 105
 Output from the NetBackup consistency check utility
 (NBCC) .. 107
 Example of an NBCC progress display 107
About the NetBackup consistency check repair (NBCCR) utility 113
About the nbcplogs utility .. 115
About the robotic test utilities .. 116
 Robotic tests on UNIX .. 117
Chapter 4 Disaster recovery ... 119

About disaster recovery .. 119
Recommended backup practices .. 120
About disk recovery procedures for UNIX and Linux 123
 About recovering the master server disk for UNIX and Linux 123
 About recovering the NetBackup media server disk for UNIX 129
 Recovering the system disk on a UNIX client workstation 129
About clustered NetBackup server recovery for UNIX and Linux 129
 Replacing a failed node on a UNIX or Linux cluster 130
 Recovering the entire UNIX or Linux cluster 132
About disk recovery procedures for Windows 133
 About recovering the master server disk for Windows 133
 About recovering the NetBackup media server disk for Windows 139
 Recovering a Windows client disk ... 140
About clustered NetBackup server recovery for Windows 142
 Replacing a failed node on a Windows VCS cluster 143
 Recovering the shared disk on a Windows VCS cluster 144
 Recovering the entire Windows VCS cluster 145
About recovering the NetBackup catalog 146
 About NetBackup catalog recovery on Windows computers 148
 About NetBackup catalog recovery from disk devices 148
 About NetBackup catalog recovery and symbolic links 148
 About NetBackup catalog recovery and OpsCenter 149
 NetBackup disaster recovery email example 150
About recovering the entire NetBackup catalog 153
About recovering the NetBackup catalog image files 164
About recovering the NetBackup relational database 177
Recovering the NetBackup catalog when NetBackup Access
 Control is configured ... 185
Recovering the NetBackup catalog from a nonprimary copy of a
catalog backup .. 187
Recovering the NetBackup catalog without the disaster recovery
 file ... 188
Recovering a NetBackup user-directed online catalog backup from
 the command line .. 189
Restoring files from a NetBackup online catalog backup 193
Unfreezing the NetBackup online catalog recovery media 193

Index ... 194
Introduction

This chapter includes the following topics:

- Recent changes to this guide
- Troubleshooting a problem
- Problem report for Technical Support
- About gathering information for NetBackup-Java applications

Recent changes to this guide

Starting at NetBackup 7.7, the following material has been incorporated into the *NetBackup Logging Reference Guide*:

- Chapters on logging
- The appendix "Backup and restore functional overview"
- The appendix "Media and device management functional description"

See the *NetBackup Logging Reference Guide* for those topics:

http://www.veritas.com/docs/DOC5332

Note: For descriptions and recommended actions on NetBackup status codes, see the *NetBackup Status Codes Reference Guide*.

Troubleshooting a problem

The following steps offer general guidelines to help you resolve any problems you may encounter while you use NetBackup. The steps provide links to more specific troubleshooting information.
Table 1-1: Steps for troubleshooting NetBackup problems

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Remember the error message</td>
<td>Error messages are usually the vehicle for telling you something went wrong. If you don’t see an error message in an interface, but still suspect a problem, check the reports and logs. NetBackup provides extensive reporting and logging facilities. These can provide an error message that points you directly to a solution. The logs also show you what went right and the NetBackup operation that was ongoing when the problem occurred. For example, a restore operation needs media to be mounted, but the required media is currently in use for another backup. Logs and reports are essential troubleshooting tools. See the NetBackup Logging Reference Guide.</td>
</tr>
</tbody>
</table>
| Step 2 | Identify what you were doing when the problem occurred | Ask the following questions:
- What operation was tried?
- What method did you use?
 For example, more than one way exists to install software on a client. Also more than one possible interface exists to use for many operations. Some operations can be performed with a script.
- What type of server platform and operating system was involved?
- If your site uses both the master server and the media server, was it a master server or a media server?
- If a client was involved, what type of client was it?
- Have you performed the operation successfully in the past? If so, what is different now?
- What is the service pack level?
- Do you use operating system software with the latest fixes supplied, especially those required for use with NetBackup?
- Is your device firmware at a level, or higher than the level, at which it has been tested according to the posted device compatibility lists? |
Table 1-1 Steps for troubleshooting NetBackup problems *(continued)*

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| Step 3 | Record all information | Capture potentially valuable information:
 - NetBackup progress logs
 - NetBackup Reports
 - NetBackup Utility Reports
 - NetBackup debug logs
 - Media and Device Management debug logs
 - On UNIX NetBackup servers, check for error or status messages in the system log or standard output.
 - Error or status messages in dialog boxes
 - On Windows, NetBackup servers, check for error or status information in the Event Viewer Application and System log.

 Record this information for each try. Compare the results of multiple tries. A record of tries is also useful for others at your site and for Technical Support in the event that you cannot solve the problem. You can get more information about logs and reports.

 See the NetBackup Logging Reference Guide. |
| Step 4 | Correct the problem | After you define the problem, use the following information to correct it:
 - Take the corrective action that the status code or message recommends.
 See the Status Codes Reference Guide.
 - If no status code or message exists, or the actions for the status code do not solve the problem, try these additional troubleshooting procedures:
 See “Troubleshooting NetBackup problems” on page 17. |
| Step 5 | Complete a problem report for Technical Support | If your troubleshooting is unsuccessful, prepare to contact Technical Support by filling out a problem report.

 See “Problem report for Technical Support” on page 10.

 See “About gathering information for NetBackup-Java applications” on page 11.

 On UNIX systems, the /usr/openv/netbackup/bin/goodies/support script creates a file containing data necessary for Technical Support to debug any problems you encounter. For more details, consult the usage information of the script by means of the support -h command. |
| Step 6 | Contact Technical Support | The Veritas Technical Support website has a wealth of information that can help you solve NetBackup problems.

 Access Technical Support at the following URL:
 https://www.veritas.com/support/en_US.html |
Note: The term media server may not apply to the NetBackup server product. It depends on the context. When you troubleshoot a server installation, be aware that only one host exists: The master and the media server are one and the same. Ignore references to a media server on a different host.

Problem report for Technical Support

Fill out the following information before you contact support to report a problem.

Date: _________________________

Record the following product, platform, and device information:

■ Product and its release level.
■ Server hardware type and operating system level.
■ Client hardware type and operating system level, if a client is involved.
■ Storage units being used, if it is possible that storage units are involved.
■ If it looks like a device problem, be ready to supply the following device information: The types of robots and drives and their version levels along with Media and Device Management and system configuration information.
■ Software patches to the products that were installed.
■ The service packs and hot fixes that were installed.

__
__
__
__
__

Define the problem.

__
__
__

What were you doing when the problem occurred? (for example, a backup on a Windows client)

__

What were the error indications? (for example, status code, error dialog box)
About gathering information for NetBackup-Java applications

If you encounter problems with the NetBackup-Java applications, use the following methods to gather data for support.
The following scripts are available for gathering information:

jnBSA *(NetBackup-Java administration application startup script)*
Logs the data in a log file in `/usr/openv/netbackup/logs/user_ops/nbjlogs`. At startup, the script tells you which file in this directory it logs to. Normally, this file does not become very large (usually less than 2 KB). Consult the file `/usr/openv/java/Debug.properties` for the options that can affect the contents of this log file.

NetBackup-Java administration application on Windows
If NetBackup is installed on the computer where the application was started, the script logs the data in a log file at `install_path\NetBackup\logs\user_ops\nbjlogs`.

If NetBackup was not installed on this computer, then no log file is created. To produce a log file, modify the last “java.exe” line in the following to redirect output to a file:

`install_path\java\nbjava.bat`.

If NetBackup was not installed on this computer, the script logs the data in a log file at `install_path\Veritas\Java\logs`.

Note: When NetBackup is installed where the application is started, and when `install_path` is not set in the `setconf.bat` file, the script logs the data here: `install_path\Veritas\Java\logs`.

/usr/openv/java/get_trace
UNIX/Linux only.
Provides a Java Virtual Machine stack trace for support to analyze. This stack trace is written to the log file that is associated with the instance of execution.

/usr/openv/netbackup/bin/support/nbsu
UNIX/Linux:
Queries the host and gathers appropriate diagnostic information about NetBackup and the operating system.
See "About the NetBackup support utility (nbsu)" on page 99.

Windows:

`install_path\NetBackup\bin\support\nbsu.exe`

The following example describes how you can gather troubleshooting data for Veritas Technical Support to analyze.

An application does not respond.
Wait for several minutes before you assume that the operation is hung. Some operations can take quite a while to complete, especially operations in the **Activity Monitor** and **Reports** applications.
UNIX/Linux only:

Still no response after several minutes.

Run `/usr/openv/java/get_trace` under the account where you started the Java application. This script causes a stack trace to write to the log file.

For example, if you started `jnBSA` from the root account, start `/usr/openv/java/get_trace` as root. Otherwise, the command runs without error, but fails to add the stack trace to the debug log. This failure occurs because root is the only account that has permission to run the command that dumps the stack trace.

Get data about your configuration.

Run the `nbsu` command that is listed in this topic. Run this command after you complete the NetBackup installation and every time you change the NetBackup configuration.

Contact Veritas Technical Support

Provide the log file and the output of the `nbsu` command for analysis.
Troubleshooting procedures

This chapter includes the following topics:

- About troubleshooting procedures
- Troubleshooting NetBackup problems
- Troubleshooting installation problems
- Troubleshooting configuration problems
- Device configuration problem resolution
- Testing the master server and clients
- Testing the media server and clients
- Resolving network communication problems with UNIX clients
- Resolving network communication problems with Windows clients
- About troubleshooting networks and host names
- Verifying host name and service entries in NetBackup
- About the bpclntcmd utility
- Using the Host Properties window to access configuration settings
- Resolving full disk problems
- Frozen media troubleshooting considerations
- Troubleshooting problems with the NetBackup web services
About troubleshooting procedures

These procedures for finding the cause of NetBackup errors are general in nature and do not try to cover every problem that can occur. They do, however, recommend the methods that usually result in successful problem resolution.

The Veritas Technical Support site has a wealth of information that can help you solve NetBackup problems. See the following site for comprehensive troubleshooting assistance:

https://www.veritas.com/support/en_US.html

When you perform these procedures, try each step in sequence. If you already performed the action or it does not apply, skip to the next step. If it branches to another topic, use the solutions that are suggested there. If you still have a problem, go to the next step in the procedure. Also, alter your approach according to your configuration and what you have already tried.

Troubleshooting procedures can be divided into the following categories:

- Preliminary troubleshooting
 - The following procedures describe what to check first. They branch off to other procedures as appropriate.
 - See “Troubleshooting NetBackup problems” on page 17.
 - See “Verifying that all processes are running on UNIX servers” on page 19.
 - See “Verifying that all processes are running on Windows servers” on page 22.
Installation troubleshooting Problems that apply specifically to installation.
See “Troubleshooting installation problems” on page 25.

Configuration troubleshooting Problems that apply specifically to configuration.
See “Troubleshooting configuration problems” on page 26.

General test and troubleshooting These procedures define general methods for finding server and client problems and should be used last.
See “Testing the master server and clients” on page 31.
See “Testing the media server and clients” on page 35.
See “Resolving network communication problems with UNIX clients” on page 38.
See “Resolving network communication problems with Windows clients” on page 43.
See “Verifying host name and service entries in NetBackup” on page 51.
See “About the bpclntcmd utility” on page 60.
See “Verifying host name and service entries in NetBackup” on page 51.

Other troubleshooting procedures See “Resolving full disk problems” on page 63.
See “Frozen media troubleshooting considerations” on page 64.
See “About the conditions that cause media to freeze” on page 65.
See “Troubleshooting network interface card performance” on page 88.

A set of examples is also available that shows host name and service entries for UNIX systems.

- See “Example of host name and service entries on UNIX master server and client” on page 55.
- See “Example of host name and service entries on UNIX master server and media server” on page 56.
- See “Example of host name and service entries on UNIX PC clients” on page 57.
- See “Example of host name and service entries on UNIX server that connects to multiple networks” on page 58.
Troubleshooting NetBackup problems

If you have problems with NetBackup, perform these actions first.

This preliminary NetBackup troubleshooting procedure explains what to check first and branches to other procedures as appropriate. These procedures do not try to cover every problem that can occur. However, they do recommend the methods that usually result in successful problem resolution.

When you perform these procedures, try each step in sequence. If you already performed the action or it does not apply, skip to the next step. If you branch to another topic, use the solutions that are suggested there. If you still have a problem, go to the next step in the procedure. Also, alter your approach according to your configuration and what you have already tried.

Table 2-1 Steps for troubleshooting NetBackup problems

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Verify operating systems and peripherals.</td>
<td>Ensure that your servers and clients are running supported operating system versions and that any peripherals you use are supported. See the NetBackup Master Compatibility List. In addition, the NetBackup release notes include a section "Required operating system patches and updates for NetBackup" that should be checked. The release notes for your release are available here: http://www.veritas.com/docs/DOC5332</td>
</tr>
<tr>
<td>Step 2</td>
<td>Use reports to check for errors.</td>
<td>Use the All Log Entries report and check for NetBackup errors for the appropriate time period. This report can show the context in which the error occurred. Often it provides specific information, which is useful when the status code can result from a variety of problems. See the Reports information in the NetBackup Administrator’s Guide, Volume 1. If the problem involved a backup or archive, check the Status of Backups report. This report gives you the status code. If you find a status code or message in either of these reports, perform the recommended corrective actions. See the Status Codes Reference Guide.</td>
</tr>
</tbody>
</table>
Table 2-1 Steps for troubleshooting NetBackup problems *(continued)*

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| Step 3 | Check the operating system logs. | Check the system log (UNIX) or the **Event Viewer** Application and System log (Windows) if the problem pertains to media or device management and one of the following is true:
 - NetBackup does not provide a status code.
 - You cannot correct the problem by following the instructions in NetBackup status codes and messages.
 - You cannot correct the problem by following the instructions in media and device management status codes and messages.
 These logs can show the context in which the error occurred. The error messages are usually descriptive enough to point you to a problem area. |
| Step 4 | Review the debug logs. | Read the applicable enabled debug logs and correct any problems you detect. If these logs are not enabled, enable them before you retry the failed operation.
 See the **NetBackup Logging Reference Guide**. |
| Step 5 | Retry the operation. | If you performed corrective actions, retry the operation. If you did not perform corrective actions or if the problem persists, continue with the next step. |
| Step 6 | Get more information for installation problems. | If you see the problem during a new installation or upgrade installation, or after you make changes to an existing configuration, see the following procedures:
 See "**Troubleshooting installation problems**" on page 25.
 See "**Troubleshooting configuration problems**" on page 26. |
| Step 7 | Ensure that the servers and clients are operational. | If you experienced a server or a client disk crash, procedures are available on how to recover the files that are critical to NetBackup operation.
 See "**About disk recovery procedures for UNIX and Linux**" on page 123.
 See "**About disk recovery procedures for Windows**" on page 133. |
Table 2-1 Steps for troubleshooting NetBackup problems (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| Step 8 | Ensure that the partitions have enough disk space. | Verify that you have enough space available in the disk partitions that NetBackup uses. If one or more of these partitions is full, NetBackup processes that access the full partition fail. The resulting error message depends on the process. Possible error messages: "unable to access" or "unable to create or open a file."

On UNIX systems, use the `df` command to view disk partition information.

On Windows systems, use Disk Manager or Explorer.

Check the following disk partitions:
- The partition where NetBackup software is installed.
- On the NetBackup master or media server, the partition where the NetBackup databases reside.
- The partition where the NetBackup processes write temporary files.
- The partition where NetBackup logs are stored.
- The partition where the operating system is installed. |
| Step 9 | Increase the logging level. | Enable verbose logging either for everything or only for the areas that you think are related to the problem.
See the *NetBackup Logging Reference Guide* for information on changing the logging level. |
| Step 10| Determine which daemons or processes are running. | Follow the procedures for UNIX or Windows NetBackup servers.
See “Verifying that all processes are running on UNIX servers” on page 19.
See “Verifying that all processes are running on Windows servers” on page 22. |

Verifying that all processes are running on UNIX servers

For NetBackup to operate properly, the correct set of processes (daemons) must be running on your UNIX servers. This procedure determines which processes are running and shows how to start the processes that may not be running.
To verify that all processes are running on UNIX servers

1. To see the list of processes (daemons) running on the master server and on the media server, enter the following command:

 /usr/openv/netbackup/bin/bpps -x
2 Ensure that the following processes are running on the NetBackup servers:

Master server

bpcd -standalone
bpcompatd
nbcssc
bpdbm
bpjobd
bprd
javnbwmc
nbars
nbdisco (discovery manager)
nbemmm
nbvmmgrnbjm
nbim (index manager)

Media server

avrd (automatic volume recognition, only if drives are configured on the server)
bpcd -standalone
bpcompatd
ltd (needed only if tape devices are configured on the server)
mtstrmd (if the system has data deduplication configured)
nbrrrms
nbsl
nbvmmcron
pbx_exchange
spad (if the system has data deduplication configured)
spoold (if the system has data deduplication configured)
vmd (volume)
vnetd -standalone

Any tape or robotic processes, such as tldd, tldcd

Note: Additional processes may also need to be running if other add-on products, database agents, and so forth are installed. For additional assistance, see http://www.veritas.com/docs/TECH135186.

3 If either the NetBackup request daemon (bprd) or database manager daemon (bpdbm) is not running, start them by entering the following command:

/usr/openv/netbackup/bin/initbprd
4 If the NetBackup Web Management Console (nbwmc) is not running, start it with the following command:

/usr/openv/netbackup/bin/nbwmc

5 If any of the media server processes are not running, stop the device process ltid by running the following command:

/usr/openv/volmgr/bin/stopltid

6 To verify that the ltid, avrd, and robotic control processes are stopped, run the following command:

/usr/openv/volmgr/bin/vmps

7 If you use ACS robotic control, the acsssi and the acssel processes may continue to run when ltid is terminated. Use the UNIX kill command to individually stop those robotic control processes.

8 Then, start all device processes by running the following command:

/usr/openv/volmgr/bin/ltid

For debugging, start ltid with the -v (verbose) option.

9 If necessary, you can use the following to stop and restart all the NetBackup server processes:

/usr/openv/netbackup/bin/bp.kill_all
/usr/openv/netbackup/bin/bp.start_all

Verifying that all processes are running on Windows servers

Use the following procedure to make sure that all the processes that need to run on Windows server are running.
Table 2-2 Steps to ensure that all necessary processes are running on Windows servers

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| Step 1 | Start all services on the master servers. | The following services must be running for typical backup and restore operations (steps 1, 2, and 3 in this table). If these services are not running, start them by using the NetBackup Activity Monitor or the Services application in the Windows Control Panel. To start all of the services, run install_path\NetBackup\bin\bpup.exe. Services on master servers:
 - NetBackup Authentication
 - NetBackup Client Service
 - NetBackup CloudStore Service Container
 - NetBackup Compatibility Service
 - NetBackup Database Manager
 - NetBackup Discovery Framework
 - NetBackup Enterprise Media Manager
 - NetBackup Event Manager
 - NetBackup Indexing Manager
 - NetBackup Job Manager
 - NetBackup Policy Execution Manager
 - NetBackup Relational Database Manager
 - NetBackup Remote Manager and Monitor Service
 - NetBackup Request Daemon
 - NetBackup Resource Broker
 - NetBackup Service Layer
 - NetBackup Service Monitor
 - NetBackup Storage Lifecycle Manager
 - NetBackup Vault Manager
 - NetBackup Volume Manager
 - NetBackup Web Management Console
 - Veritas Private Branch Exchange

Note: Additional processes may also need to be running if other add-on products, database agents, and so forth are installed. For additional assistance, see http://www.veritas.com/docs/TECH135186
Table 2-2 Steps to ensure that all necessary processes are running on Windows servers (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| Step 2 | Start all services on the media servers. | Services on media servers:
- NetBackup Client Service
- NetBackup Deduplication Engine (if the system has data deduplication configured)
- NetBackup Deduplication Manager (if the system has data deduplication configured)
- NetBackup Deduplication Multi-Threaded Agent (if the system has data deduplication configured)
- NetBackup Device Manager service (if the system has configured devices)
- NetBackup Remote Manager and Monitor Service (if the system has data deduplication configured)
- NetBackup Volume Manager service |
| Step 3 | Start all services on the clients. | Services on clients:
- NetBackup Client Service
- NetBackup Legacy Client Service
- Veritas Private Branch Exchange |
| Step 4 | Start `avrd` and processes for robots. | Use the NetBackup Activity Monitor to see if the following processes are running:
- `avrd` (automatic media recognition), only if drives are configured on the server
- Processes for all configured robots.
 See the NetBackup Administrator’s Guide, Volume I.
If these processes are not running, stop and restart the NetBackup Device Manager service. Use the NetBackup Activity Monitor or the Services application in the Windows Control Panel. |
Table 2-2 Steps to ensure that all necessary processes are running on Windows servers (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>Restart the operation or do additional troubleshooting.</td>
<td>If you had to start any of the processes or services in the previous steps, retry the operation. If the processes and services are running or the problem persists, you can try to test the servers and clients. See “Testing the master server and clients” on page 31. See “Testing the media server and clients” on page 35. If you cannot start any of these processes or services, check the appropriate debug logs for NetBackup problems. See the NetBackup Logging Reference Guide. When these processes and services start, they continue to run unless you stop them manually or a problem occurs on the system. On Windows systems, we recommend that you add commands for starting them to your startup scripts, so they restart in case you have to restart.</td>
</tr>
</tbody>
</table>

Troubleshooting installation problems

Use the following steps to troubleshoot installation problems.

Table 2-3 Steps for troubleshooting installation problems.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| Step 1 | Determine if you can install the software on the master server and the media servers by using the release media. | Some reasons for failure are as follows:
- Not logged on as an administrator on a Windows system (you must have permission to install services on the system)
- Permission denied (ensure that you have permission to use the device and to write the directories and files being installed)
- Bad media (contact Technical Support)
- Defective drive (replace the drive or refer to vendor’s hardware documentation)
- Improperly configured drive (refer to the system and the vendor documentation) |
Table 2-3 Steps for troubleshooting installation problems. (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| Step 2 | Determine if you can install NetBackup client software on the clients. | **Note:** Before you install or use NetBackup on a Linux client, verify that the `bpcd -standalone` and `vnetd -standalone` services are started on that computer. These services ensure proper communication between the NetBackup master and the Linux client.
Note: NetBackup UNIX or Linux servers can push client software to UNIX/Linux clients, and Windows servers can push to Windows clients. You can also download the client software from the NetBackup appliance, and then run the install on the client.
Note: See the NetBackup Appliance Administrator’s Guide.
Do the following:
- For an install to a trusting UNIX client, verify the following:
 - The correct client name is in your policy configuration.
 - The correct server name is in the client `/rhosts` file.

 If the installation hangs, check for problems with the shell or the environment variables for the root user on the client. The files that you check depend on the platform, operating system, and shell you use. For example, your `.login` on a Sun system runs an `stty` (such as `stty ^erase`) before it defines your terminal type. If this action causes the install process to hang, you can modify the `.login` file to define the terminal before you run the `stty`. Or, move the client `.login` to another file until the install is complete.
- For an installation to a secure UNIX client, check your `ftp` configuration. For example, you must use a user name and password that the client considers valid. |
| Step 3 | Resolve network problems. | Determine if the problem is related to general network communications.
See “Resolving network communication problems with UNIX clients” on page 38.
See “Resolving network communication problems with Windows clients” on page 43. |

Troubleshooting configuration problems

Use the following steps to check for problems after an initial installation or after changes are made to the configuration.
Table 2-4
Steps for troubleshooting configuration problems

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| Step 1 | Check for device configuration problems. | Check for the following device configuration problems:
- Configuration for robotic drive does not specify the robot.
- Drive is configured as wrong type or density.
- Incorrect Robotic Drive Number.
- SCSI ID for the robotic control is specified instead of the logical Robot Number that is assigned to the robot.
- The same robot number is used for different robots.
- SCSI ID for the drive is specified instead of a unique Drive Index number.
- A platform does not support a device or was not configured to recognize it.
- Robotic device is not configured to use LUN 1, which some robot hardware requires.
- On UNIX, drive no-rewind device path is specified as a rewind path.
- On UNIX, tape devices are not configured with "Berkeley style close." NetBackup requires this feature which is configurable on some platforms. Further explanation is available.
- On UNIX, tape devices (other than QIC) are not configured as "variable mode." NetBackup requires this feature which is configurable on some platforms. When this condition exists, you can frequently perform backups but not restores. For more information, see the Status Codes Reference Guide.
- On UNIX, pass-through paths to the tape drives have not been established. More description is available on device configuration problems:
See the NetBackup Device Configuration Guide. |
| Step 2 | Check the daemons or services. | Check for the following problems with the daemons or services:
- The daemons or services do not start during restart (configure system so they start).
- Wrong daemons or services are started (problems with media server startup scripts).
- Configuration was changed while daemons or services were running.
- On Windows, the \%SystemRoot\%\System32\drivers\etc\services file does not have an entry for vmd, bprd, bpdbm, and bpcd. Also, ensure that the processes have entries for configured robots. A list of these processes is available.
See the NetBackup Administrator's Guide, Volume I.
- On UNIX, the /etc/services file (or NIS or DNS) does not have an entry for vmd, bprd, bpdbm, or robotic daemons. |
Table 2-4 Steps for troubleshooting configuration problems *(continued)*

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| Step 3 | Retry the operation and check for status codes and messages. | If you found and corrected any configuration problems, retry the operation and check for NetBackup status codes or messages in the following:
- Check the **All Log Entries** report for NetBackup errors for the appropriate time period. This report can show the context in which the error occurred. Often it provides specific information, which is useful when the error can result from a variety of problems.
If the problem involved a backup or archive, check the job's **Detailed Status** in the **Activity Monitor**. Also check the **Status of Backups** report.
If you find a status code or message in either of these reports, perform the recommended corrective actions.
See the **Status Codes Reference Guide**.
- Check the system logs on UNIX or the Event Viewer Application and System log on Windows if the following is true: The problem pertains to media or device management, and NetBackup does not provide a status code. Or you cannot correct the problem by following the instructions in the status codes.
- Check the appropriate enabled debug logs. Correct any problems you detect.
If these logs are not enabled, enable them before your next try.
See the **NetBackup Logging Reference Guide**. |
| Step 4 | Retry the operation and do additional troubleshooting. | If you performed corrective actions, retry the operation. If you did not perform corrective actions or the problem persists, go to one of the following procedures.
See “**Resolving full disk problems**” on page 63.
See “**Frozen media troubleshooting considerations**” on page 64.
See “**About the conditions that cause media to freeze**” on page 65.
See “**Troubleshooting network interface card performance**” on page 88. |

Device configuration problem resolution

An auto-configuration warning message appears in the second panel of the Device Configuration Wizard if the selected device meets any of the following conditions:

- Not licensed for NetBackup server
- Exceeds a license restriction
- Has some inherent qualities that make it difficult to auto-configure

The following messages relate to device configuration, along with their explanations and recommended actions.
Table 2-5 Recommended actions for device configuration messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Explanation</th>
<th>Recommended action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive does not support serialization</td>
<td>The drive does not return its serial number. Note that some manufacturers do not support serial numbers. Although automatic device configuration does not function optimally, the drive can be manually configured and operated without its serial number.</td>
<td>Ask the manufacturer for a newer firmware version that returns serial numbers (if available), or manually configure and operate the drive without a serial number.</td>
</tr>
<tr>
<td>Robot does not support serialization</td>
<td>The robot does not return its serial number or the serial numbers of the drives that are contained within it. Note that some manufacturers do not support serial numbers. Although automatic device configuration does not function optimally, the robot and drives can be manually configured and operated without serial numbers.</td>
<td>Ask the manufacturer for a newer firmware version that returns serial numbers (if available). Or manually configure and operate the robot and drives without serial numbers.</td>
</tr>
<tr>
<td>No license for this robot type</td>
<td>NetBackup server does not support the robotic type that is defined for this robot.</td>
<td>Define a different robot. Use only the robotic libraries that NetBackup server supports.</td>
</tr>
<tr>
<td>No license for this drive type</td>
<td>The drive type that is defined for this drive that the NetBackup server does not support.</td>
<td>Define a different drive. Use only the drives that NetBackup supports.</td>
</tr>
<tr>
<td>Unable to determine robot type</td>
<td>NetBackup does not recognize the robotic library. The robotic library cannot be auto-configured.</td>
<td>Do the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Download a new device_mapping file from the Veritas Support website, and try again.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Configure the robotic library manually.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Use only the robotic libraries that NetBackup supports.</td>
</tr>
<tr>
<td>Drive is standalone or in unknown robot</td>
<td>Either the drive is standalone, or the drive or robot does not return a serial number. Note that some manufacturers do not support serial numbers. Although automatic device configuration does not function optimally, the drive or robot can be manually configured and operated without a serial number.</td>
<td>Ask the manufacturer for a newer firmware version that returns serial numbers (if available), or manually configure and operate the drive robot without serial numbers.</td>
</tr>
<tr>
<td>Robot drive number is unknown</td>
<td>Either the drive or robot does not return a serial number. Note that some manufacturers do not support serial numbers. Although automatic device configuration does not function optimally, the drive or robot can be manually configured and operated without a serial number.</td>
<td>Ask the manufacturer for a newer firmware version that returns serial numbers (if available). Or manually configure and operate the drive and robot without serial numbers.</td>
</tr>
</tbody>
</table>
Table 2-5 Recommended actions for device configuration messages
(continued)

<table>
<thead>
<tr>
<th>Message</th>
<th>Explanation</th>
<th>Recommended action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive is in an unlicensed robot</td>
<td>The drive is in a robotic library that cannot be licensed for NetBackup server. Since the robot cannot be licensed for NetBackup server, any drives that were configured in that robot are unusable.</td>
<td>Configure a drive that does not reside in the unlicensed robot.</td>
</tr>
</tbody>
</table>
| Drive’s SCSI adapter does not support pass-thru (or pass-thru path does not exist) | A drive was found that does not have a SCSI pass-through path configured. The possible causes are:
 ■ The drive is connected to an adapter that does not support SCSI pass-through.
 ■ The pass-through path for this drive has not been defined. | Change the drive’s adapter or define a pass-through path for the drive. For information about the SCSI adapter pass-through, see the NetBackup Device Configuration Guide. |
| No configuration device file exists | A device has been detected without the corresponding device file necessary to configure that device. | For directions about how to create device files, see the NetBackup Device Configuration Guide. |
| Unable to determine drive type | The NetBackup server does not recognize the drive. The drive cannot be auto-configured. | Do the following:
 ■ Download a new device_mapping file from the Veritas Support website, and try again.
 ■ Configure the drive manually.
 ■ Use only the drives that NetBackup supports. |
| Unable to determine compression device | A drive was detected without the expected compression device file that is used to configure that device. Automatic device configuration tries to use a device file that supports hardware data compression. When multiple compression device files exist for a drive, automatic device configuration cannot determine which compression device file is best. It uses a non-compression device file instead. | If you do not need hardware data compression, no action is necessary. The drive can be operated without hardware data compression. Hardware data compression and tape drive configuration help are available.
 For directions about how to create device files, see the NetBackup Device Configuration Guide. |
Testing the master server and clients

If the NetBackup, installation, and configuration troubleshooting procedures do not reveal the problem, perform the following procedure. Skip those steps that you have already performed.

The procedure assumes that the software was successfully installed, but not necessarily configured correctly. If NetBackup never worked properly, you probably have configuration problems. In particular, look for device configuration problems.

You may also want to perform each backup and restore twice. On UNIX, perform them first as a root user and then as a nonroot user. On Windows, perform them first as a user that is a member of the Administrators group. Then perform them as a user that is not a member of the Administrator group. In all cases, ensure that you have read and write permissions on the test files.

The explanations in these procedures assume that you are familiar with the backup processes and restore processes. For further information, see the NetBackup Logging Reference Guide.

Several steps in this procedure mention the All Log Entries report. To access more information on this report and others, refer to the following:

See the NetBackup Administrator's Guide, Volume I.

<table>
<thead>
<tr>
<th>Table 2-6</th>
<th>Steps for testing the master server and clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enable debug logs.</td>
</tr>
<tr>
<td>Action</td>
<td>Enable the appropriate debug logs on the master server. For information on logging, see the NetBackup Logging Reference Guide. If you do not know which logs apply, enable them all until you solve the problem. Delete the debug log directories when you have resolved the problem.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Configure a test policy.</td>
</tr>
<tr>
<td>Action</td>
<td>Configure a test policy to use a basic disk storage unit. Or, configure a test policy and set the backup window to be open while you test. Name the master server as the client and a storage unit that is on the master server (preferably a nonrobotic drive). Also, configure a volume in the NetBackup volume pool and insert the volume in the drive. If you don’t label the volume by using the bplabel command, NetBackup automatically assigns a previously unused media ID.</td>
</tr>
</tbody>
</table>

31 Troubleshooting procedures
Testing the master server and clients
Table 2-6 Steps for testing the master server and clients *(continued)*

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Verify the daemons and services.</td>
<td>To verify that the NetBackup daemons or services are running on the master server, do the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ To check the daemons on a UNIX system, enter the following command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/usr/openv/netbackup/bin/bpps -x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ To check the services on a Windows system, use the NetBackup Activity Monitor or the Services application of the Windows Control Panel.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Backup and restore a policy.</td>
<td>Start a manual backup of a policy by using the manual backup option in the NetBackup administration interface. Then, restore the backup.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>These actions verify the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ NetBackup server software is functional, which includes all daemons or services, programs, and databases.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ NetBackup can mount the media and use the drive you configured.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Check for failure.</td>
<td>If a failure occurs, check the job’s Detailed Status in the Activity Monitor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You can also try the NetBackup All Log Entries report. For the failures that relate to drives or media, verify that the drive is in an UP state and that the hardware functions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To isolate the problem further, use the debug logs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For an overview of the sequence of processing, see the information on backup processes and restore processes in the NetBackup Logging Reference Guide.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Consult information besides the debug logs.</td>
<td>If the debug logs do not reveal the problem, check the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Systems Logs on UNIX systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Event Viewer and System logs on Windows systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Media Manager debug logs on the media server that performed the backup, restore, or duplication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ The bpdm and bptm debug logs on the media server that performed the backup, restore, or duplication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See the vendor manuals for information on hardware failures.</td>
</tr>
</tbody>
</table>
Table 2-6 Steps for testing the master server and clients (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| Step 7 | Verify robotic drives. | If you use a robot and the configuration is an initial configuration, verify that the robotic drive is configured correctly. In particular, verify the following:
- The same robot number is used both in the Media and Device Management and storage unit configurations.
- Each robot has a unique robot number.
On a UNIX NetBackup server, you can verify only the Media and Device Management part of the configuration. To verify, use the `tpreq` command to request a media mount. Verify that the mount completes and check the drive on which the media was mounted. Repeat the process until the media is mounted and unmounted on each drive from the host where the problem occurred. If this works, the problem is probably with the policy or the storage unit configuration. When you are done, `tpunmount` the media. |
| Step 8 | Include a robot in the test policy. | If you previously configured a nonrobotic drive and your system includes a robot, change your test policy now to specify a robot. Add a volume to the robot. The volume must be in the NetBackup volume pool on the EMM database host for the robot.
Return to step 3 and repeat this procedure for the robot. This procedure verifies that NetBackup can find the volume, mount it, and use the robotic drive. |
| Step 9 | Use the robotic test utilities. | If you have difficulties with the robot, try the test utilities.
See “About the robotic test utilities” on page 116.
Do not use the Robotic Test Utilities when backups or restores are active. These utilities prevent the corresponding robotic processes from performing robotic actions, such as loading and unloading media. The result is that it can cause media mount timeouts and prevent other robotic operations like robotic inventory and inject or eject from working. |
| Step 10 | Enhance the test policy. | Add a user schedule to your test policy (the backup window must be open while you test). Use a storage unit and media that was verified in previous steps. |
Table 2-6 Steps for testing the master server and clients (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| Step 11| Backup and restore a file. | Start a user backup and restore of a file by using the client-user interface on the master server. Monitor the status and the progress log for the operation. If successful, this operation verifies that the client software is functional on the master server.
If a failure occurs, check the NetBackup All Log Entries report. To isolate the problem further, check the appropriate debug logs from the following list.
On a UNIX system, the debug logs are in the `/usr/openv/netbackup/logs/` directory. On a Windows computer, the debug logs are in the `install_path\NetBackup\logs\` directory.
Debug log directories exist for the following processes:
- `bparchive` (UNIX only)
- `bpbackup` (UNIX only)
- `bpbkar`
- `bpcd`
- `bplist`
- `bprd`
- `bprestore`
- `nbwin` (Windows only)
- `bpinetd` (Windows only)
Explanations about which logs apply to specific client types are available.
For information on logging, see the *NetBackup Logging Reference Guide*. |
| Step 12| Reconfigure the test policy. | Reconfigure your test policy to name a client that is located elsewhere in the network. Use a storage unit and media that has been verified in previous steps. If necessary, install the NetBackup client software. |
| Step 13| Create debug log directories. | Create debug log directories for the following processes:
- `bprd` on the server
- `bpcd` on the client
- `bpbkar` on the client
- `nbwin` on the client (Windows only)
- `bpbackup` on the client (except Windows clients)
- `bpinetd` (Windows only)
- `tar`
- On the media server: `bpbrm`, `bpdm`, and `bptm`
Explanations about which logs apply to specific client types are available.
For information on logging, see the *NetBackup Logging Reference Guide*. |
Table 2-6 Steps for testing the master server and clients (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 14</td>
<td>Verify communication between the client and the master server.</td>
<td>Perform a user backup and then a restore from the client that is specified in step 8. These actions verify communications between the client and the master server, and NetBackup software on the client. If an error occurs, check the job’s Detailed Status in the Activity Monitor. Check the All Log Entries report and the debug logs that you created in the previous step. A likely cause for errors is a communications problem between the server and the client.</td>
</tr>
<tr>
<td>Step 15</td>
<td>Test other clients or storage units.</td>
<td>When the test policy operates satisfactorily, repeat specific steps as necessary to verify other clients and storage units.</td>
</tr>
<tr>
<td>Step 16</td>
<td>Test the remaining policies and schedules.</td>
<td>When all clients and storage units are functional, test the remaining policies and schedules that use storage units on the master server. If a scheduled backup fails, check the All Log Entries report for errors. Then follow the recommended actions as is part of the error status code.</td>
</tr>
</tbody>
</table>

Testing the media server and clients

If you use media servers, use the following steps to verify that they are operational. Before testing the media servers, eliminate all problems on the master server. See “Testing the master server and clients” on page 31.

Table 2-7 Steps for testing the media server and clients

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| Step 1 | Enable legacy debug logs. | Enable appropriate legacy debug logs on the servers, by entering the following: UNIX/Linux: `/usr/openv/netbackup/logs/mklogdir` Windows: `install_path\NetBackup\logs\mklogdir.bat`
See the [NetBackup Logging Reference Guide](#). If you are uncertain which logs apply, enable them all until you solve the problem. Delete the legacy debug log directories when you have resolved the problem. |
Table 2-7 Steps for testing the media server and clients (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Step 2** | Configure a test policy. | Configure a test policy with a user schedule (set the backup window to be open while you test) by doing the following:
- Name the media server as the client and a storage unit that is on the media server (preferably a nonrobotic drive).
- Add a volume on the EMM database host for the devices in the storage unit. Ensure that the volume is in the NetBackup volume pool.
- Insert the volume in the drive. If you do not pre-label the volume by using the `bplabel` command, NetBackup automatically assigns a previously unused media ID. |
| **Step 3** | Verify the daemons and services. | Verify that all NetBackup daemons or services are running on the master server. Also, verify that all Media and Device Management daemons or services are running on the media server.
To perform this check, do one of the following:
- On a UNIX system, run:
  ```bash  
  /usr/openv/netbackup/bin/bpps -x  
  ```  
- On a Windows system, use the Services application in the Windows Control Panel. |
| **Step 4** | Backup and restore a file. | Perform a user backup and then a restore of a file from a client that has been verified to work with the master server.
This test verifies the following:
- NetBackup media server software.
- NetBackup on the media server can mount the media and use the drive that you configured.
- Communications between the master server processes `nbpem, nbjm, nbrb, EMM server process nbemm, and media server processes bpcd, bpbrm, bpdm, and bptm`.
- Communications between media server process `bpbrm, bpdm, bptm, and client processes bpcd and bpbkar`.
For the failures that relate to drives or media, ensure that the drive is in an UP state and that the hardware functions. |
| **Step 5** | Verify communication between the master server and the media servers. | If you suspect a communications problem between the master server and the media servers, check the debug logs for the pertinent processes.
If the debug logs don’t help you, check the following:
- On a UNIX server, the System log
- On a Windows server, the **Event Viewer** Application and System log
- `vmd debug logs` |
Table 2-7 Steps for testing the media server and clients (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| Step 6 | Ensure that the hardware runs correctly. | For the failures that relate to drives or media, ensure that the drive is running and that the hardware functions correctly.
See the vendor manuals for information on hardware failures.
If you use a robot in an initial configuration condition, verify that the robotic drive is configured correctly.
In particular, verify the following:
 - The same robot number is used both in the Media and Device Management and storage unit configurations.
 - Each robot has a unique robot number.
On a UNIX server, you can verify only the Media and Device Management part of the configuration. To verify, use the `tpreq` command to request a media mount. Verify that the mount completes and check the drive on which the media was mounted. Repeat the process until the media is mounted and unmounted on each drive from the host where the problem occurred. Perform these steps from the media server. If this works, the problem is probably with the policy or the storage unit configuration on the media server. When you are done, use `tpunmount` to unmount the media. |
Table 2-7 Steps for testing the media server and clients (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| Step 7 | Include a robotic device in the test policy. | If you previously configured a non-robotic drive and a robot was attached to your media server, change the test policy to name the robot. Also, add a volume for the robot to the EMM server. Verify that the volume is in the NetBackup volume pool and in the robot.

Start with step 3 to repeat this procedure for a robot. This procedure verifies that NetBackup can find the volume, mount it, and use the robotic drive.

If a failure occurs, check the NetBackup All Log Entries report. Look for any errors that relate to devices or media.

See the NetBackup Administrator's Guide, Volume I.
If the All Log Entries report doesn't help, check the following:

- On a UNIX server, the system logs on the media server
- vmd debug logs on the EMM server for the robot
- On a Windows system, the Event Viewer Application and System log

In an initial configuration, verify that the robotic drive is configured correctly. Do not use a robot number that is already configured on another server.

Try the test utilities.

See "About the robotic test utilities" on page 116.
Do not use the Robotic Test Utilities when backups or restores are active. These utilities prevent the corresponding robotic processes from performing robotic actions, such as loading and unloading media. The result is that it can cause media mount timeouts and prevent other robotic operations like robotic inventory and inject or eject from working. |
| Step 8 | Test other clients or storage units. | When the test policy operates satisfactorily, repeat specific steps as necessary to verify other clients and storage units. |
| Step 9 | Test the remaining policies and schedules. | When all clients and storage units are in operation, test the remaining policies and schedules that use storage units on the media server. If a scheduled backup fails, check the All Log Entries report for errors. Then follow the suggested actions for the appropriate status code. |

Resolving network communication problems with UNIX clients

The following procedure is for resolving NetBackup communications problems, such as those associated with NetBackup status codes 25, 54, 57, and 58. This
procedure consists of two variations: one for UNIX clients and another for Windows clients.

Note: In all cases, ensure that your network configuration works correctly outside of NetBackup before trying to resolve NetBackup problems.

For UNIX clients, perform the following steps. Before you start this procedure, add the `VERBOSE=5` option to the `/usr/openv/netbackup/bp.conf` file.

<table>
<thead>
<tr>
<th>Table 2-8</th>
<th>Steps for resolving network communication problems with UNIX clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>Action</td>
</tr>
<tr>
<td>Step 1</td>
<td>Create debug log directories.</td>
</tr>
<tr>
<td></td>
<td>Create the following directories:</td>
</tr>
<tr>
<td></td>
<td>■ bpcd (on the master server and clients)</td>
</tr>
<tr>
<td></td>
<td>■ vnetd (on the master server and clients)</td>
</tr>
<tr>
<td></td>
<td>■ bprd (on the master server)</td>
</tr>
<tr>
<td>Step 2</td>
<td>Test a new configuration or modified configuration.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2-8 Steps for resolving network communication problems with UNIX clients (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Verify name resolution.</td>
<td>To verify name resolution, run the following command on the master server and the media servers:</td>
</tr>
<tr>
<td></td>
<td></td>
<td># bpclntcmd -hn client name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the results are unexpected, review the configuration of these name resolution services: nsswitch.conf file, hosts file, ipnodes file, and resolv.conf file.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Also run the following on the client to check forward and reverse name lookup of the master server and media server that perform the backup:</td>
</tr>
<tr>
<td></td>
<td></td>
<td># bpclntcmd -hn server name</td>
</tr>
<tr>
<td></td>
<td></td>
<td># bpclntcmd -ip IP address of server</td>
</tr>
</tbody>
</table>

Step 4	Verify network connectivity.	Verify network connectivity between client and server by pinging the client from the server.
		# ping clientname
		Where clientname is the name of the client as configured in the NetBackup policy configuration.
		For example, to ping the policy client that is named ant:
		# ping ant
		ant.nul.nul.com: 64 byte packets
		64 bytes from 199.199.199.24: icmp_seq=0. time=1. ms
		----ant.nul.nul.com PING Statistics----
		2 packets transmitted, 2 packets received, 0% packet loss round-trip (ms) min/avg/max = 1/1/1

A successful ping verifies connectivity between the server and client. If the ping fails and ICMP is not blocked between the hosts, resolve the network problem outside of NetBackup before you proceed.

Some forms of the ping command let you ping the bpcd port on the client as in the following command:

ping ant 13782

Ping 1556 (PBX), 13724 (vnetd), and 13782 (bpcd) in sequence, the same sequence that NetBackup tries by default. You then know which ports are closed so that you can open them or adjust the Connect Options for more efficient connection tries.
<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| Step 5 | Ensure that the client listens on the correct port for the bpcd connections. | **On the client, run one of the following commands (depending on platform and operating system):**
```
  netstat -a | grep bpcd  
  netstat -a | grep 13782  
  rpcinfo -p | grep 13782
```
Repeat for 1556 (PBX) and 13724 (vnetd). If no problems occur with the ports, the expected output is as follows:
```
  # netstat -a | egrep '1556|PBX|13724|vnetd|13782|bpcd' | grep LISTEN  
    *.1556  *.*  0  0 49152  0 LISTEN  
    *.13724  *.*  0  0 49152  0 LISTEN  
    *.13782  *.*  0  0 49152  0 LISTEN
```
LISTEN indicates that the client listens for connections on the port.
If the NetBackup processes are running correctly, the expected output is as follows (this output is for NetBackup 7.0.1 and later):
```
  # ps -ef | egrep 'pbx_exchange|vnetd|bpcd' | grep -v grep  
  root  306  1 0 Jul 18 ? 13:52 /opt/VRTSpbx/bin/pbx_exchange  
  root 10274  1 0 Sep 13 ? 0:11 /usr/openv/netbackup/bin/vnetd -standalone  
  root 10277  1 0 Sep 13 ? 0:45 /usr/openv/netbackup/bin/bpcd -standalone
```
Repeat the procedure on the master server(s) and media server(s), to test communication to the client.
Table 2-8 Steps for resolving network communication problems with UNIX clients (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Step 6** | Connect to the client through `telnet`. | On the client, `telnet` to 1556 (PBX), 13724 (vnetd), and 13782 (bpcd). Check all three ports to make sure that a connection is made on at least one of them, then modify the NetBackup configuration accordingly. If the `telnet` connection succeeds, keep the connection until after you perform step 8, then terminate it with Ctrl-c.

  ```
  telnet clientname 1556
  telnet clientname 13724
  telnet clientname 13782
  ```

 Where `clientname` is the name of the client as configured in the NetBackup policy configuration.

 For example,

  ```
  # telnet ant bpcd
  Trying 199.999.999.24 ...
  Connected to ant.nul.nul.com.
  Escape character is '^]'.
  ```

 In this example, `telnet` can establish a connection to the client `ant`.

 Repeat the procedure on the master server(s) and media server(s), to test communication to the client. |
| **Step 7** | Identify the outbound socket on the server host. | On the master server(s) and media server(s): Use the following command to identify the outbound socket that is used for the `telnet` command from step 6. Specify the appropriate IP address to which the server resolves the policy client. Note the source IP (10.82.105.11), the source port (45856) and the destination port (1556).

  ```
  # netstat -na | grep '<client_IP_address>' | egrep '1556|13724|13782'
  10.82.105.11.45856 10.82.104.99.1556 49152 0 49152 0 ESTABLISHED
  ```

 If `telnet` is still connected and a socket is not displayed: Remove the port number filtering and observe the port number to which the site has mapped the service name. Check that process listens on the port number in step 5.

  ```
  $ netstat -na | grep '<client_IP_address>'
  10.82.105.11.45856 10.82.104.99.1234 49152 0 49152 0 ESTABLISHED
  ```

 If the socket is in a SYN_SENT state instead of an ESTABLISHED state, the server host is trying to make the connection. However, a firewall blocks the outbound TCP SYN from reaching the client host or blocks the return bound TCP SYN+ACK from reaching the server host. |
Resolving network communication problems with Windows clients

The following procedure is for resolving NetBackup communications problems, such as those associated with NetBackup status codes 54, 57, and 58. This procedure consists of two variations: one for UNIX clients and another for Windows clients.

Note: In all cases, ensure that your network configuration works correctly outside of NetBackup before trying to resolve NetBackup problems.

This procedure helps you resolve network communication problems with PC clients.

To resolve network communication problems

1. Before you retry the failed operation, do the following:
Increase the logging level on the client (see the NetBackup Administrator's Guide, Volume I, under “Client Settings properties”).

On the NetBackup master server, create a bprd debug log directory and on the clients create a bpcd debug log.

On the NetBackup server, set the Verbose level to 1. See the NetBackup Logging Reference Guide for help changing the logging level.

2 If this client is new, verify the client and the server names in your NetBackup configuration.

See “Verifying host name and service entries in NetBackup” on page 51.

3 Verify network connectivity between client and server by pinging from the server to the client and vice versa. Use the following command:

```bash
# ping hostname
```

Where hostname is the name of the host as configured in the following:

- NetBackup policy configuration
- WINS
- DNS (if applicable).
- hosts file in system directory %SystemRoot%\system32\drivers\etc\hosts (Windows 2003 or 2008)

If ping succeeds in all instances, it verifies connectivity between the server and client.

If ping fails, you have a network problem outside of NetBackup that must be resolved before you proceed. As a first step, verify that the workstation is turned on. A workstation that is not turned on is a common source of connection problems with workstations.

4 On Microsoft Windows clients, ensure that the NetBackup Client service is active by checking the logs. Use the Services application in the Control Panel to verify that the NetBackup Client service is running. Start it if necessary.

- Check the bpcd debug logs for problems or errors. See the NetBackup Logging Reference Guide on how to enable and use these logs.
- Verify that the same NetBackup client service (bpcd) port number is specified on both the NetBackup client and server (by default, 13782). Do one of the following:
Check the NetBackup client service port number.

Start the Backup, Archive, and Restore interface on the client. On the File menu, click NetBackup Client Properties. In the NetBackup Client Properties dialog box on the Network tab, check the NetBackup client service port number.

Verify that the setting on the Network tab matches the one in the services file. The services file is located in:

\%SystemRoot%\system32\drivers\etc\services
(Windows)

The values on the Network tab are written to the services file when the NetBackup client service starts.

UNIX NetBackup servers

The bpcd port number is in the /etc/services file. On Windows NetBackup servers, see the Client Properties dialog box in the Host Properties window.

See “Using the Host Properties window to access configuration settings” on page 62.

Correct the port number if necessary. Then, on Windows clients and servers, stop and restart the NetBackup Client service.

Do not change NetBackup port assignments unless it is necessary to resolve conflicts with other applications. If you do change them, do so on all NetBackup clients and servers. These numbers must be the same throughout your NetBackup configuration.
5 Verify that the NetBackup Request Service (bprd) port number on Microsoft Windows is the same as on the server (by default, 13720). Do one of the following:

Windows clients
- Check the NetBackup client service port number.
- Start the **Backup, Archive, and Restore** interface on the client. On the **File** menu, click **NetBackup Client Properties**. In the **NetBackup Client Properties** dialog box on the **Network** tab, check the NetBackup client service port number.
- Verify that the setting on the **Network** tab matches the one in the services file. The **services** file is located in:
  ```
  %SystemRoot%\system32\drivers\etc\services
  ```
 (Windows)
 - The values on the **Network** tab are written to the **services** file when the NetBackup client service starts.

UNIX NetBackup servers
- The **bprd** port number is in the **/etc/services** file.
- See “Using the Host Properties window to access configuration settings” on page 62.

Windows NetBackup servers
- Set these numbers in the **Client Properties** dialog box in the **Host Properties** window.
- See “Using the Host Properties window to access configuration settings” on page 62.

6 Verify that the **hosts** file or its equivalent contains the NetBackup server name. The **hosts** files are the following:

- **Windows 2003**
  ```
  %SystemRoot%\system32\drivers\etc\hosts
  ```

- **UNIX**
  ```
  /etc/hosts
  ```

7 Verify client-to-server connectability by means of **ping** or its equivalent from the client (step 3 verified the server-to-client connection).

8 If the client’s TCP/IP transport allows **telnet** and **ftp** from the server, try these services as additional connectivity checks.
9 Use the bpclntcmd utility to verify client to master server communications. When the \(-pn\) and \(-sv\) options run on a client, they initiate inquiries to the master server (configured in the server list on the client). The master server then returns information to the requesting client.

See “About the bpclntcmd utility” on page 60.

10 Use the bptestbpcd utility to try to establish a connection from a NetBackup server to the bpcd daemon on another NetBackup system. If successful, it reports information about the sockets that are established.

A complete description of bptestbpcd is in the NetBackup Commands Reference Guide.

11 Verify that the client operating system is one of those supported by the client software.

About troubleshooting networks and host names

In a configuration with multiple networks and clients with more than one host name, NetBackup administrators must configure the policy entries carefully. They must consider the network configuration (physical, host names and aliases, NIS/DNS, routing tables, and so on). If administrators want to direct backup and restore data across specific network paths, they especially need to consider these things.

For a backup, NetBackup connects to the host name as configured in the policy. The operating system’s network code resolves this name and sends the connection across the network path that the system routing tables define. The \(bp\).conf file is not a factor making this decision.

For restores from the client, the client connects to the master server. For example, on a UNIX computer, the master server is the first one named in the /\(usr/\)openv/\(netbackup/\)bp.conf file. On a Windows computer, the master server is specified on the Server to use for backups and restores drop-down of the Specify NetBackup Machines and Policy Type dialog box. To open this dialog, start the NetBackup Backup, Archive, and Restore interface and click Specify NetBackup Machines and Policy Type on the File menu. The client’s network code that maps the server name to an IP address determines the network path to the server.

Upon receipt of the connection, the server determines the client’s configured name from the peer name of its connection to the server.

The peer name is derived from the IP address of the connection. This means that the address must translate into a host name (using the gethostbyaddr() network routine). This name is visible in the bprd debug log when a connection is made as in the line:
Connection from host peername ipaddress ...

The client’s configured name is then derived from the peer name by querying the `bpdbm` process on UNIX computers. On Windows computers, you must query the NetBackup Database Manager service.

The `bpdbm` process compares the peer name to a list of client names that are generated from the following:

- All clients for which a backup has been attempted
- All clients in all policies

The comparison is first a string comparison. The comparison is verified by comparing host names and the aliases that are retrieved by using the network function `gethostbyname()`.

If none of the comparisons succeed, a more brute force method is used, which compares all names and aliases using `gethostbyname()`.

The configured name is the first comparison that succeeds. Note that other comparisons might also have succeeded if aliases or other "network names" are configured.

If the comparison fails, the client’s host name as returned by the `gethostname()` function on the client is used as the configured name. An example of a failed comparison: the client changes its host name but its new host name is not yet reflected in any policies.

These comparisons are recorded in the `bpdbm debug log` if `VERBOSE` is set. You can determine a client’s configured name by using the `bpclntcmd` command on the client. For example:

```
# /usr/openv/netbackup/bin/bpclntcmd -pn (UNIX)
# install_path\NetBackup\bin\bpclntcmd -pn (Windows)
```

```
extpecting response from server wind.abc.me.com
danr.abc.me.com danr 194.133.172.3 4823
```

Where the first output line identifies the server to which the request is directed. The second output line is the server’s response in the following order:

- Peer name of the connection to the server
- Configured name of the client
- IP address of the connection to the server
- Port number that is used in the connection
When the client connects to the server, it sends the following three names to the server:

- Browse client
- Requesting client
- Destination client

The browse client name is used to identify the client files to list or restore from. The user on the client can modify this name to restore files from another client. For example, on a Windows client, the user can change the client name by using the Backup, Archive, and Restore interface. (See the NetBackup online Help for instructions). For this change to work, however, the administrator must also have made a corresponding change on the server.

See the NetBackup Administrator’s Guide, Volume I.

The requesting client is the value from the gethostname() function on the client.

The destination client name is a factor only if an administrator pushes a restore to a client from a server. For a user restore, the destination client and the requesting client are the same. For an administrator restore, the administrator can specify a different name for the destination client.

By the time these names appear in the bprd debug log, the requesting client name has been translated into the client’s configured name.

The name that used to connect back to the client to complete the restore is either the client’s peer name or its configured name. The type of restore request (for example, from root on a server, from a client, to a different client, and so on) influences this action.

When you modify client names in NetBackup policies to accommodate specific network paths, the administrator needs to consider:

- The client name as configured on the client. For example, on UNIX the client name is CLIENT_NAME in the client’s bp.conf file. On a Windows client, it is on the General tab of the NetBackup Client Properties dialog box. To open this dialog box, select NetBackup Client Properties from the File menu in the Backup, Archive, and Restore interface.

- The client as currently named in the policy configuration.

- The client backup and archive images that already exist as recorded in the images directory on the master server. On a UNIX server, the images directory is /usr/openv/netbackup/db/images. On a Windows NetBackup server, the images directory is install_path\NetBackup\db\images.
Any of these client names can require manual modification by the administrator if the following: a client has multiple network connections to the server and restores from the client fail due to a connection-related problem.

On UNIX, the public domain program traceroute (not included with NetBackup) often can provide valuable information about a network's configuration. Some system vendors include this program with their systems. For Windows, use the tracert command.

The master server may be unable to reply to client requests, if the Domain Name Services (DNS) are used and the following is true: The name that the client obtains through its gethostname() library (UNIX) or gethostbyname() network (Windows) function is unknown to the DNS on the master server. The client and the server configurations can determine if this situation exists. gethostname() or gethostbyname() on the client may return an unqualified host name that the DNS on the master server cannot resolve.

Although you can reconfigure the client or the master server DNS hosts file, this solution is not always desirable. For this reason, NetBackup provides a special file on the master server. This file is as follows:

/usr/openv/netbackup/db/altnames/host.xlate (UNIX)
install_path\NetBackup\db\altnames\host.xlate (Windows)

You can create and edit this file to force the desired translation of NetBackup client host names.

Each line in the host.xlate file has three elements: a numeric key and two host names. Each line is left justified, and a space character separates each element of the line.

key hostname_from_client client_as_known_by_server

The following describes the preceding variables:

- **key** is a numeric value used by NetBackup to specify the cases where the translation is to be done. Currently this value must always be 0, which indicates a configured name translation.
- **hostname_from_client** is the value to translate. This value must correspond to the name that the client's gethostname() function obtains and sends to the server in the request.
- **client_as_known_by_server** is the name to substitute for hostname_from_client when the client responds to requests. This name must be the name that is configured in the NetBackup configuration on the master server. It must also be known to the master server’s network services.

This following is an example:
0 danr danr.eng.aaa.com

When the master server receives a request for a configured client name (numeric key 0), the name danr always replaces the name danr.eng.aaa.com. The problem is resolved, assuming the following:

- The client’s gethostname() function returns danr.
- The master server’s network services gethostbyname() function did not recognize the name danr.
- The client was configured and named in the NetBackup configuration as danr.eng.aaa.com and this name is also known to network services on the master server.

Verifying host name and service entries in NetBackup

This procedure is useful if you encounter problems with host names or network connections and want to verify that the NetBackup configuration is correct. Several examples follow the procedure.

For more information on host names, see the NetBackup Administrator’s Guide, Volume II.

See “About troubleshooting networks and host names” on page 47.

To verify the host name and service entries in NetBackup

1 Verify that the correct client and server host names are configured in NetBackup. The action you take depends on the computer that you check.
On Windows servers and Windows clients, do the following:

- On the **Server to use for backups and restores** drop-down list, ensure that a server entry exists for the master server and each media server.

 Start the Backup, Archive, and Restore interface on the client. On the File menu, click **Specify NetBackup Machines and Policy Type**. In the **Specify NetBackup Machines and Policy Type** dialog box, click the **Server to use for backups and restores** drop-down list.

 On Windows computers, the correct server must be designated as the current master server in the list. If you add or modify server entries on the master server, stop and restart the NetBackup Request service and NetBackup Database Manager services.

- On the **General** tab, verify that the client name setting is correct and matches what is in the policy client list on the master server.

 Start the Backup, Archive, and Restore interface on the client. On the File menu, click **NetBackup Client Properties**. In the **NetBackup Client Properties** dialog box, click the **General** tab.

- On a master or a media server, ensure that a server entry exists for each Windows administrative client to use to administer that server.

- Ensure that host names are spelled correctly in the `bp.conf` file (UNIX) or in the servers list (Windows) on the master server. If a host name is misspelled or cannot be resolved with `gethostbyname`, the following error messages are logged on the NetBackup error log:

  ```
  Gethostbyname failed for <host_name>:<h_errno_string> (<h_errno>)
  One or more servers was excluded from the server list because gethostbyname() failed.
  ```

 You can also make these changes on the appropriate tabs in the properties dialog boxes on a Windows NetBackup server.

 See “Using the Host Properties window to access configuration settings” on page 62.

On UNIX NetBackup servers and clients, check the server and the client name entries in the `bp.conf` file by doing the following:

- Ensure that a `SERVER` entry exists for the master server and each media server in the configuration. The master server must be the first name in the list.

 If you add or modify `SERVER` entries on the master server, stop and restart `bprd` and `bpdbm` before the changes take effect.

- The `bp.conf` of the master server does not require the addition of other clients, other than the master server as `CLIENT_NAME = master server name`. The name is added by default.

 The `bp.conf` file is in the `/usr/openv/netbackup` directory on UNIX clients.

 UNIX client users can also have a personal `bp.conf` file in their home directory. A `CLIENT_NAME` option in `$HOME/bp.conf` overrides the option in `/usr/openv/netbackup/bp.conf`.
On the master server Verify that you have created any of the following required files:

- `install_path\NetBackup\db\altnames` files (Windows)
- `/usr/openv/netbackup/db/altnames` files (UNIX)

Pay particular attention to requirements for `host.xlate` file entries.

2 Verify that each server and client have the required entries for NetBackup reserved port numbers.

The following examples show the default port numbers.

See “Example of host name and service entries on UNIX master server and client” on page 55.

See “Example of host name and service entries on UNIX master server and media server” on page 56.

See “Example of host name and service entries on UNIX PC clients” on page 57.

See “Example of host name and service entries on UNIX server that connects to multiple networks” on page 58.

Do not change NetBackup port assignments unless it is necessary to resolve conflicts with other applications. If you do change them, do so on all NetBackup clients and servers. These numbers must be the same throughout your NetBackup configuration.

3 On NetBackup servers, check the services files to ensure that they have entries for the following:

- `bpcd` and `bprd`
- `vmd`
- `bpdbm`
- Processes for configured robots (for example, `tl8cd`).

See the NetBackup Device Configuration Guide.

Verify the NetBackup client daemon or service number, and the request daemon or service port number. The action you take depends on whether the client is UNIX or Microsoft Windows.

On UNIX clients

Check the `bprd` and the `bpcd` entries in the `/etc/services` file.

Troubleshooting procedures Verifying host name and service entries in NetBackup
On Microsoft Windows clients

Verify that the NetBackup Client Service Port number and NetBackup Request Service Port number match settings in the services file by doing the following:

Start the Backup, Archive, and Restore interface on the client. On the File menu, click NetBackup Client Properties. In the NetBackup Client Properties dialog box on the Network tab, select the following: The NetBackup Client Service Port number and NetBackup Request Service Port number.

The values on the Network tab are written to the services file when the NetBackup Client service starts.

The services file is in the following location:

%SystemRoot%\system32\drivers\etc\services

4 On UNIX servers and clients, ensure that the bpcd -standalone process is running.

5 On Windows servers and clients, verify that the NetBackup Client service is running.

6 If you use NIS in your network, update those services to include the NetBackup information that is added to the /etc/services file.

7 NIS, WINS, or DNS host name information must correspond to what is in the policy configuration and the name entries. On Windows NetBackup servers and Microsoft Windows clients, do the following:

- Check the General tab:
 Start the Backup, Archive, and Restore interface on the client. On the File menu, click NetBackup Client Properties. In the NetBackup Client Properties dialog box, click the General tab.

- Check the Server to use for backups and restores drop-down list:
 Start the Backup, Archive, and Restore interface on the client. On the File menu, click Specify NetBackup Machines and Policy Type. In the Specify NetBackup Machines and Policy Type dialog box, click the Server to use for backups and restores drop-down list.

- Check the bp.conf file on UNIX servers and clients.
- Verify that reverse DNS addressing is configured.

8 Use the `bpclntcmd` utility to confirm the setup of the IP addresses and host names in DNS, NIS, and local hosts files on each NetBackup node.

Note: FT (Fibre Transport) target devices are named based on the host name or domain name response from the device. If any alternate computer names for different VLAN network interface names appear in the SERVER/MEDIA_SERVER entries of the DNS (Domain Name System) or the host files, the primary name must appear first.

See “About the `bpclntcmd` utility” on page 60.

Example of host name and service entries on UNIX master server and client

The following illustration shows a UNIX master server with one UNIX client.
Consider the following about Figure 2-1:

- All applicable network configuration must be updated to reflect the NetBackup information. For example, this information could include the `/etc/hosts` file and NIS, and DNS (if used).

Example of host name and service entries on UNIX master server and media server

The following illustration shows a UNIX NetBackup media server named `saturn`. Note the addition of a `SERVER` entry for `saturn` in the `bp.conf` files on all the computers. This entry is second, beneath the one for the master server `jupiter`.
Consider the following about Figure 2-2:

- All applicable network configuration must be updated to reflect the NetBackup information. For example, this information could include the `/etc/hosts` file and NIS, and DNS (if used).

Example of host name and service entries on UNIX PC clients

The following illustration shows a NetBackup master server with PC (Windows) clients. Server configuration is the same as it is for UNIX clients. These clients do not have `inetd.conf` entries.
Consider the following about Figure 2-3:

- All applicable network configuration must be updated to reflect the NetBackup information. For example, this information could include the `/etc/hosts` file and NIS, and DNS (if used).

Example of host name and service entries on UNIX server that connects to multiple networks

The following illustration shows a NetBackup server with two Ethernet connections and clients in both networks. The server host name is *jupiter* on one and *meteor* on the other.
Consider the following about Figure 2-4:

- All applicable network configuration must be updated to reflect the NetBackup information. For example, this information could include the /etc/hosts file and NIS, and DNS (if used).
This example illustrates a UNIX server that connects to multiple networks. The NetBackup policy client list specifies \textit{jupiter} as the client name for the master server. The list can show either \textit{jupiter} or \textit{meteor} but not both.

The NetBackup server list on the master server has entries for both \textit{jupiter} and \textit{meteor}. The reason for both is that when the server does a backup, it uses the name that is associated with the client it backs up. For example, it uses the \textit{meteor} interface when it backs up \textit{pluto} and the \textit{jupiter} interface when it backs up \textit{mars}. The first server entry (master server name) is \textit{jupiter} because that is the name used to back up the client on the master server.

The NetBackup server list for the other computers also has entries for both the \textit{jupiter} and the \textit{meteor} interfaces. This setup is recommended to keep the server entries the same on all clients and servers in the configuration. It would be adequate to list only the master-server name for the local network interface to the client computer or media server. (For example, list \textit{meteor} for \textit{pluto}.)

For the network that is shown, the only configurations that are required are the differences for the policy client list and the server list. If all the standard networking files (hosts, WINS, NIS, DNS, and routing tables) are set up correctly, all required network connections can be made.

\section*{About the \texttt{bpclntcmd} utility}

The \texttt{bpclntcmd} utility resolves IP addresses into host names and host names into IP addresses. It uses the same system calls as the NetBackup application modules. The following directory contains the command that starts the utility:

\begin{verbatim}
Windows install_path\NetBackup\bin
UNIX /usr/openv/netbackup/bin
\end{verbatim}

On Windows, run this \texttt{bpclntcmd} command in an MS-DOS command window so you can see the results.

The \texttt{bpclntcmd} options that are useful for testing the functionality of the host name and IP address resolution are \texttt{-ip}, \texttt{-hn}, \texttt{-sv}, and \texttt{-pn}. The following topics explain each of these options:
-ip bpclntcmd -ip IP_Address

The -ip option lets you specify an IP address. bpclntcmd uses gethostbyaddr() on the NetBackup node and gethostbyaddr() returns the host name with the IP address as defined in the following: the node’s DNS, WINS, NIS, or local hosts file entries. No connection is established with the NetBackup server.

-hn bpclntcmd -hn Hostname

The -hn option specifies a host name. bpclntcmd uses gethostbyname() on the NetBackup node to obtain the IP address that is associated with the host name defined in the following: the node’s DNS, WINS, NIS, or local hosts file entries. No connection is established with the NetBackup server.

-sv bpclntcmd -sv

The -sv option displays the NetBackup version number on the master server.

-pn When the -pn option is run on a NetBackup client, it initiates an inquiry to the NetBackup master server. The server then returns information to the requesting client. First, the server is the first server in the server list. Then it displays the information that the server returns. For example:

bpclntcmd -pn
expecting response from server rabbit.friendlyanimals.com
dove.friendlyanimals.com dove 123.145.167.3 57141

The following is true of this command example:

■ expecting response from server rabbit.friendlyanimals.com is the master server entry from the server list on the client.
■ dove.friendlyanimals.com is the connection name (peer name) returned by the master server. The master server obtained this name through gethostbyaddress().
■ dove is the client name configured in the NetBackup policy client list.
■ 123.145.167.3 is the IP address of the client connection at the master server.
■ 57141 is the port number of the connection on the client.

Use -ip and -hn to verify the ability of a NetBackup node to resolve the IP addresses and host names of other NetBackup nodes.

For example, to verify that a NetBackup server can connect to a client, do the following:

■ On the NetBackup server, use bpclntcmd -hn to verify the following: The operating system can resolve the host name of the NetBackup client (as configured in the client list for the policy) to an IP address. The IP address is
then used in the node’s routing tables to route a network message from the NetBackup server.

- On the NetBackup client, use `bpclntcmd -ip` to verify that the operating system can resolve the IP address of the NetBackup server. (The IP address is in the message that arrives at the client’s network interface.)

Note: The `bpclntcmd` command logs messages to the `usr/openv/netbackup/logs/bpclntcmd` directory (UNIX) or the `install_path\NetBackup\logs\bpclntcmd` (Windows). For earlier versions of NetBackup, `bpclntcmd` logs are sent to the `bplist` directory, not the `bpclntcmd` directory.

Using the Host Properties window to access configuration settings

The **Host Properties** window in the **NetBackup Administration Console** provides access to many configuration settings for NetBackup clients and servers. For example, you can modify the server list, email notification settings, and various timeout values for servers and clients. The following are general instructions for using this window.

The **NetBackup Client Properties** dialog box in the **Backup, Archive, and Restore** interface on Windows clients lets you change NetBackup configuration settings only for the local computer where you are running the interface. Most settings in the **NetBackup Client Properties** dialog box are also available in the **Host Properties** window.

To use the Host Properties window to access configuration settings

1. In the **NetBackup Administration Console**, in the left pane, expand **NetBackup Management > Host Properties**.
2. Depending on the host to be configured, select **Master Servers**, **Media Servers**, or **Clients**.
3. On the **Actions** menu, select **Properties**.
4. In the **Properties** dialog box, in the left pane, click the appropriate property and make your change.
Resolving full disk problems

If NetBackup is installed on a disk or a file system that fills up, such as with logging files, a number of problems can result. NetBackup may become unresponsive. For example, NetBackup jobs may remain queued for long periods, even though all NetBackup processes and services are running.

To resolve the full disk problems that are caused by NetBackup log files

1. Clear up disk space in the directory where NetBackup is installed by doing the following:
 - You may need to delete log files manually, reduce logging levels, and adjust log retention to have log files automatically deleted sooner. See the NetBackup Logging Reference Guide for more information about logging levels, log file retention, and how to configure unified logging.
 - Consider moving the NetBackup unified logging files to a different file system.

2. Use the Activity Monitor to verify that the NetBackup relational database service is running.
 - This service is the `NB_dbsrv` daemon on UNIX and the NetBackup Relational Database Manager service on Windows.

3. If the NetBackup relational database service is stopped, note the following:
 - Do not stop the `nbrb` service. If you stop the `nbrb` service while the NetBackup relational database service is down, it can result in errors.
 - Restart the NetBackup relational database service.

4. Verify that the NetBackup relational database service is running.
 - If it is not and you remove files to free up disk space, you may not fix the problem. The relational database service must be restarted to allow the Resource Broker (`nbrb`) to allocate job resources.

To resolve full disk problems on the NBDB file system

1. Shut down the NetBackup daemons.

2. Compress the staging directory and put a copy in a safe location.
 - UNIX: `/usr/openv/db/staging`
 - Windows: `install_path\VERITAS\NetBackupDB\staging`
 - This copy is a backup of the database as of the last catalog backup.
3 Run a validation on the database:
 UNIX: /usr/openv/db/bin/nbdb_admin -validate -full -verbose
 Windows: install_path\VERITAS\NetBackup\bin\ nbdb_admin -validate -full -verbose
 If validation fails, contact Veritas Support.

4 If validation succeeds, run a database rebuild:
 UNIX: /usr/openv/db/bin/ >nbdb_unload -rebuild -verbose
 Windows: install_path\VERITAS\NetBackup\bin\ >nbdb_unload -rebuild -verbose
 If the rebuild fails, contact Veritas Support.

5 If the rebuild succeeded, run the validation on the database again (step 3).
 If this validation fails, contact Veritas Support.

6 Start the NetBackup daemons.

7 As soon as possible, add additional space to the file system that contains NBDB.

To resolve full disk problems on other file systems (such as binaries, root, or image catalog)

1 Shut down the NetBackup daemons.

2 Determine the cause for the full file system and take corrective actions.

3 Start the NetBackup daemons.

4 Verify that the NetBackup daemons run without abnormal termination or errors.
 If errors occur, contact Veritas Support.

Frozen media troubleshooting considerations

Frozen media can cause a number of problems including one of the following status codes: 84, 85, 86, 87 and 96.

When troubleshooting frozen media, be aware of the following:

- Use the bpmedialist command to access the MediaDB information including the media status (Frozen, Full, or Active).

- To unfreeze the media, use the bpmedia command. Specify the media server that contains that frozen record in the command syntax. Unfreeze the media one at a time.
Frozen media does not necessarily mean that the media is defective. NetBackup may freeze media as a safety measure to prevent further errors, drive damage, or data loss.

Investigate any patterns to the media IDs, tape drives, or media servers that are involved when media is frozen.

Logs for troubleshooting frozen media

The following logs are useful when you troubleshoot frozen media:

UNIX
- The `bptm` log from the media servers that froze the media:

 `/usr/openv/netbackup/logs/bptm`
- The Admin messages or syslog from the operating system.

Windows
- The `bptm` log from the media servers that froze the media:

 `install_dir\VERITAS\NetBackup\logs\bptm`
- The Windows Event Viewer System Log
- The Windows Event Viewer Application Log

Set the verbosity of the `bptm` process log to 5 to troubleshoot any media and drive-related issues. This log does not use excessive drive space or resources even at an elevated verbosity. When media is frozen, the `bptm` logs may contain more detailed information that the Activity Monitor or Problems Report. Set the verbosity for `bptm` on individual media servers by changing their logging levels under Host Properties on the NetBackup Administration Console.

See “Frozen media troubleshooting considerations” on page 64.

See “About the conditions that cause media to freeze” on page 65.

About the conditions that cause media to freeze

The following conditions can cause media to freeze:

- The same media has excessive errors during backup. An example of the log entry is as follows:

  ```
  FREEZING media id E00109, it has had at least 3 errors in the last 12 hour(s)
  ```

 The causes and the resolutions for this problem include:
Clean the drives that are freezing the media according to the manufacturer's suggestions. Frozen media is one of the first symptoms of a dirty drive.

Check for the tape device errors that the operating system logs or the device driver reports. If any are found, follow the hardware manufacturer's recommendations for this type of error.

Check for SCSI or HBA device errors the operating system logs or the device driver reports. If any are found, follow the hardware manufacturer's recommendations for this type of error.

Ensure that the tape drives appear on the hardware compatibility list as supported for NetBackup. This list is located on the following Veritas Support website:

www.veritas.com/docs/TECH59978

Ensure that the media is supported for use with the tape drive by the tape drive vendor.

An unexpected media is found in the drive. An example of the log entry is as follows:

Incorrect media found in drive index 2, expected 30349, \nfound 20244, FREEZING 30349

The following conditions can cause this error:

- NetBackup requests a media ID to be mounted in a drive. If the media ID that is physically recorded on the tape is different than the NetBackup media ID, the media freezes. This error occurs if the robot needs to be inventoried, or if barcodes have been physically changed on the media.

- Another NetBackup installation previously wrote to the media with different barcode rules.

- The drives in the robot are not configured in order within NetBackup, or they are configured with the wrong tape paths. The correct robot drive number is important to the proper mounting and use of media. The robot drive number is normally based on the relationship of the drive serial number with the drive serial number information from the robotic library. Validate this number before you consider that the device configuration is complete.

- The media contain a non-NetBackup format. An example of the log entry is as follows:

FREEZING media id 000438, it contains MTF1-format data and cannot be used for backups
FREEZING media id 000414, it contains tar-format data and cannot be used for backups
FREEZING media id 000199, it contains ANSI-format data and cannot be used for backups

These library tapes may have been written outside of NetBackup. By default, NetBackup only writes to a blank media or other NetBackup media. Other media types (DBR, TAR, CPIO, ANSI, MTF1, and recycled Backup Exec BE-MTF1 media) are frozen as a safety measure. Change this behavior by using the following procedure:

On UNIX To allow NetBackup to overwrite foreign media, add the following to the bp.conf file that is located at /usr/openv/netbackup/bp.conf for the related media server:

```
ALLOW_MEDIA_OVERWRITE = DBR
ALLOW_MEDIA_OVERWRITE = TAR
ALLOW_MEDIA_OVERWRITE = CPIO
ALLOW_MEDIA_OVERWRITE = ANSI
ALLOW_MEDIA_OVERWRITE = MTF1
ALLOW_MEDIA_OVERWRITE = BE-MTF1
```

Stop and restart the NetBackup daemons for the changes to take effect.

On Windows On the NetBackup Administration Console, proceed to Host Properties > Media Server

Open the properties for the media server in question.

Select the Media tab.

The Allow Media Overwrite property overrides the NetBackup overwrite protection for specific media types. To disable the overwrite protection, select one or more of the listed media formats. Then stop and restart the NetBackup services for the changes to take effect.

Do not select a foreign media type for overwriting unless you are sure that you want to overwrite this media type.

For more details about each media type, see the NetBackup Device Configuration Guide.

- The media is a tape formerly used for the NetBackup catalog backup. For example, the log entry may be the following:

FREEZING media id 000067: it contains Veritas NetBackup (tm) database backup data and cannot be used for backups.
The media is frozen because it is an old catalog backup tape which NetBackup does not overwrite by default. The `bplabel` command must label the media to reset the media header.

- The media is intentionally frozen. You can use the `bpmedia` command to manually freeze media for a variety of administrative reasons. If no record exists of a specific job freezing the media, the media may have been frozen manually.
- The media is physically write protected. If the media has a write-protect notch that is set for write protection, NetBackup freezes the media.

To unfreeze frozen media, enter the following `bpmedia` command:

```
# bpmedia -unfreeze -m mediaID -h media_server
```

The `media_server` variable is the one that froze the media. If this item is unknown, run the `bpmedialist` command and note the “Server Host:” listed in the output. The following example shows that media server `denton` froze media `div008`:

```
# bpmedialist -m div008

Server Host = denton

ID   rl images allocated     last updated  density  kbytes restores
 vimages expiration last read <-------- STATUS -------->
------------------------------------------------------------------------
DIV08 1   1  04/22/2014 10:12 04/22/2014 10:12 hcart  35   5
       1  05/06/2014 10:12 04/22/2014 10:25  FROZEN
```

Troubleshooting problems with the NetBackup web services

Use the following steps to troubleshoot issues with the NetBackup web services.

To resolve problems with the NetBackup web services

1. Verify that NetBackup Web Management Console service is running.
 - On UNIX, enter the following command:
     ```
     /usr/openv/netbackup/bin/bpps -x
     ```
 - On Windows, use NetBackup Activity Monitor or the Services application of the Windows Control Panel.

2. Stop and restart the NetBackup Web Management Console service.
On UNIX:

```
install_path/netbackup/bin/nbwmc -terminate
```

```
install_path/netbackup/bin/nbwmc
```

On Windows, use the Services application in the Windows Control Panel.

3. Review the NetBackup web server logs and web application logs.

See “Viewing NetBackup web services logs” on page 69.

See the following tech note for the web server tasks you must perform before installing the master server:

Viewing NetBackup web services logs

NetBackup creates logs for the NetBackup web server and for the web server applications.

- The logs for the NetBackup web server framework do not use unified logging. For more information on the format of these logs and how they are created, see the documentation for Apache Tomcat at http://tomcat.apache.org. These logs are written to the following location:

  ```
  usr/openv/wmc/webserver/logs
  install_path\NetBackup\wmc\webserver\logs
  ```

- The NetBackup web application logs use unified logging. These logs are written to the following location.

  ```
  usr/openv/logs/nbwebservice
  install_path\NetBackup\logs\nbwebservice
  ```

 Contact Veritas Technical Support for additional help with these logs.

Troubleshooting problems with the NetBackup web server certificate

NetBackup generates and deploys an X509 certificate for the NetBackup Web Management Console (`nbwmc`) or NetBackup web server during installation. This certificate authenticates the NetBackup master server and validates that a client is connected to the master server. This certificate is periodically refreshed.
Generation of the NetBackup web server certificate

The NetBackup web server certificate is generated during NetBackup installation. To troubleshoot the generation of this certificate, refer to the following logs. The nbcert and nbatd logs use unified logging. The configureCerts.log uses a simple logging style and not VxUL.

usr/openv/logs/nbcert
usr/openv/wmc/webserver/logs/configureCerts.log
usr/openv/logs/nbatd

install_path\NetBackup\logs\nbcert
C:\ProgramData\Symantec\NetBackup\InstallLogs\WMC_configureCerts_yyyymmdd_timestamp.txt
install_path\NetBackup\logs\nbatd

Renewal of the NetBackup web certificate

The web server certificate has an expiration time of one year. NetBackup tries to automatically renew the certificate every 6 months. The renewed certificate is automatically deployed. Failure to renew the certificate is logged in the NetBackup error log. In such cases NetBackup tries periodically try to renew the certificate (every 24 hours). If the failure to renew the certificate persists, contact Veritas support.

To troubleshoot the certificate renewal, refer to the following logs. The nbwebservice (OID 466 and 484) and nbatd (OID 18) logs use unified logging. The configureCerts.log uses a simple logging style and not VxUL.

usr/openv/logs/nbwebservice
usr/openv/wmc/webserver/logs/configureCerts.log
usr/openv/logs/nbatd

install_path\NetBackup\logs\nbwebservice
C:\ProgramData\Symantec\NetBackup\InstallLogs\WMC_configureCerts_yyyymmdd_timestamp.txt
install_path\NetBackup\logs\nbatd

Resolving PBX problems

The Enterprise Media Manager (EMM) services and other services of NetBackup require a common services framework that is called Private Branch Exchange (PBX). Like vnetd, PBX helps limit the number of TCP/IP ports that the CORBA services of NetBackup use.
To resolve PBX problems

1. Check that the PBX is properly installed. If PBX is not installed, NetBackup is unresponsive. Refer to the following procedure:

 See “Checking PBX installation” on page 71.

2. Check that PBX is running, and initiate PBX if necessary by using the following procedure:

 See “Checking that PBX is running” on page 72.

3. Check that PBX is correctly configured. If PBX is incorrectly configured, NetBackup is unresponsive. Refer to the following procedure:

 See “Checking that PBX is set correctly” on page 72.

4. Access and check the PBX logs by using the following procedure:

 See “Accessing the PBX logs” on page 73.

5. Check the PBX security and correct any problem by using the following procedure:

 See “Troubleshooting PBX security” on page 74.

6. Check that the required NetBackup daemon or service is running. If necessary, start the needed daemon or service by using the following procedure:

 See “Determining if the PBX daemon or service is available” on page 76.

Checking PBX installation

NetBackup requires the Veritas Private Branch Exchange service (PBX). PBX can be installed before NetBackup or during NetBackup installation.

See the NetBackup Installation Guide.

If you uninstall PBX, you must reinstall it.

To check PBX installation

1. Look for the following directory on the NetBackup master server:

 - On Windows: install_path\VxPBX
 - On UNIX: /opt/VRTSpbx

2. To check the version of PBX, enter the following:

 - On Windows: install_path\VxPBX\bin\pbxcfg -v
 - On UNIX: /opt/VRTSpbx/bin/pbxcfg -v
Checking that PBX is running

After you know that PBX is installed on the NetBackup master server, you need to verify that it is running.

To see if PBX is running

1. On UNIX, check for the PBX process:

 ps | grep pbx_exchange

2. To start PBX on UNIX, type the following:

 /opt/VRTSpbx/bin/vxpbx_exchanged start

On Windows, make sure that the Private Branch Exchange service is started.
(Go to Start > Run and enter services.msc.)

Checking that PBX is set correctly

Two settings are vital to the correct functioning of PBX: Auth User (authenticated user) and Secure Mode. When PBX is installed, they are automatically set as required.

To check that PBX is set correctly

1. To display the current PBX settings, do one of the following:

 - On Windows, type the following:

 install_path\VxPBX\bin\pbxcfg -p

 Example output:

 Auth User: 0 : localsystem
 Secure Mode: false
 Debug Level: 10
 Port Number: 1556
 PBX service is not cluster configured

 Auth User must be localsystem and Secure Mode must be false.

 - On UNIX, type the following:

 /opt/VRTSpbx/bin/pbxcfg -p

 Example output:
Accessing the PBX logs

PBX uses unified logging. PBX logs are written to the following:

- /opt/VRTSpbx/log (UNIX)
- \install_path\VxPBX\log (Windows)

The unified logging originator number for PBX is 103. See the NetBackup Logging Reference Guide for more information on unified logging.

Error messages regarding PBX may appear in the PBX log or in the unified logging logs for nbemm, nbpem, nbrb, or nbjm. The following is an example of an error that is related to PBX:

05/11/10 10:36:37.368 [Critical] V-137-6 failed to initialize ORB: check to see if PBX is running or if service has permissions to connect to PBX. Check PBX logs for details
To access the PBX logs

1. Use the `vxlogview` command to view PBX and other unified logs. The originator ID for PBX is 103. For more information, see the `vxlogview` man page.

See also the NetBackup Logging Reference Guide for topics on unified logging.

2. To change the logging level for PBX, enter the following:

   ```
   pbxcfg -s -l debug_level
   ```

 where `debug_level` is a number from 0 to 10, where 10 is the most verbose (the default).

 To check the current verbosity, enter the following:

   ```
   pbxcfg -p
   ```

 PBX may log messages by default to the UNIX system logs (`/var/adm/messages` or `/var/adm/syslog`) or to the Windows Event Log. As a result, the system logs may fill up with unnecessary PBX log messages, since the messages are also written to the PBX logs:

 UNIX: `/opt/VRTSpbx/log`
 Windows: `<install_path>\VxPBX\log`

3. To disable PBX logging to the system logs or event logs, enter the following command:

   ```
   # vxlogcfg -a -p 50936 -o 103 -s LogToOslog=false
   ```

 You do not have to restart PBX for this setting to take effect.

Troubleshooting PBX security

The PBX Secure Mode must be set to false. If Secure Mode is true, NetBackup commands such as `bplabel` and `vmoprcmd` do not work. PBX messages similar to the following appear in `/opt/VRTSpbx/log` (UNIX) or `install_path\VxPBX\log` (Windows).

```
5/12/2008 16:32:17.477 [Error] V-103-11 User MINOV\Administrator not authorized to register servers
```

To troubleshoot PBX security

1. Verify that PBX Secure Mode is set to false (the default):

 - On Windows:
     ```
     install_path\VxPBX\bin\pbxcfg -p
     ```
2 If necessary, set Secure Mode to false by entering the following:
 - On Windows:
 \install_path\VxPBX\bin\pbxcfg -d -m
 - On UNIX:
 /opt/VRTSpbx/bin/pbxcfg -p

3 Stop NetBackup:
 - On Windows:
 \install_path\NetBackup\bin\bpdown
 - On UNIX:
 /usr/openv/netbackup/bin/bp.kill_all

4 Stop PBX:
 - On Windows: Go to Start > Run, enter services.msc, and stop the Veritas Private Branch Exchange service.
 - On UNIX:
 /opt/VRTSpbx/bin/vxpbx_exchanged stop

5 Start PBX:
 - On UNIX:
 /opt/VRTSpbx/bin/vxpbx_exchanged start

 - On Windows: Go to Start > Run, enter services.msc, and start the Veritas Private Branch Exchange service.

6 Start NetBackup:
 - On Windows:
 \install_path\NetBackup\bin\bpup
Determining if the PBX daemon or service is available

If NetBackup does not work as configured, a required NetBackup service may have stopped. For example, backups may not be scheduled or may be scheduled but are not running. The type of problem depends on which process is not running.

When a NetBackup service is not running and another process tries to connect to it, messages similar to the following appear in /opt/VRTSpbx/log (UNIX) or install_path\VxPBX\log (Windows). The unified logging originator for PBX is 103 and the product ID is 50936.

05/17/10 9:00:47.79 [Info] PBX_Manager:: handle_input with fd = 4
05/17/10 9:00:47.79 [Info] PBX_Client_Proxy::parse_line, line = ack=1
05/17/10 9:00:47.79 [Info] PBX_Client_Proxy::parse_line, line =
 extension=EMM
05/17/10 9:00:47.80 [Info] hand_off looking for proxy for = EMM
05/17/10 9:00:47.80 [Error] No proxy found.
05/17/10 9:00:47.80 [Info] PBX_Client_Proxy::handle_close

To determine if the PBX daemon or service is available

1 Start the needed service.

 In this example, the missing NetBackup service is EMM. To start the needed service, enter the nbemm command (UNIX) or start the NetBackup Enterprise Media Manager service (Windows; Start > Run, enter services.msc).

2 If necessary, stop and restart all NetBackup services.

 ■ On Windows:

 install_path\NetBackup\bin\bpdowm
 install_path\NetBackup\bin\bup

 ■ On UNIX:

 /usr/openv/netbackup/bin/bp.kill_all
 /usr/openv/netbackup/bin/bp.start_all
About troubleshooting Auto Image Replication

Auto Image Replication operations use storage lifecycle policies in at least two NetBackup master server domains. Verify that the two master servers follow these rules:

- The name of the storage lifecycle policy (SLP) in the source master server domain must match the SLP name in the target master server domain. The names are case-sensitive.

 Note: If replicating to specific targets (targeted AIR), you must create the Import SLP before creating the Auto Image Replication SLP in the originating domain. You may then choose the appropriate import SLP.

- The storage lifecycle policy's data classification in the source master server domain must match the SLP policy's data classification in the target master server domain.

- The duplicate-to-remote-master copy in the source storage lifecycle policy must use hierarchical duplication and specify a source copy with a residence capable of replication. (The disk pool replication column must show Source.)

- The storage lifecycle policy in the target domain must specify an import for its first copy. The residence for the import must include the device that is the replication partner of the source copy in the source storage lifecycle policy. The import copy may specify a storage unit group or a storage unit but not Any Available.

- The storage lifecycle policy in the target domain must have at least one copy that specifies the Remote Retention type.

Troubleshooting Auto Image Replication

Auto Image Replication replicates the backups that are generated in one NetBackup domain to another media server in one or more NetBackup domains.

Note: Although Auto Image Replication supports replication across different master server domains, the Replication Director does not.

Auto Image Replication operates like any duplication job except that its job contains no write side. The job must run on a media server that runs NetBackup 7.1 or higher. It also must consume a read resource from the disk volume on which the source images reside. If no media server is available with NetBackup 7.1 or higher, the job fails with status 800.
The Auto Image Replication job operates at a disk volume level. Within the storage unit that is specified in the storage lifecycle policy for the source copy: some disk volumes may not support replication and some media servers may not be running NetBackup 7.1 or higher. Use the Disk Pools interface of the NetBackup Administration Console to verify that the image is on a disk volume that supports replication. If the interface shows that the disk volume is not a replication source, click Update Disk Volume or Refresh to update the disk volume(s) in the disk pool. If the problem persists, check your disk device configuration.

The following procedure is based on NetBackup that operates in an OpenStorage configuration. This configuration communicates with a Media Server Deduplication Pool (MSDP) that uses Auto Image Replication.
To troubleshoot Auto Image Replication jobs

1. Display the storage server information by using the following command:

   ```
   # bpstsinfo -lsuinfo -stype PureDisk -storage_server storage_server_name
   ```

 Example output:

 LSU Info:
 Server Name: PureDisk:ssl.acme.com
 LSU Name: PureDiskVolume
 Allocation : STS_LSU_AT_STATIC
 Storage: STS_LSU_ST_NONE
 Description: PureDisk storage unit (/ssl.acme.com#1/2)
 Configuration:
 Media: (STS_LSUF_DISK | STS_LSUF_ACTIVE | STS_LSUF_STORAGE_NOT_FREED
 | STS_LSUF_REP_ENABLED | STS_LSUF_REP_SOURCE)
 Save As : (STS_SA_CLEARF | STS_SA_OPAQUEF | STS_SA_IMAGE)
 Replication Sources: 0 ()
 Replication Targets: 1 (PureDisk:bayside:PureDiskVolume)
 ...

 This output shows the logical storage unit (LSU) flags
 STS_LSUF_REP_ENABLED and STS_LSUF_REP_SOURCE for
 PureDiskVolume. PureDiskVolume is enabled for Auto Image Replication and
 is a replication source.

2. To verify that NetBackup recognizes these two flags, run the following
 command:

   ```
   # nbdevconfig -previewdv -stype PureDisk -storage_server
   storage_server_name -media_server media_server_name -U
   Disk Pool Name : 
   Disk Type : PureDisk
   Disk Volume Name : PureDiskVolume
   ...
   Flag : ReplicationSource
   ...
   ```

 The ReplicationSource flag confirms that NetBackup recognizes the LSU
 flags.
3 To display the replication targets by using the raw output, run the following command:

```bash
# nbdevconfig -previewdv -stype PureDisk -storage_server storage_server_name -media_server media_server_name
```

V7.0 DiskVolume < "PureDiskVolume" "PureDiskVolume" 46068048064 46058373120 0 0 0 16 1 >
V7.0 ReplicationTarget < "bayside:PureDiskVolume" >

The display shows that the replication target is a storage server called bayside and the LSU (volume) name is PureDiskVolume.

4 To ensure that NetBackup captured this configuration correctly, run the following command:

```bash
# nbdevquery -listdv -stype PureDisk -U
```

Disk Pool Name : PDpool
Disk Type : PureDisk
Disk Volume Name : PureDiskVolume
... Flag : AdminUp
Flag : InternalUp
Flag : ReplicationTarget
Num Read Mounts : 0
...

This listing shows that disk volume PureDiskVolume is configured in disk pool PDpool, and that NetBackup recognizes the replication capability on the source side. A similar nbdevquery command on the target side should display ReplicationTarget for its disk volume.

5 If NetBackup does not recognize the replication capability, run the following command:

```bash
# nbdevconfig -updatedv -stype PureDisk -dp PDpool
```

6 To ensure that you have a storage unit that uses this disk pool, run the following command:

```bash
# bpstulist
PDstu 0 _STU_NO_DEV_HOST_ 0 -1 -1 -1 0 "*NULL*"
  1 1 51200 *NULL* 2 6 0 0 0 0 PDpool *NULL*
```

The output shows that storage unit PDstu uses disk pool PDpool.
7 Check the settings on the disk pool by running the following command:

```
nbdevquery -listdp -stype PureDisk -dp PDpool -U
Disk Pool Name : PDpool
Disk Pool Id   : PDpool
Disk Type      : PureDisk
Status         : UP
Flag           : Patchwork
...            
Flag           : OptimizedImage
Flag           : ReplicationTarget
Raw Size (GB)  : 42.88
Usable Size (GB): 42.88
Num Volumes    : 1
High Watermark : 98
Low Watermark  : 80
Max IO Streams : -1
Comment        :
Storage Server : ss1.acme.com (UP)
```

Max IO Streams is set to -1, which means the disk pool has unlimited input-output streams.

8 To check the media servers, run the following command:

```
# tpconfig -dsh -all_hosts
=================================================================
Media Server:         ss1.acme.com
Storage Server:       ss1.acme.com
User Id:              root
                     Storage Server Type: BasicDisk
                     Storage Server Type: SnapVault
                     Storage Server Type: PureDisk
=================================================================
```

This disk pool only has one media server, ss1.acme.com. You have completed the storage configuration validation.
The last phase of validation is the storage lifecycle policy configuration. To run Auto Image Replication, the source copy must be on storage unit PDstu. Run the following command (for example):

```
nbstl woodridge2bayside -L
```

```
Name: woodridge2bayside
Data Classification: (none specified)
Duplication job priority: 0
  State: active
  Version: 0
Destination 1
  Use for: backup
  Storage: PDstu
    Volume Pool: (none specified)
    Server Group: (none specified)
    Retention Type: Fixed
    Retention Level: 1 (2 weeks)
    Alternate Read Server: (none specified)
    Preserve Multiplexing: false
    Enable Automatic Remote Import: true
      State: active
      Source: (client)
    Destination ID: 0
Destination 2
  Use for: 3 (replication to remote master)
  Storage: Remote Master
    Volume Pool: (none specified)
    Server Group: (none specified)
      ... Preserves Multiplexing: false
      Enable Automatic Remote Import: false
      State: active
      Source: Destination 1 (backup:PDstu)
      Destination ID: 0
```

To troubleshoot the Auto Image Replication job flow, use the same command lines as you use for other storage lifecycle policy managed jobs. For example, to list the images that have been duplicated to remote master, run the following:

```
nbstlutillist -copy_type replica -U -copy_state 3
```

To list the images that have not been duplicated to remote master (either pending or failed), run the following:

```
nbstlutillist -copy_type replica -U -copy_incomplete
```
To show the status for completed replication copies, run the following command:

```
nbstlutil repllist -U
```

Image:
- **Master Server**: ss1.acme.com
- **Backup ID**: woodridge_1287610477
- **Client**: woodridge
- **Backup Time**: 1287610477 (Wed Oct 20 16:34:37 2010)
- **Policy**: two-hop-with-dup
- **Client Type**: 0
- **Schedule Type**: 0
- **Storage Lifecycle Policy**: woodridge2bayside2pearl_withdup
- **Storage Lifecycle State**: 3 (COMPLETE)
- **Time In Process**: 1287610545 (Wed Oct 20 16:35:45 2010)
- **Data Classification ID**: (none specified)
- **Version Number**: 0
- **OriginMasterServer**: (none specified)
- **OriginMasterServerID**: 00000000-0000-0000-0000-000000000000
- **Import From Replica Time**: 0 (Wed Dec 31 18:00:00 1969)
- **Required Expiration Date**: 0 (Wed Dec 31 18:00:00 1969)
- **Created Date Time**: 1287610496 (Wed Oct 20 16:34:56 2010)

Copy:
- **Master Server**: ss1.acme.com
- **Backup ID**: woodridge_1287610477
- **Copy Number**: 102
- **Copy Type**: 3
- **Expire Time**: 1290288877 (Sat Nov 20 15:34:37 2010)
- **Expire LC Time**: 1290288877 (Sat Nov 20 15:34:37 2010)
- **Try To Keep Time**: 1290288877 (Sat Nov 20 15:34:37 2010)
- **Residence**: Remote Master
- **Copy State**: 3 (COMPLETE)
- **Job ID**: 25
- **Retention Type**: 0 (FIXED)
- **MPX State**: 0 (FALSE)
- **Source**: 1
- **Destination ID**:
- **Last Retry Time**: 1287610614

Replication Destination:
- **Source Master Server**: ss1.acme.com
- **Backup ID**: woodridge_1287610477
- **Copy Number**: 102
The automatic import jobs that the storage lifecycle policy (SLP) components manage are different from legacy import jobs. Automatic import jobs asynchronously notify NetBackup that an image needs to be imported. Also, Auto Image Replication jobs provide catalog entries to the storage device so that the job does not have to read the entire image. An automatic import job reads the catalog record off the storage device and adds it into its own catalog. This process is so fast that NetBackup batches images for import for efficiency. A pending import is the state where NetBackup has been notified, but the import has not yet occurred.

More information is available about automatic import and how to tune the batch interval of the import manager process.

See the NetBackup Administrator's Guide, Volume I.

The notify event from the storage server provides the following: the image name, the storage server location to read the catalog for this image, and the name of the SLP that processes the image. Images for automatic import jobs are batched by storage lifecycle policy name and disk volume. The import job consumes an input-output stream on the disk volume.

To view the images that are pending import, run the following command:

```
# nbstlutil pendimplist -U
```

```
Image:
Master Server : bayside.example.com
Backup ID : gdwinlin04_1280299412
Client : gdwinlin04
Policy : (none specified)
Client Type : 0
Schedule Type : 0
Storage Lifecycle Policy : (none specified)
Storage Lifecycle State : 1 (NOT_STARTED)
Time In Process : 0 (Wed Dec 31 18:00:00 1969)
Data Classification ID : (none specified)
Version Number : 0
OriginMasterServer : master_tlk
OriginMasterServerID : 00000000-0000-0000-0000-000000000000
Import From Replica Time : 0 (Wed Dec 31 18:00:00 1969)
```
The action to take on the automatic import job and the automatic import event depends on several conditions as shown in the following table.

<table>
<thead>
<tr>
<th>Action</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic import jobs queue</td>
<td>No media server or I/O stream is available for this disk volume.</td>
</tr>
</tbody>
</table>
Action

Automatic import jobs never start (copy stays at storage lifecycle state 1)

Automatic import event is discarded and the image is ignored

Automatic import job is started but the image is expired and deleted to clean up disk space in some cases. The event logs an error in the Problems Report or `bperror` output. An import job runs, but the import for this image fails showing a status code in the range 1532–1535.

Condition

- The storage lifecycle policy is inactive.
- The storage lifecycle policy import destination is inactive.
- The storage lifecycle policy is between sessions.
- The image has exceeded the extended retry count and the extended retry time has not passed.
- The event specifies a backup ID that already exists in this master server catalog.
- The event specifies a disk volume that is not configured in NetBackup for this storage server.
- The storage lifecycle policy that is specified in the event does not contain an import destination.
- The storage lifecycle policy that is specified in the event has an import destination with a residence that does not include the disk volume that is specified by the event.
- The storage lifecycle policy that is specified does not exist. By default, the Storage Lifecycle Policies utility automatically creates a storage lifecycle policy with the correct name. Ensure that a storage lifecycle policy with the same case-sensitive name exists in the target master server.

More information is available for the storage lifecycle policy configuration options. See the NetBackup Administrator's Guide, Volume I.

Look at the Problems Report or the `bperror` list for these cases.

For troubleshooting job flow for automatic import jobs, use the same command lines as you would for other storage lifecycle policy managed jobs. To list images for which NetBackup has received notification from storage but not yet initiated import (either pending or failed), use the commands that were previously noted or run the following command:

```
# nbstlutil list -copy_type import -U -copy_incomplete
```

To list the images that have been automatically imported, run the following command:

```
# nbstlutil list -copy_type import -U -copy_state 3 -U

Master Server : bayside.example.com
Backup ID : woodridge_1287610477
Client : woodridge
Policy : two-hop-with-dup
Client Type : 0
Schedule Type : 0
Storage Lifecycle Policy : woodridge2bayside2pearl_withdup
Storage Lifecycle State : 3 (COMPLETE)
Data Classification ID : (none specified)
Version Number : 0
OriginMasterServer : woodridge.example.com
OriginMasterServerID : f5cec09a-da74-11df-8000-f5b3612d8988
Required Expiration Date : 1290288877 (Sat Nov 20 15:34:37 2010)
Created Date Time : 1287610652 (Wed Oct 20 16:37:32 2010)

The OriginMasterServer, OriginMasterServerID, Import From Replica Time, and Required Expiration Date are not known until after the image is imported so a pending record may look like the following:

Image:
Master Server : bayside.example.com
Backup ID : gdwinlin04_1280299412
Client : gdwinlin04
Policy : (none specified)
Client Type : 0
Schedule Type : 0
Storage Lifecycle Policy : (none specified)
Storage Lifecycle State : 1 (NOT_STARTED)
Time In Process : 0 (Wed Dec 31 18:00:00 1969)
Data Classification ID : (none specified)
Version Number : 0
OriginMasterServer : master_tlk
OriginMasterServerID : 00000000-0000-0000-0000-000000000000
Import From Replica Time : 0 (Wed Dec 31 18:00:00 1969)
Required Expiration Date : 0 (Wed Dec 31 18:00:00 1969)
Created Date Time : 1287680533 (Thu Oct 21 12:02:13 2010)

The OriginMasterServer here is not empty, although it may be in some cases. In cascading Auto Image Replication, the master server sends the notification.
Troubleshooting network interface card performance

If backup or restore jobs are running slowly, verify that the network interface cards (NIC) are set to full duplex. Half duplex often causes poor performance.

Note: If the NIC in a NetBackup master or media server is changed, or if the server IP address changes, CORBA communications may be interrupted. To address this situation, stop and restart NetBackup.

For help on how to view and reset duplex mode for a particular host or device, consult the manufacturer's documentation. If the documentation is not helpful, perform the following procedure.

To troubleshoot network interface card performance

1. Log onto the host that contains the network interface card whose duplex mode you want to check.

2. Enter the following command to view the current duplex setting.

   ```
 ifconfig -a
   ```

   On some operating systems, this command is `ipconfig`.

   The following is an example output from a NAS filer:

   ```
 e0: flags=1948043<UP,BROADCAST,RUNNING,MULTICAST,TCPCKSUM> mtu 1500
 inet 10.80.90.91 netmask 0xfffff800 broadcast 10.80.95.255 ether 00:a0:98:01:3c:61 (100tx-fd-up) flowcontrol full
 e9a: flags=108042<BROADCAST,RUNNING,MULTICAST,TCPCKSUM> mtu 1500 ether 00:07:e9:3e:ca:b4 (auto-unknown-cfg_down) flowcontrol full
 e9b: flags=108042<BROADCAST,RUNNING,MULTICAST,TCPCKSUM> mtu 1500 ether 00:07:e9:3e:ca:b5 (auto-unknown-cfg_down) flowcontrol full
   ```

   In this example, the network interface that shows "100tx-fd-up" is running in full duplex. Only interface e0 (the first in the list) is at full duplex.

   A setting of "auto" is not recommended, because devices can auto-negotiate to half duplex.
3 The duplex mode can be reset by using the `ifconfig` (or `ipconfig`) command. For example:

```
ifconfig e0 mediatype 100tx-fd
```

4 For most hosts, you can set full-duplex mode permanently, such as in the host’s `/etc/rc` files. Refer to the host’s documentation for more information.

### About SERVER entries in the bp.conf file

On UNIX and Linux computers, every `SERVER` entry in a client bp.conf file must be a NetBackup master or media server. That is, each computer that is listed as a `SERVER` must have either NetBackup master or media server software installed. The client service on some clients cannot be started if the client name is incorrectly listed as a server.

If a `bp.conf` `SERVER` entry specifies a NetBackup client-only computer, SAN client backups or restores over Fibre Channel may fail to start. In this case, determine if the `nbftclnt` process is running on the client. If it is not running, check the `nbftclnt` unified logging file (OID 200) for errors. You may see the following in the `nbftclnt` log:

```
The license is expired or this is not a NBU server. Please check your configuration. Note: unless NBU server, the host name can't be listed as server in NBU configuration.
```

Remove or correct the `SERVER` entry in the `bp.conf` file, restart `nbftclnt` on the client, and retry the operation.

**Note:** The `nbftclnt` process on the client must be running before you start a SAN client backup or restore over Fibre Channel.

### About unavailable storage unit problems

NetBackup jobs sometimes fail because storage units are unavailable, due to the disk drives or tape drives that are down or have configuration errors. The NetBackup processes log messages to the NetBackup error log that may help pinpoint and resolve these types of issues.

In addition, the Job Details dialog box available from the Activity Monitor contains the messages that describe the following:

- The resources that the job requests
The granted (allocated) resources.

If a job is queued awaiting resources, the Job Details dialog lists the resources for which the job waits. The three types of messages begin with the following headers:

- requesting resource ...
- awaiting resource ...
- granted resource ...

Resolving a NetBackup Administration operations failure on Windows

When a user who is part of the Administrator’s group tries to execute some NetBackup operations, the operation may fail with the following error, where command is a NetBackup administrator command:

```
command: terminating - cannot open debug file: Permission denied (13)
```

When the Security Setting of the User Account Control: Run All Administrators in Admin Approval Mode policy on Windows is Enabled, a user has limited permissions. The user from the Administrator’s group is not allowed to manage NetBackup.

Disable this security setting through: Control Panel > Administrative Tools > Local Security Policy > Local Policies > Security Options > User Account Control: Run All administrators in Admin Approval Mode > Disable.

Figure 2-5  Local Security Policy panel
Once the security setting is disabled, the user can successfully perform NetBackup operations.

Resolving garbled text displayed in NetBackup Administration Console on a UNIX computer

Perform the following steps if you see garbled text or if you cannot see non-English text in the NetBackup Administration Console on a UNIX computer:

1. On the command prompt, enter `locale`.
2. Ensure that `LC_CTYPE` is set to the value corresponding to the locale that you want to display.

   For example, if `LC_CTYPE` is set to `en_US.UTF-8`, the text is displayed in US English in the console.

   If `LC_CTYPE` is set to `fr_FR.UTF8`, the text is displayed in French in the console.
About NetBackup troubleshooting utilities

Several utilities are available to help diagnose NetBackup problems. The analysis utilities for NetBackup debug logs and the NetBackup support utility (nbsu) are especially useful in troubleshooting.

<table>
<thead>
<tr>
<th>Table 3-1 Troubleshooting utilities</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Utility</strong></td>
</tr>
<tr>
<td>Analysis utilities for NetBackup debug logs</td>
</tr>
</tbody>
</table>
Table 3-1  Troubleshooting utilities (continued)

<table>
<thead>
<tr>
<th>Utility</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logging Assistant</td>
<td>It simplifies the gathering of evidence for support cases.</td>
</tr>
<tr>
<td></td>
<td>For more information, see the following:</td>
</tr>
<tr>
<td></td>
<td>■ <em>NetBackup Administrator’s Guide, Volume I</em>, and the online Help for the NetBackup Administration Console.</td>
</tr>
<tr>
<td></td>
<td>■ The <em>Veritas Logging Assistant FAQ</em>:  <a href="http://www.veritas.com/docs/000088104">http://www.veritas.com/docs/000088104</a></td>
</tr>
<tr>
<td>Network troubleshooting utilities</td>
<td>They verify various aspects of the network configuration inside and outside NetBackup to ensure that there is no misconfiguration. See “About network troubleshooting utilities” on page 98.</td>
</tr>
<tr>
<td>NetBackup support utility (nbsu)</td>
<td>It queries the host and gathers appropriate diagnostic information about NetBackup and the operating system. See “About the NetBackup support utility (nbsu)” on page 99.</td>
</tr>
<tr>
<td>NetBackup consistency check utility (NBCC)</td>
<td>It analyzes the integrity of portions of the NetBackup configuration and catalog and database information as they pertain to tape media. See “About the NetBackup consistency check utility (NBCC)” on page 105.</td>
</tr>
<tr>
<td>NetBackup consistency check repair (NBCCR) utility</td>
<td>It processes database-catalog repair actions and automates the application of approved suggested repair actions. See “About the NetBackup consistency check repair (NBCCR) utility” on page 113.</td>
</tr>
<tr>
<td>nbcplogs utility</td>
<td>It simplifies the gathering of logs to deliver to Veritas technical support.                  See “About the nbcplogs utility” on page 115.</td>
</tr>
<tr>
<td>Robotic test utilities</td>
<td>They communicate directly with robotic peripherals.                                            See “About the robotic test utilities” on page 116.</td>
</tr>
</tbody>
</table>

About the analysis utilities for NetBackup debug logs

The debug log analysis utilities enhance NetBackup’s existing debug capabilities by providing a consolidated view of a job debug log.
NetBackup jobs span multiple processes that are distributed across servers.

To trace a NetBackup job you must view and correlate messages in multiple log files on multiple hosts. The log analysis utilities provide a consolidated view of the job debug logs. The utilities scan the logs for all processes that are traversed or run for the job. The utilities can consolidate job information by client, job ID, start time for the job, and policy that is associated with the job.

Table 3-2 describes the log analysis utilities. To see the parameters, limitations, and examples of use for each utility, use the command with the `-help` option. All the commands require administrative privileges. The log analysis utilities are available for all platforms that are supported for NetBackup servers.

**Note:** The utilities must be initiated on supported platforms. However, the utilities can analyze debug log files from most NetBackup client and server platforms for UNIX and Windows.

### Table 3-2 Analysis utilities for NetBackup debug logs

<table>
<thead>
<tr>
<th>Utility</th>
<th>Description</th>
</tr>
</thead>
</table>
| backupdbtrace| Consolidates the debug log messages for specified NetBackup database backup jobs and writes them to standard output. It sorts the messages by time. `backupdbtrace` attempts to compensate for time zone changes and clock drift between remote servers and clients.  
  At a minimum, you must enable debug logging for `admin` on the master server, and for `bptm` and `bpbkar` on the media server. For best results, set the verbose logging level to 5 and enable debug logging for the following: `bpdbm` on the master server and `bpcd` on all servers in addition to the processes already identified.  
  A complete description of `backupdbtrace` is in the NetBackup Commands Reference Guide. |
| Utility         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
### Table 3-2  
Analysis utilities for NetBackup debug logs (continued)

<table>
<thead>
<tr>
<th>Utility</th>
<th>Description</th>
</tr>
</thead>
</table>
| importtrace  | Consolidates the debug log messages for the specified NetBackup import jobs and writes them to standard output. It sorts the messages by time. `importtrace` attempts to compensate for time zone changes and clock drift between remote servers and clients.  
At a minimum, you must enable debug logging for `admin` on the master server. And for `bpbrm`, you must enable debug logging for `bptm` and `tar` on the media server.  
For best results, set the verbose logging level to 5 and enable debug logging for the following: `bpdbm` on the master server and `bpcd` on all servers and clients in addition to the processes already identified.  
A complete description of `importtrace` is in the NetBackup Commands Reference Guide. |
| restoretrace | Copies to standard output the debug log lines relevant to the specified restore jobs.  
The `restoretrace` utility consolidates the debug logs for specified NetBackup restore jobs. The utility writes debug log messages relevant to the specified jobs to standard output and sorts the messages by time. `restoretrace` attempts to compensate for time zone changes and clock drift between remote servers and clients. The format of the output makes it relatively easy to sort or grep by timestamp, program name, and server or client name.  
At a minimum, you must enable debug logging for `bprd` on the master server. Enable debug logging for `bpbrm` and `bptm` or `bpdm` on the media server and `tar` on the client. For best results, set the verbose logging level to 5. Enable debug logging for `bpdbm` on the master server and for `bpcd` on all servers and clients.  
A complete description of `restoretrace` is in the NetBackup Commands Reference Guide. |
| verifytrace  | Consolidates the debug log messages for the specified verify jobs and writes them to standard output. It sorts the messages by time. The `verifytrace` command attempts to compensate for time zone changes and clock drift between remote servers and clients.  
At a minimum, you must enable debug logging as follows: for `admin` on the master server and for `bpbrm`, `bptm` (or `bpdm`) and `tar` on the media server. For best results, set the verbose logging level to 5 and enable debug logging for the following: `bpdbm` on the master server and `bpcd` on all servers and clients in addition to the processes already identified.  
A complete description of `verifytrace` is in the NetBackup Commands Reference Guide. |

The analysis utilities have the following limitations:

- Media and device management logs are not analyzed.
- The legacy debug log files must be in standard locations on the servers and clients.

**UNIX**  
```
/usr/openv/netbackup/logs/<PROGRAM_NAME>/log.mmdyy
```
Windows

install_path\NetBackup\Logs\<PROGRAM_NAME>\mmddyy.log

An option may be added later that allows the analyzed log files to reside on alternate paths.

**Note:** For the processes that use unified logging, log directories are automatically created.

- The consolidated debug log may contain messages from unrelated processes. You can ignore messages with timestamps outside the duration of the job from the following: bprd, nbpm, nbmj, nbrb, bpdmb, bpbm, bptm, bpd, and bpcd.

An output line from the log analysis utilities uses the following format:

```
daystamp.millisecs.program.sequence machine log_line
```

- **daystamp**: The date of the log that is in the format *yyyymmdd*.
- **millisecs**: The number of milliseconds since midnight on the local computer.
- **program**: The name of program (BPCD, BPRD, etc.) being logged.
- **sequence**: Line number within the debug log file.
- **machine**: The name of the NetBackup server or client.
- **log_line**: The line that appears in the debug log file.

For more information, see the *NetBackup Commands Reference Guide*.

---

**About the Logging Assistant**

For help on a NetBackup issue, you can use the Logging Assistant to gather evidence for Veritas Technical Support. You are not required to sift through NetBackup debug logs for clues or explanations on your own. Debug logs are for Veritas Technical Support to analyze.

Extensive information on the Logging Assistant is available in the following Veritas documents:

- *About the Logging Assistant:*
  
  http://www.veritas.com/docs/000088104
About network troubleshooting utilities

A set of utility programs (commands) verifies various aspects of the network configuration inside and outside NetBackup to ensure that there is no misconfiguration. The utilities also provide user-friendly messages for any errors they find.

Network configuration broadly falls into the following categories:

- **Hardware, operating system, and NetBackup level settings.**
  Examples include correct DNS lookups, firewall port openings, and network routes and connections. The NetBackup Domain Network Analyzer (`nbdna`) verifies this configuration.

- **A set of utilities that verifies the NetBackup level settings.**
  The utilities include `bptestbpcd` and `bptestnetconn`, and the settings they verify include CONNECT_OPTIONS and CORBA endpoint selection.

### Table 3-3  Network troubleshooting utilities

<table>
<thead>
<tr>
<th>Utility</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bptestbpcd</code></td>
<td>Tries to establish a connection from a NetBackup server to the <code>bpcd</code> daemon on another NetBackup system. If successful, it reports information about the sockets that are established. A complete description of <code>bptestbpcd</code> is in the NetBackup Commands Reference Guide.</td>
</tr>
<tr>
<td><code>bptestnetconn</code></td>
<td>Performs several tasks that aid in the analysis of DNS and connectivity problems with any specified list of hosts. This list includes the server list in the NetBackup configuration. To help troubleshoot connectivity problems between the services that use CORBA communications, <code>bptestnetconn</code> can perform and report on CORBA connections to named services. A complete description of <code>bptestnetconn</code> is in the NetBackup Commands Reference Guide.</td>
</tr>
<tr>
<td><code>nbdna</code> (NetBackup Domain Network Analyzer)</td>
<td>Evaluates the host names in the NetBackup domain. The <code>nbdna</code> utility self-discovers the NetBackup domain and evaluates host name information, then tests connectivity to these host names and validates their network relationship status. Network connectivity evaluation in a NetBackup domain is difficult. NetBackup domains can scale to hundreds of servers, and thousands of clients across complex network topologies. A complete description of <code>nbdna</code> is in the NetBackup Commands Reference Guide.</td>
</tr>
</tbody>
</table>
About the NetBackup support utility (nbsu)

The NetBackup support utility (nbsu) is a command line tool. It queries the host and gathers appropriate diagnostic information about NetBackup and the operating system. nbsu provides a wide range of control over the types of diagnostic information gathered. For instance, you can obtain information about NetBackup configuration settings, about specific troubleshooting areas, or about NetBackup or media management job status codes.

The NetBackup support utility (nbsu) resides in the following location:

UNIX  /usr/openv/netbackup/bin/support/nbsu
Windows  install_path\NetBackup\bin\support\nbsu.exe

Veritas recommends that you run the NetBackup support utility (nbsu) in the following circumstances:

- To obtain baseline data on your NetBackup installation. If you encounter problems later, this data can be useful.
- To document changes in your NetBackup or operating system environment. Run nbsu periodically to keep your baseline data up to date.
- To help isolate a NetBackup or operating system issue.
- To report issues to Veritas technical support.

The following suggestions can help you run the nbsu utility more effectively:

- For a complete description of nbsu including examples and how to gather diagnostic information to send to Veritas Technical Support, see the NetBackup Commands Reference Guide.
  If you have a case ID provided by Technical Support of the form #######
  rename the log files with the case ID number. Then manually upload the files to the Veritas Evidence Server. For additional assistance, see:
  http://www.veritas.com/docs/000097935

- For troubleshooting, run nbsu when the system is in the same state as when the problem occurred. For example, do not stop and restart the NetBackup processes after the error occurs or make a change to the server or network. If you do, nbsu may not be able to gather key information about the problem.

- If a NetBackup component is not operational (for example, bpgetconfig does not return information), nbsu may be unable to properly report on the system. For these cases, use the -nbu_down command line option to bypass the need for NetBackup to be operational.
If `nbsu` does not perform as expected, try the following:

- By default, `nbsu` sends error messages to standard error (`STDERR`) and also includes the messages in its output files under the header `STDERR`. Note the following alternate ways to view `nbsu` error messages:

  To redirect the `nbsu` error messages to standard output (`STDOUT`)
  
  Enter the following:
  
  - UNIX
    
    `/usr/openv/netbackup/bin/support/nbsu 2>&1`
  
  - Windows
    
    `install_path\NetBackup\bin\support\nbsu.exe 2>&1`

  To send all `nbsu` screen output including error messages to a file
  
  Enter the following:
  
  `nbsu 2>&1 > file_name`

  Where `2>&1` directs standard error into standard output, and `file_name` directs standard output into the designated file.

- To generate the debug messages that relate to `nbsu`, enter the following:

  `# nbsu -debug`

  The messages are written to the `nbsu_info.txt` file.

  The `nbsu_info.txt` file provides an overview of the environment where `nbsu` is run. It contains the following:

  - General operating system and NetBackup information on the environment that `nbsu` detects
  
  - A list of diagnostics that were run
  
  - A list of diagnostics that returned a non-zero status

  The information in `nbsu_info.txt` may indicate why `nbsu` returned particular values, or why it did not run certain commands.

  If `nbsu` does not produce adequate information or if it seems to perform incorrectly, run `nbsu` with the `-debug` option. This option includes additional debug messages in the `nbsu_info.txt` file.

  A complete description of `nbsu` is in the *NetBackup Commands Reference Guide*. 
Output from the NetBackup support utility (nbsu)

The NetBackup support utility (nbsu) writes the information it gathers to text files in the following directory:

UNIX
/usr/openv/netbackup/bin/support/output/nbsu
/hostname_timestamp

Windows
install_path\NetBackup\bin\support\output\nbsu
\hostname_timestamp

The NetBackup environment where nbsu runs determines the particular files that nbsu creates. nbsu runs only those diagnostic commands that are appropriate to the operating system and the NetBackup version and configuration. For each diagnostic command that it runs, nbsu writes the command output to a separate file. As a rule, the name of each output file reflects the command that nbsu ran to obtain the output. For example, nbsu created the NBU_bpplclients.txt file by running the NetBackup bpplclients command and created the OS_set.txt file by running the operating system’s set command.

Each output file begins with a header that identifies the commands that nbsu ran. If output from more than one command was included in the file, the header identifies the output as an “internal procedure.”

The following are the actual commands and output after the header.

Example nbsu output file: ipconfig command (excerpt)

------------------- Network ipconfig information report ------------
----------------------------- Command used -------------------------
> "C:\WINDOWS\system32\ipconfig" /all

Windows IP Configuration

Host Name . . . . . . . . . . . . . : host1
Primary Dns Suffix . . . . . . . :
Node Type . . . . . . . . . . . . . : Hybrid
IP Routing Enabled. . . . . . . . : No
WINS Proxy Enabled. . . . . . . . : No
DNS Suffix Search List. . . . . . : company.com

The following is an example of part of the nbsu output file for the bpgetconfig command.

Example nbsu output file: bpgetconfig command (excerpt)
------------ NetBackup bpgetconfig information report --------------
-------------- nbsu diagnostic name and internal procedure used ------------
NBU_bpgetconfig - NBU_get_bpgetconfig_info
-------------- Command Used -------------------------------
# /usr/openv/netbackup/bin/admincmd/bpgetconfig -g nbmedia00 -L
Client/Master = Media Host
NetBackup Client Platform = Linux, RedHat2.6.18
NetBackup Client Protocol Level = 7.7.0
Product = NetBackup
Version Name = 7.7
Version Number = 770000
NetBackup Installation Path = /usr/openv/netbackup/bin
Client OS/Release = Linux 2.6.18-194.el5
-------------- Command Used -------------------------------
# /usr/openv/netbackup/bin/admincmd/bpgetconfig
SERVER = nbmaster00
SERVER = nbmedia00
TRUSTED_MASTER
KNOWN_MASTER
MASTER_OF_MASTERS
USEMAIL =
BPBACKUP_POLICY = any
BPBACKUP_SCHED = any

If the executed command returned a non-zero status, an EXIT STATUS header indicates the status. For example:

-------------- EXIT STATUS = 227 --------------

As part of the internal processing of each command that a diagnostic command runs, nbsu redirects each command's STDERR to an internal file. If the command writes information to STDERR, nbsu captures this information and includes a STDERR header along with the information. For example:

-------------- STDERR -------------------------------
bpclient: no entity was found (227)

If a supported archive program is available on the host where nbsu runs, nbsu bundles its output files into an archive file. If a supported compression utility is available, nbsu compresses the archive file. Otherwise, the individual output files remain unarchived and uncompressed.

An example of a compressed archive file that nbsu created is as follows:
/usr/openv/netbackup/bin/support/output/nbsu/host1_master_yyyymmdd_164443/host1_master_20060814_164443.tar.gz

where host1 is the name of the host on which nbsu ran, and master indicates that the host is a NetBackup master server. The date is embedded in the file name in the yyyymmdd format.

nbsu supports tar for archive and gzip for compression. Veritas may add support for other archive and compression utilities in the future. For an up-to-date list of supported archive and compression utilities, run the nbsu -H command on your installed version of NetBackup.

**Note:** Archiving and compression utilities are usually available on UNIX and Linux systems. On Windows, it may be necessary to install these programs. Note that the archiving utility must be referenced in the system PATH environment variable.

If no archive utility is installed on your system, use the -xml option of the nbsu command. This option lets you create a single .xml file in place of the individual output files. The single .xml file contains all the diagnostic information that the individual files contain. Use this command to conveniently bundle nbsu output for Veritas technical support.

A complete description of nbsu is in the NetBackup Commands Reference Guide.

### Status code information gathered by the NetBackup support utility (nbsu)

You can use nbsu to gather diagnostic information about certain NetBackup or Media Manager status codes. nbsu gathers this information by running one or more NetBackup commands whose output may indicate the cause of the problem.

See the Status Codes Reference Guide for more about the topics that describe the status codes.

A complete description of nbsu is in the NetBackup Commands Reference Guide.

The following are examples of the results you can get when you enter specific commands:

To gather diagnostic information about status code 25

Enter nbsu -nbu_e 25.

This command runs only the diagnostic commands that are related to NetBackup status code 25. Since fewer commands are run, the result may be a smaller set of output files.
To determine what information `nbsu` can collect for a particular status code, enter `nbsu -l -nbu_e 25`.

More information is available about the output files that `nbsu` generates. See “Output from the NetBackup support utility (nbsu)” on page 101.

**Note:** You can also use a NetBackup exit script to call `nbsu`. The script passes the NetBackup status code to `nbsu` to gather associated diagnostics for a job.

A complete description of `nbsu` is in the NetBackup Commands Reference Guide.

### Example of a progress display for the NetBackup support utility (nbsu)

By default, the NetBackup support utility (`nbsu`) displays its progress to standard output. First, it lists environment queries, and then it lists the diagnostic commands that it runs as in the following example:

```
C:\Program Files\VERITAS\NetBackup\bin\support>nbsu
1.0 Determining initial nbsu settings
1.1 Determining OS environment
1.2 Determining OS host services
1.3 Determining identified network interface hostnames
1.4 Determining NetBackup environment
2.0 Querying nbsu diagnostic lists
2.1 Determining nbsu diagnostics to run
3.0 Executing nbsu diagnostics
 Executing diagnostic DEV_scsi_reg
 Registry query of HKEY_LOCAL_MACHINE\hardware\DeviceMap\Scsi\

 Executing diagnostic MM_tpconfig
 "C:\Program Files\VERITAS\Volmgr\Bin\tpconfig" -d

4.0 nbsu successfully completed the identified diagnostic commands.
 Creating support package...
```

Microsoft (R) Cabinet Maker - Version 5.2.3790.0
Copyright (c) Microsoft Corporation. All rights reserved.

```
770,201 bytes in 36 files
Total files: 36
Bytes before: 770,201
Bytes after: 105,503
After/Before: 13.70% compression
```
About the NetBackup consistency check utility (NBCC)

The NetBackup consistency check utility (NBCC) is a command line utility. It is used to analyze the integrity of portions of the NetBackup configuration, catalog, and database information. This analysis includes review of NetBackup storage units, the EMM server, volume pools, tape media, and backup images that are associated with tape media.

NBCC does the following:

■ Queries the EMM database to obtain the primary host name, associated host names, and server attributes for host name normalization
■ Through examination of the NetBackup configuration, identifies cluster, application cluster and servers
■ Gathers the information on the database and catalog
■ Analyzes the consistency of the gathered configuration and database and catalog information
■ Creates a packaged bundle for Veritas technical support to review

NBCC resides in the following location:

UNIX /usr/openv/netbackup/bin/support/NBCC
Windows install_path\NetBackup\bin\support\NBCC.exe

Veritas recommends that you run NBCC in the following circumstances:

■ To check the consistency of the NetBackup configuration and catalog and database information from a tape media perspective
■ To gather and create a package bundle when directed to do so by Veritas technical support

The following items can help you run the NBCC utility:
- The use of NBCC without options gathers all data and reports, and is recommended for most customers. For additional information, NBCC description, examples, and instructions for gathering NetBackup catalog and database information to send to technical support, use the NBCC -help command.

- NBCC is designed to be run on NetBackup master servers.

- In some cases, a non-functioning operating system or NetBackup process or service can prevent NBCC from running properly or completing. As NBCC progresses through the interrogation of various operating system or NetBackup components, it outputs what processes to STDOUT. As NBCC processes catalog and database components, it displays how many records have been processed. The number of records that are processed is in direct relationship to the size of the catalog and database being processed. If NBCC detects a failure, related information is output to STDERR. Information to STDOUT or STDERR are also output to the nbcc-info.txt file (if available).

If NBCC does not perform as expected, try the following:

- Use a text editor to look for error notices in the nbcc-into.txt file.

- By default, NBCC sends error messages to standard error (STDERR) and also includes the messages in its output files under the header STDERR.

- If NBCC does not produce adequate information or if it seems to perform incorrectly, run NBCC with the -debug option to include additional debug messages in the nbcc-info.txt file.

- For troubleshooting, run NBCC when the system is in the same state as when the problem occurred. For example, do not stop and restart the NetBackup processes after the error occurs or make a change to the server or network. NBCC may not be able to gather key information about the problem.

The nbcc-info.txt file provides an overview of the environment where NBCC is run, and contains the following:

- General operating system and NetBackup configuration information on the environment that NBCC detects

- A copy of the NBCC processing information that is sent to STDOUT or STDERR.

This information indicates the processing that NBCC has done.

The nbcc-info.txt report contains a section of information that summarizes the NBCC processing for each system that is detected in the NetBackup configuration. This section indicates the server types in EMM that NBCC detects. It begins with “Summary of NBCC <type> processing”.

See “Example of an NBCC progress display” on page 107.
A complete description of **NBCC** is in the **NetBackup Commands Reference Guide**.

### Output from the NetBackup consistency check utility (NBCC)

**NBCC** writes the information it gathers to packaged files in the following directory.

**UNIX and Linux**

```bash
/usr/openv/netbackup/bin/support/output
/nbcc/hostname_NBCC_timestamp
```

**Windows**

```bash
install_path\NetBackup\bin\support\output
\nbcc\hostname_NBCC_timestamp
```

If a supported archive program is available on the host where **NBCC** runs, **NBCC** bundles its output files into an archive file. If a supported compression utility is available, **NBCC** compresses the archive file. Otherwise, the individual output files remain unarchived and uncompressed.

An example of a compressed (UNIX) archive file that **NBCC** created is as follows:

```bash
/usr/openv/netbackup/bin/support/output/NBCC/host1_NBCC_20060814_164443/host1_NBCC_20060814_164443.tar.gz
```

where **host1** is the name of the host where **NBCC** had been run.

On UNIX platforms, **NBCC** supports the tar, compress, and gzip utilities for UNIX file archiving and compression. On Windows platforms, **NBCC** supports the tar, Makecab, and gzip utilities for Windows file archiving and compression.

A complete description of **NBCC** is in the **NetBackup Commands Reference Guide**.

### Example of an NBCC progress display

By default, the NetBackup consistency check utility (**NBCC**) displays its progress numerically to standard output. The name of the output file is **nbcc-info.txt**.

The following example of **NBCC** output has been edited for brevity:

```
1.0 Gathering initial NBCC information
1.1 Obtaining initial NetBackup configuration information

NBCC is being run on NetBackup master server server1
NBCC version 7.6 Gather mode = full
NBCC command line = C:\Veritas\NetBackup\bin\support\NBCC.exe -nozip
OS name = MSWin32
```
OS version = Microsoft Windows [Version 6.1.7601]
NetBackup Install path = C:\Program Files\Veritas\
> dir output\nbcc\server1_NBCC_20130227_091747 2>&1
Parsed output for "bytes free"

5 Dir(s) 862,367,666,176 bytes free

2.0 Gathering required NetBackup configuration information
2.1 Determining the date format to use with NetBackup commands...
   Using the date format /mm/dd/yyyy
2.2 Building EMM host configuration information...
   Detected the EMM Server hostname
      lidabl11
   Detected the EMM master server hostname
      lidabl11
   Detected the EMM Virtual Machine entry
      pambll11vm3
   Detected the EMM NDMP Host entry
      fas3240a
   ...
2.3 Obtaining EMM server aliases...
   EMM aliases for detected EMM Server
      server1
         lidabl11.acme.com
   EMM aliases for detected master server
      server1
         lidabl11.acme.com
   EMM aliases for detected media server
      server4
   ...
2.4 Obtaining Storage Server information...
   Detected FalconStor OST direct copy to tape Storage Server
      falconstorvtl15
2.5 Building NetBackup storage unit list...
   Detected Storage Unit for NetBackup for NDMP media server
      reabl3
      and NDMP Host
      falconstorvtl15
      Detected disk media storage unit host
         lidabl11
      Detected Disk Pool
         lidabl11_pdde_pool
   ...
2.6 Obtaining Disk Pool information...

Detected Disk Pool

   lidabl11_pdde_pool
   host
   lidabl11
   Detected Disk Pool lidabl11_pdde_pool member
   lidabl11

...

2.7 Obtaining tpconfig Storage credential information...

Detected the master server hostname

   lidabl11

and associated Storage server hostname

   lidabl11

...

2.8 Obtaining tpconfig NDMP configuration information...

Detected the EMM NDMP Host hostname

   fas3240a

Detected the EMM NDMP Host hostname

   fas3240b

...

2.9 Analyzing EMM master and/or media servers and configured
Storage Units...

The following EMM server entries do not have configured
Storage Units or Disk Pools:

   Media server - lidabl14

2.10 Obtaining NetBackup unrestricted media sharing status...

Configuration state = NO

2.11 Obtaining NetBackup Media Server Groups...

No Server Groups configured

2.12 Building NetBackup retention level list...

3.0 Obtaining NetBackup version from media servers

   lidabl11...
   lidabl14...
   reabl3...
   virtualization5400a...

...

3.1 Gathering required NetBackup catalog information

Start time = 2013-02-27 09:41:07

3.2 Gathering NetBackup EMM conflict table list

   Found 0 EMM conflict records

3.3 Gathering list of all tapes associated with any Active Jobs
Building NetBackup bpdbjobs list

3.4 Gathering all TryLog file names from the C:\Program Files\netbackup\db\jobs\trylogs directory
   Found 10 TryLogs for 10 active jobs. TryLogs found for all Active Jobs

3.5 Building NetBackup Image database contents list
   Reading Image number 1000
   Reading Image number 2000
   Reading Image number 3000
   Reading Image number 4000
   Found 4014 images in the Image database

3.6 Building EMM database Media and Device configuration attribute lists
   Obtaining the EMM database Media attribute list for disk virtual server
     lidabl11 ...
     There were 0 bpmedialist records detected for media server lidabl11
     Getting device configuration data from server lidabl11 ...

3.7 Building EMM database Unrestricted Sharing Media attribute lists
   Found 0 Unrestricted Sharing media records in the EMM database

3.8 Building the EMM database Volume attribute list...
   Getting the EMM database Volume attributes from EMM server mlnbnu ...
   Found 43 Volume attribute records in the EMM database

3.9 Building NetBackup volume pool configuration list
   EMM Server lidabl11

3.10 Building NetBackup scratch pool configuration list
    EMM Server lidabl11

3.11 Gathering NetBackup EMM merge table list
    Found 0 EMM merge table records

Summary of gathered NetBackup catalog information
   End time = 2013-02-27 09:44:16
   Number of Images gathered = 4014
   Number of database corrupt images gathered = 0
   Number of EMM database Media attribute records gathered = 38
   Number of EMM database Volume attribute records gathered = 43

   Catalog data gathering took 189 seconds to complete
4.0 Verifying required catalog components were gathered

5.0 Beginning NetBackup catalog consistency check
Start time = 2013-02-27 09:44:18

5.1 There were no tape media involved in active NetBackup jobs

5.3 Processing EMM database Volume attribute records, pass 1 (of 2),
4 records to be processed
   Processed 4 EMM database Volume attribute records.

5.4 Checking for duplicate EMM server host names in Volume attribute data

5.5 Processing Image DB, pass 1 (of 2),
   3751 images to be processed
   3751 images processed on pass 1
   There were 0 images with at least one copy on hold detected.

5.6 Processing EMM database Media attribute records, pass 1 (of 3),
   2 records to be processed
   Processed 2 EMM database Media attribute records.
   There were 0 tape media detected that are on hold.

5.8 Check for duplicate media server names in the EMM database Media attribute data

5.9 Processing EMM database Media attribute records, pass 2 (of 3),
   2 records to be processed

5.10 Processing Image DB, pass 2 (of 2),
   3751 images to be processed

CONSISTENCY_ERROR Oper_7_1

5.11 NetBackup catalog consistency check completed
End time = 2013-02-27 09:19:25

5.12 Checking for the latest NBCCR repair output directory
C:\Program Files\Veritas\netbackup\bin\support\output\nbccr
No repair file output directory detected.

Summary of NBCC EMM Server processing
Summary of NBCC EMM Server processing
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ Primary hostname: +
+ lidabl11 +
+ Alias hostnames:
+ lidabl11 +
+ Sources:
+ nbemmcmd vmoprcmd +
+ EMM Server = yes +
+ EMM NetBackup version = 7.6 +
+ NBCC NetBackup version = 7.6 +
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Summary of NBCC Master server processing
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ Primary hostname: +
+ lidabl11 +
+ Alias hostnames:
+ lidabl11 +
+ Sources:
+ nbemmcmd bpstulist nbdevquery bpgetconfig +
+ Master server = yes +
+ EMM NetBackup version = 7.6.0.0 +
+ NBCC NetBackup version = 7.6 +
+ Tape STU detected = no - Disk STU detected = yes +
+ Disk Pool Host = yes +
+ Associated Storage servers:
+ lidabl11 lidaclvm1 +
+ EMM tape media record extract attempted = yes +
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Summary of NBCC Media server processing
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ Primary hostname: +
+ lidabl14 +
+ Alias hostnames:
+ lidabl14.acme.com +
+ Sources:
+ nbemmcmd bpgetconfig +
+ Media server = yes +
+ EMM NetBackup version = 7.6.0.0 +
+ NBCC NetBackup version = 7.6 +
+ Tape STU detected = no - Disk STU detected = no +

Using NetBackup utilities
About the NetBackup consistency check utility (NBCC)
About the NetBackup consistency check repair (NBCCR) utility

The NetBackup consistency check repair (NBCCR) utility is a command line tool that processes database-catalog repair actions. It automates the application of approved suggested repair actions. Veritas technical support analyzes the data that the NBCC utility collects, and site-specific configuration information. This analysis results in the generation of a suggested repair actions (SRA) file. Before NBCCR is run, Veritas technical support interacts with the customer to determine which repairs are needed. Undesirable repair actions are deleted or commented out of the SRA file. Each line of the SRA file contains one repair action that is paired with an associated parameter.

The NBCCR utility executes each repair action in several stages.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>Data collection</td>
<td>NBCCR first collects the information that is required to perform a repair.</td>
</tr>
<tr>
<td>Stage 2</td>
<td>Repair qualification</td>
<td>Immediately before the suggested repair is applied, NBCCR verifies that the current status of the tape still qualifies for the requested repair. It recognizes that time has passed and the environment may have changed since the data was collected. If so, it reports in a history file that the repair is not qualified.</td>
</tr>
<tr>
<td>Stage</td>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Repair</td>
<td>Finally, NBCCR performs up to three steps of repair for every repair entry in the SRA file. An element may be modified to enable the repair and steps may be necessary after the repair. If the repair fails during the repair operation, NBCCR tries to roll back the repair so that the corrective action does not introduce any new errors.</td>
</tr>
</tbody>
</table>

NBCCR resides in the following location:

**UNIX**
/usr/openv/netbackup/bin/support/NBCCR

**Windows**
install_path\NetBackup\bin\support\NBCCR.exe

NBCCR accepts one input file, creates two output files, and uses one temporary file.

**Input file**
NBCCR accepts as input the Suggested Repair Action (SRA) file named mastername_NBCCA_timestamp.txt. Technical Support analyzes the NBCC support package and generates this file which is sent to the end-user. This file is placed in the following directory for NBCCR processing:

**On UNIX:**
/usr/openv/netbackup/bin/support/input/nbccr/SRA

**On Windows:**
install_path\NetBackup\bin\support\input\nbccr\SRA

**Output files**
NBCCR automatically creates a separate directory for each SRA file processed. The file name is based on the contents of the SRA file. The name of the directory is as follows:

**On UNIX:**
/usr/openv/netbackup/bin/support/output/nbccr/mastername_nbccr_timestamp

**On Windows:**
install_path\NetBackup\bin\support\output\nbccr\mastername_nbccr_timestamp.

After repair processing is complete, NBCCR relocates the SRA file to the same directory.

NBCCR also creates the following output files and places them in the same directory.

- NBCCR creates NBCCR.History.txt, which is a history file of all the repair actions attempted.
- NBCCR creates NBCCR.output.txt.
Temporary file  While it runs, the NBCCR utility uses KeepOnTruckin.txt, which appears in the same location as the output files described in this table.

To terminate NBCCR while it processes repairs, delete this file. This action causes NBCCR to complete the current repair, then shut down. Any other interruption causes undetermined results.

The following sample NBCCR.output.txt files show the results of two MContents repairs. One where all images were found on tape and one where one or more images were not found on the tape:

- **Example 1:** NBCCR found all images on the tape. The MContents repair action is successful.

  MContents for ULT001 MediaServerExpireImagesNotOnTapeFlag
  - ExpireImagesNotOnTape flag not set
  - ULT001 MContents - All images in images catalog found on tape
  - MContents ULT001 status: Success

- **Example 2:** NBCCR did not find one or more images on the tape. The MContents repair action was not performed.

  MContents for ULT000 MediaServerExpireImagesNotOnTapeFlag
  - ExpireImagesNotOnTape flag not set
  - Did NOT find Backup ID winmaster_123436 Copy 1 AssignTime 2011-02-11 01:19:13 (123436) on ULT000
  - Leaving winmaster_123436 Copy 1 on ULT000 in ImageDB
  - ULT000 MContents - One or more images from images catalog NOT found on tape
  - MContents ULT000 status: ActionFailed

A complete description of NBCCR is in the NetBackup Commands Reference Guide.

**About the nbcplogs utility**

When you troubleshoot a problem, you must gather and copy the correct logs to debug the issue. The log types (legacy, vxul, vm, pbx,...) may be in many places. The process of getting the logs to Veritas technical support can be difficult and time consuming.

By default, nbcplogs now runs the nbsu utility and collects nbsu information for the host system. This capability saves time and keystrokes in gathering information. The utility also gathers additional log information for clusters and pack history information.
If you have a case ID provided by Technical Support of the form ########, rename the log files with the case ID number. Then manually upload the files to the Veritas Evidence Server. For additional assistance, see:

http://www.veritas.com/docs/000097935

This utility supports the following types of search algorithms as options on the nbcplogs command.

- **--filecopy.** File copy is the default condition. It copies the entire log file. File copy with compression is usually enough to get the job done.

- **--fast.** Fast search uses a binary search to strip out the lines that are outside the time frame of the file. This mechanism is useful for copying large log files such as bpdbm. This option is seldom needed and should be used with caution.

The default condition is the file copy, which copies the entire log file. A fast search algorithm uses a binary search to strip out the lines that are outside the time frame of the file. This mechanism is useful for copying large log files such as bpdbm.

The nbcplogs utility is intended to simplify the process of copying logs by specifying the following options:

- A time frame for the logs.
- The log types that you want to collect.
- Bundling and in-transit data compression.

In addition, you can preview the amount of log data to be copied.

A complete description of nbcplogs is in the NetBackup Commands Reference Guide.

---

**About the robotic test utilities**

Each of the robotic software packages includes a robotic test utility for communicating directly with robotic peripherals. The tests are for diagnostic purposes: the only documentation is the online Help that you can view by entering a question mark (?) after starting the utility. Specify `-h` to display the usage message.

---

**Note:** Do not use the robotic test utilities when backups or restores are active. The tests lock the robotic control path and prevent the corresponding robotic software from performing actions, such as loading and unloading media. If a mount is requested, the corresponding robotic process times out and goes to the DOWN state. This usually results in a media mount timeout. Also, be certain to quit the utility when your testing is complete.
Robotic tests on UNIX

If the robot has been configured (that is, added to NBDB), start the robotic test utility by using the `robtest` command. This action saves time, since robotic and drive device paths are passed to the test utility automatically. The procedure is as follows:

To use the `robtest` command, do the following (in the order presented):

- Execute the following command:
  
  ```
 /usr/openv/volmgr/bin/robtest
  ```

  The test utility menu appears.

- Select a robot and click **Enter**.
  
  The test starts.

If the robot is not configured, you cannot use `robtest` and must execute the command that applies to the robot you test.

ACS  

```bash
/usr/openv/volmgr/bin/acstest -r ACSLS_hostpath
```

for `acstest` to work on UNIX and Linux, `acssel` and `acsssi` must be running

ODL

```bash
/usr/openv/volmgr/bin/odltest -r roboticpath
```

TL4

```bash
/usr/openv/volmgr/bin/tl4test -r roboticpath
```

TL8

```bash
/usr/openv/volmgr/bin/tl8test -r roboticpath
```

TLD

```bash
/usr/openv/volmgr/bin/tldtest -r roboticpath
```

TLH

```bash
/usr/openv/volmgr/bin/tlhtest -r robotic_library_path
```

TLM

```bash
/usr/openv/volmgr/bin/tlmtest -r DAS_host
```

TSH

```bash
/usr/openv/volmgr/bin/tshtest -r roboticpath
```

More information on ACS, TLH, and TLM robotic control is available.

See the [NetBackup Device Configuration Guide](#).

In the previous list of commands, `roboticpath` is the full path to the device file for the robotic control (SCSI). You can review the section for your platform to find the appropriate value for `roboticpath`.

An optional parameter specifies the device file path for the drives so that this utility can unload the drives using the SCSI interface.
Robotic tests on Windows

If the robot has been configured (that is, added to NBDB), start the robotic test utility by using the `robtest` command. This action saves time, since robotic and drive device paths are passed to the test utility automatically.

To use the `robtest` command, do the following (in the order presented):

- Execute the following command:
  
  ```
 install_path\Volmgr\bin\robtest.exe
  ```
  
  The test utility menu appears.

- Select a robot and press Enter.
  
  The test starts.

**Note:** If the robot is not configured, you cannot use `robtest`. You must execute the command that applies to the robot you want to test (see following list).

<table>
<thead>
<tr>
<th>Robot</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS</td>
<td><code>install_path\Volmgr\bin\acstest -r ACSLS_HOST</code></td>
</tr>
<tr>
<td>TL4</td>
<td><code>install_path\Volmgr\bin\tl4test -r roboticpath</code></td>
</tr>
<tr>
<td>TL8</td>
<td><code>install_path\Volmgr\bin\tl8test -r roboticpath</code></td>
</tr>
<tr>
<td>TLD</td>
<td><code>install_path\Volmgr\bin\tlldtest -r roboticpath</code></td>
</tr>
<tr>
<td>TLH</td>
<td><code>install_path\Volmgr\bin\tlhtest -r robotic_library_name</code></td>
</tr>
<tr>
<td>TLM</td>
<td><code>install_path\Volmgr\bin\tlmtest -r DAS_Hostname</code></td>
</tr>
</tbody>
</table>

More information on ACS, TLH, and TLM robotic control is available.

See the [NetBackup Device Configuration Guide](#).

In the previous list of commands, `roboticpath` is the full path to the device file for the robotic control (SCSI). You can review the section for your platform to find the appropriate value for `roboticpath`.

An optional parameter specifies the device file path for the drives so that this utility can unload the drives using the SCSI interface.

**Usage is:**

```
install_path <-p port -b bus -t target -l lan | -r roboticpath
```

where: `roboticpath` is the changer name (e.g., Changer0).
Disaster recovery

This chapter includes the following topics:

- About disaster recovery
- Recommended backup practices
- About disk recovery procedures for UNIX and Linux
- About clustered NetBackup server recovery for UNIX and Linux
- About disk recovery procedures for Windows
- About clustered NetBackup server recovery for Windows
- About recovering the NetBackup catalog

About disaster recovery

Data backup is essential to any data protection strategy, especially a strategy that is expected to assist in disaster recovery. Regularly backing up data and therefore being able to restore that data within a specified time frame are important components of recovery. Regardless of any other recovery provisions, backup protects against data loss from complete system failure. And off-site storage of backup images protects against damage to your on-site media or against a disaster that damages or destroys your facility or site.

To perform recovery successfully, the data must be tracked. Knowing at what point in time the data was backed up allows your organization to assess the information that cannot be recovered. Configure your data backup schedules to allow your organization to achieve its recovery point objective (RPO). The RPO is the point in time before which you cannot accept lost data. If your organization can accept one day’s data loss, your backup schedule should be at least daily. That way you can achieve an RPO of one day before any disaster.
Your organization also may have a recovery time objective (RTO), which is the expected recovery time or how long it takes to recover. Recovery time is a function of the type of disaster and of the methods that are used for recovery. You may have multiple RTOs, depending on which services your organization must recover when.

High availability technologies can make the recovery point very close or even identical to the point of failure or disaster. They also can provide very short recovery times. However, the closer your RTO and RPO are to the failure point, the more expensive it is to build and maintain the systems that are required to achieve recovery. Your analysis of the costs and benefits of various recovery strategies should be part of your organization’s recovery planning.

Effective disaster recovery requires procedures specific to an environment. These procedures provide detailed information regarding preparation for and recovering from a disaster. Use the disaster recovery information in this chapter as a model only; evaluate and then develop your own disaster recovery plans and procedures.

**Warning:** Before you try any of the disaster recovery procedures in this chapter, Veritas recommends that you contact technical support.

This topic provides information about NetBackup installation and (if necessary), catalog recovery after a system disk failure. Veritas assumes that you recover to the original system disk or one configured exactly like it.

**Warning:** NetBackup may not function properly if you reinstall and recover to a different partition or to one that is partitioned differently due to internal configuration information. Instead, configure a replacement disk with partitioning that is identical to the failed disk. Then reinstall NetBackup on the same partition on which it was originally installed.

The specific procedures that replace failed disks, build partitions and logical volumes, and reinstall operating systems can be complicated and time consuming. Such procedures are beyond the scope of this manual. Appropriate vendor-specific information should be referenced.

**Recommended backup practices**

The following backup practices are recommended:
In addition to backing up files on a regular basis, it is important to select the correct files to back up. Include all files with records that are critical to users and the organization. Back up system and application files, so you can quickly and accurately restore a system to normal operation if a disaster occurs.

Include all Windows system files in your backups. In addition to the other system software, the Windows system directories include the registry, which is needed to restore the client to its original configuration. If you use a NetBackup exclude list for a client, do not specify any Windows system files in that list.

Do not omit executables and other application files. You may want to save tape by excluding these easy-to-reinstall files. However, backing up the entire application ensures that it is restored to its exact configuration. For example, if you have applied software updates and patches, restoring from a backup eliminates the need to reapply them.

NetBackup Bare Metal Restore (BMR) protects client systems by backing them up with a policy configured for BMR protection. A complete description of BMR backup and recovery procedures is available.

See the NetBackup Bare Metal Restore Administrator’s Guide:
http://www.veritas.com/docs/DOC5332

When you configure a policy for online catalog backup, designate certain NetBackup policies as critical. Critical policies back up systems and data deemed critical to end-user operation. During a catalog recovery, NetBackup verifies that all of the media that is needed to restore critical policies are available.

If the configuration contains Windows clients that have incremental backup configurations set to Perform Incrementals Based on Archive Bit, run a full backup of these clients as soon as possible after a catalog recovery. The archive bit resets on the files that were incrementally backed up after the catalog backup that was used for the catalog recovery. If a full backup of these clients is not run after a catalog recovery, these files could be skipped and not backed up by subsequent incremental backups.

Online, hot catalog backup is a policy-driven backup that supports tape-spanning and incremental backups. It allows for restoring catalog files from the Backup, Archive, and Restore interface. Online catalog backups may be run while other NetBackup activity occurs, which provides improved support for environments in which continual backup activity is typical.

Veritas recommends saving the disaster recovery files that are created by the online catalog backup to a network share or removable device. Do not save the disaster recovery files to the local computer. Catalog recovery from an online catalog backup without the disaster recovery image file is a more complex procedure and time-consuming procedure.
Automated recovery

The catalog disaster recovery file (created during an online catalog backup) is intended to automate the process of NetBackup recovery. If you recover a system other than the one that originally made the backups, it should be identical to the original system. For example, the system that performs the recovery should include NetBackup servers with identical names to those servers where the backups were made. If not, the automated recovery may not succeed.

Online catalog disaster recovery information email

Configure the online catalog backup policy to email a copy of the disaster recovery information to a NetBackup administrator in your organization. Configure this policy as part of every catalog backup. Do not save the disaster recovery information emails to the local computer. Catalog recovery without the disaster recovery image file or the disaster recovery information email available is exceedingly complex, time consuming, and requires assistance.

NetBackup emails the disaster recovery file when the following events occur:

- The catalog is backed up.
- A catalog backup is duplicated or replicated.
- The primary catalog backup or any copy of a catalog backup expires automatically or is expired manually.
- The primary copy of the catalog backup is changed as follows:
  - By using the `bpchangeprimary` command.
  - By using the option to change the primary copy when the catalog backup is duplicated manually.

You may tailor the disaster recovery email process by using the `mail_dr_info notify` script. More details are available.

See the *NetBackup Administrator’s Guide, Volume II*:

http://www.veritas.com/docs/DOC5332

Identifying the correct catalog backup

Ensure that you identify and use the appropriate catalog backup for your recovery. For example, if you recover from your most recent backups, use the catalog from your most recent backups. Similarly, if you recover from a specific point in time, use the catalog backup from that specific point in time.

Catalog recovery time

System environment, catalog size, location, and backup configuration (full and incremental policy schedules) all help determine the time that is required to recover the catalog. Carefully plan and test to determine the catalog backup methods that result in the desired catalog recovery time.
The NetBackup catalog backup protects your configuration data and catalog data. Set up backup schedules for the master servers and media servers in your NetBackup installation. These schedules protect the operating systems, device configurations, and other applications on the servers.

Master or media server recovery procedures when the system disk has been lost assume that the servers are backed up separately from the catalog backup. Backups of master and media servers should not include NetBackup binaries, configuration or catalog files, or relational database data.

### About disk recovery procedures for UNIX and Linux

The three different types of disk recovery for UNIX and Linux are as follows:

- **Master server disk recovery procedures**
  - See “About recovering the master server disk for UNIX and Linux” on page 123.

- **Media server disk recovery procedures**
  - See “About recovering the NetBackup media server disk for UNIX” on page 129.

- **Client disk recovery procedures**
  - See “Recovering the system disk on a UNIX client workstation” on page 129.

The disk-based images that reside on AdvancedDisk or on OpenStorage disks cannot be recovered by means of the NetBackup catalog. These disk images must be recovered by means of the NetBackup import feature. For information on import, see the topic on importing NetBackup images in the *NetBackup Administrator's Guide, Volume I*:

http://www.veritas.com/docs/DOC5332

When the disk image is imported, NetBackup does not recover the original catalog entry for the image. Instead, a new catalog entry is created.

### About recovering the master server disk for UNIX and Linux

Two procedures explain how to recover data if the system disk fails on a UNIX or Linux NetBackup master server, as follows:

- The root file system is intact. The operating system, NetBackup software and some (if not all) other files are assumed to be lost.
  - See “Recovering the master server when root is intact” on page 124.

- The root file system is lost along with everything else on the disk. This situation requires a total recovery. This recovery reloads the operating system to an
alternate boot disk and starts from this disk during recovery. You then can
recover the root partition without risking a crash that is caused by overwriting
the files that the operating system uses during the restore.
See “Recovering the master server when the root partition is lost” on page 126.

For NetBackup master and media servers, the directory locations of the NetBackup
catalog become an integral part of NetBackup catalog backups. Any recovery of
the NetBackup catalog requires identical directory paths or locations be created
during the NetBackup software reinstallation. Disk partitioning, symbolic links, and
NetBackup catalog relocation utilities may be needed.

NetBackup Bare Metal Restore (BMR) protects client systems by backing them up
with a policy configured for BMR protection. Information is available that describes
BMR backup and recovery procedures.

See the NetBackup Bare Metal Restore System Administrator's Guide:
http://www.veritas.com/docs/DOC5332

Recovering the master server when root is intact

The following procedure recovers the master server by reloading the operating
system, restoring NetBackup, and then restoring all other files.

To recover the master server when root is intact

1 Verify that the operating system works, that any require patches are installed,
and that specific configuration settings are made. Take corrective action as
needed.

2 Reinstall NetBackup software on the server you want to recover.

See the NetBackup Installation Guide for instructions:
http://www.veritas.com/docs/DOC5332

Note: For the NetBackup Web Services, you must use the same user account
and credentials that were used when you backed up the NetBackup catalog.
More information is available:
http://www.veritas.com/docs/000081350

3 Install any NetBackup patches that had been previously installed. See the
documentation that was included with the patch software.

Note: Veritas does not support the recovery of a catalog image that was backed
up using an earlier version of NetBackup.
4 If any of the default catalog directories have changed that may be reflected in the NetBackup catalog backups, recreate those directories before the catalog recovery.

The following are examples:

- Use of symbolic links as part of the NetBackup catalog directory structure.
- Use of the NetBackup `nbdb_move` command to relocate parts of the NetBackup relational database catalog.

5 If the recovery scenario involves restoring policy or catalog backups, the appropriate recovery device(s) must be configured, which may involve the following tasks:

- Install and configure the robotic software for the devices that read backups of the NetBackup catalog and regular backups of the disk being restored. If a non-robotic drive is available that can read these backups, then no robot is required. Although manual intervention is required if multiple pieces of media are required.
  
  See the *NetBackup Device Configuration Guide*:
  
  [http://www.veritas.com/docs/DOC5332](http://www.veritas.com/docs/DOC5332)

- Use the NetBackup Device Configuration Wizard to discover and configure the recovery device in NetBackup.
  
  See the *NetBackup Administrator's Guide, Volume I*:
  
  [http://www.veritas.com/docs/DOC5332](http://www.veritas.com/docs/DOC5332)

- Use the NetBackup `tpautoconf` command to discover and configure the recovery device in NetBackup.
  
  See the *NetBackup Commands Reference Guide*:
  
  [http://www.veritas.com/docs/DOC5332](http://www.veritas.com/docs/DOC5332)

- Update the device mapping files.
  
  See the *NetBackup Administrator’s Guide, Volume I*:
  
  [http://www.veritas.com/docs/DOC5332](http://www.veritas.com/docs/DOC5332)

6 If you must restore from the policy backups or catalog backups that were done to media, the appropriate media may have to be configured in NetBackup.

See the *NetBackup Administrator’s Guide, Volume I*:

[http://www.veritas.com/docs/DOC5332](http://www.veritas.com/docs/DOC5332)

Configuring the media may require some or all of the following tasks:

- Manually load the required media into a standalone recovery device.
- Use the NetBackup utilities such as `robtest` or vendor-specific robotic control software to load media into the required recovery device or devices.
Use the NetBackup Volume Configuration Wizard to inventory the media contents of a robotic device.

Use the vendor-specific robotic control software to load the media into the required recovery device(s).

7 Recover the NetBackup catalogs.

The NetBackup catalogs can be recovered only to the same directory structure from which they were backed up (alternate path recovery is not allowed).

See “About recovering the NetBackup catalog” on page 146.

8 Stop and restart all NetBackup daemons. Use the following NetBackup commands, or use the Activity Monitor in the NetBackup Administration Console.

/usr/openv/netbackup/bin/bp.kill_all
/usr/openv/netbackup/bin/bp.start_all

9 Start the NetBackup Backup, Archive, and Restore interface (or the bp command) and restore other files to the server as desired. When the files are restored, you are done.

Recovering the master server when the root partition is lost

The following procedure assumes that the root file system is lost along with everything else on the disk. This recovery reloads the operating system to an alternate boot disk and starts from this disk during recovery. You then can recover the root partition without risking a crash that is caused by overwriting the files that the operating system uses during the restore.

To recover the master server when the root partition is lost

1 Load the operating system on an alternate boot disk, using the same procedure as you would normally use for the server type.

2 On the alternate disk, create the partition and directory where NetBackup, its catalogs (if applicable), and the databases resided on the original disk. By default, they reside under the /usr/openv directory.

3 Verify that the operating system works, that any required patches are installed, and that specific configuration settings are made. Take corrective action as needed.
4 Install NetBackup on the alternate disk. Install only the robotic software for the devices that are required to read backups of the NetBackup catalogs and regular backups of the disk being restored. If a non-robotic drive can read these backups, no robot is required.

**Note:** For the NetBackup Web Services, you must use the same user account and credentials that were used when you backed up the NetBackup catalog. More information is available:

http://www.veritas.com/docs/000081350

5 Install any NetBackup patches that had been previously installed. See the documentation that was included with the patch software.

6 If the catalog directories differ from those in the NetBackup catalog backups, recreate that directory structure on disk before you recover the catalog. Examples of those directories are the following:

- Use of symbolic links as part of the NetBackup catalog directory structure.
- Use of the NetBackup `nbdb_move` command to relocate parts of the NetBackup relational database catalog.

7 If the recovery scenario involves restoring policy or catalog backups, the appropriate recovery device(s) must be configured. Device configuration may include the following tasks:

- Install and configure the robotic software for the devices that read backups of the NetBackup catalog and regular backups of the disk being restored. If a non-robotic drive is available that can read these backups, then no robot is required. Although manual intervention is required if multiple pieces of media are required. See the NetBackup Device Configuration Guide:
  http://www.veritas.com/docs/DOC5332

- Use the NetBackup Device Configuration Wizard to discover and configure the recovery device in NetBackup. See the NetBackup Administrator’s Guide, Volume I.
  http://www.veritas.com/docs/DOC5332

- Use the NetBackup `tpautoconf` command to discover and configure the recovery device in NetBackup. See the NetBackup Commands Reference Guide manual:
  http://www.veritas.com/docs/DOC5332

- Update the device mapping files.
8 If you must restore from the policy backups or catalog backups that were done to media, the appropriate media may have to be configured in NetBackup.

See the *NetBackup Administrator’s Guide, Volume I*:  
http://www.veritas.com/docs/DOC5332

Configuring the media may require some or all of the following tasks:

- Manually load the required media into a standalone recovery device.
- Use the NetBackup utilities such as robtest or vendor-specific robotic control software to load media into the required recovery device or devices.
- Use the NetBackup Volume Configuration Wizard to inventory the media contents of a robotic device.
- Use the vendor-specific robotic control software to load the media into the required recovery device(s).

9 Recover the NetBackup catalogs to the alternate disk.

See “About recovering the NetBackup catalog” on page 146.

The catalogs can be recovered only to the same directory structure from which they were backed up (alternate path recovery is not allowed).

10 Start the NetBackup Backup, Archive, and Restore interface (or the `bp` command). Restore the latest backed up version of all files.

You restore these files from the backup of the master server, not from the NetBackup catalog backup. Be sure to specify the disk that you recover as the alternate recovery location.

**Warning:** Do not restore files to the `/usr/openv/var`, `/usr/openv/db/data`, or `/usr/openv/volmgr/database` directories (or relocated locations) or the directories that contain NetBackup database data. This data was recovered to the alternate disk in step 9 and is copied back to the recovery disk in step 12.

11 Stop all NetBackup processes that you started from NetBackup on the alternate disk. Use the **Activity Monitor** in the NetBackup Administration Console or the following:

```
/usr/openv/netbackup/bin/bp.kill_all
```
12 Maintaining the same directory structure, copy the NetBackup catalogs from the alternate disk to the disk that you recover. These are the catalogs recovered in step 9.

13 Make the recovered disk the boot disk again and restart the system.

14 Start and test the copy of NetBackup on the disk that you have recovered.

```
/usr/openv/netbackup/bin/bp.start_all
```

Try the NetBackup Administration utilities. Also, try some backups and restores.

15 When you are satisfied that the recovery is complete, delete the NetBackup files from the alternate disk. Or, unhook that disk, if it is a spare.

About recovering the NetBackup media server disk for UNIX

NetBackup 6.0 and later media servers store information in the NetBackup relational database. If you need to recover the system disk on a NetBackup media server, the recommended procedure is similar to disk recovery for the client.

See “Recovering the system disk on a UNIX client workstation” on page 129.

Recovering the system disk on a UNIX client workstation

The following procedure recovers the client by reloading the operating system, installing NetBackup client software, and then restoring all other files. The procedure assumes that the host name does not change.

To recover the system disk on a client workstation

1 Install the operating system as you normally would for a client workstation of that type.

2 Install NetBackup client software and patches.

3 Use the NetBackup Backup, Archive, and Restore interface to select and restore user files.

About clustered NetBackup server recovery for UNIX and Linux

NetBackup server clusters do not protect against catalog corruption, loss of the shared disk, or loss of the whole cluster. Regular catalog backups must be performed. More information is available about configuring catalog backups and system backup policies in a clustered environment.

See the NetBackup High Availability Guide:
The following table describes the failure scenarios and points to the recovery procedures.

**Warning:** Before attempting any of the recovery procedures in this topic, contact technical support.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node failure</td>
<td>See “Replacing a failed node on a UNIX or Linux cluster” on page 130.</td>
</tr>
<tr>
<td>Shared disk failure</td>
<td>See “Recovering the entire UNIX or Linux cluster” on page 132.</td>
</tr>
<tr>
<td>Cluster failure</td>
<td>See “Recovering the entire UNIX or Linux cluster” on page 132.</td>
</tr>
</tbody>
</table>

### Replacing a failed node on a UNIX or Linux cluster

Cluster technology-specific information is available about how to bring the NetBackup resource group online and offline. Also, information about how to freeze and unfreeze (that is, disable and enable monitoring for) the NetBackup Resource group.

Refer to topics about configuring NetBackup in the *NetBackup High Availability Guide*:

http://www.veritas.com/docs/DOC5332

The following procedure applies when the shared disk and at least one configured cluster node remain available.

**To replace a failed node on a UNIX or Linux cluster**

1. Configure the hardware, system software, and cluster environment on the replacement node.
2. Verify that the device configuration matches that of the surviving nodes.
3. Ensure that the NetBackup Resource group is offline on all nodes before installing NetBackup on the replacement node.
4. Ensure that the NetBackup shared disks are not mounted on the node on which NetBackup is to be installed.
5. Freeze the NetBackup service.
6 Reinstall NetBackup on the new node or replacement node. Be sure to use the NetBackup Virtual Name as the name of the NetBackup server. Follow the instructions for installing the NetBackup server software.

Refer to the NetBackup Installation Guide:

http://www.veritas.com/docs/DOC5332

---

**Note:** For the NetBackup Web Services, you must use the same user account and credentials that are used on the other nodes of the cluster. More information is available:

http://www.veritas.com/docs/000081350

7 Install any Maintenance Packs and patches that are required to bring the newly installed node to the same patch level as the other cluster nodes.

8 Bring the NetBackup Resource group online on a node other than the freshly installed node.

9 Log onto the node on which the NetBackup resource group is online and run the following command:

```
/usr/openv/netbackup/bin/cluster/cluster_config -s nbu -o add_node -n node_name
```

*node_name* is the name of the freshly installed node.

10 Switch the NetBackup resource group to the replacement node.

11 Freeze the NetBackup group.

12 Ensure that the appropriate low-level tape device and robotic control device configuration necessary for your operating system has been performed. Information is available for your operating system.

Refer to the NetBackup Device Configuration Guide:

http://www.veritas.com/docs/DOC5332

13 Run the Device Configuration Wizard to configure the devices. You do not have to rerun the device configuration on the pre-existing nodes. Configuration information on your particular cluster is available.

See the NetBackup Administrator's Guide, Volume I:

http://www.veritas.com/docs/DOC5332
14 Check that the robot numbers and robot drive numbers for each robot are consistent across all nodes of the cluster. Repeat for any other servers that are connected to that robot and correct if necessary.

See the *NetBackup Administrator’s Guide, Volume 1*:
http://www.veritas.com/docs/DOC5332

15 Test the ability of NetBackup to perform restores using the configured devices on the replacement node.

16 Unfreeze the NetBackup resource group.

Recovering the entire UNIX or Linux cluster

The following procedure applies to the clustered NetBackup server environment that must be re-created from scratch.

Before you proceed, ensure that you have valid online catalog backups.

**To recover the entire UNIX or Linux cluster**

1 Configure the hardware, system software, and cluster environment on the replacement cluster.

2 Ensure that the appropriate low-level tape device and robotic control device configuration necessary for your operating system has been performed.

Refer to the *NetBackup Device Configuration Guide*:
http://www.veritas.com/docs/DOC5332

3 Reinstall NetBackup on each of the cluster nodes. Be sure to use the NetBackup Virtual Name as the name of the NetBackup server. Follow the instructions for installing NetBackup server software.

Refer to the *NetBackup Installation Guide*:
http://www.veritas.com/docs/DOC5332

---

**Note**: For the NetBackup Web Services, you must use the same user account and credentials that were used when you backed up the NetBackup catalog. More information is available:
http://www.veritas.com/docs/000081350

4 Configure the clustered NetBackup server.

Refer to the *NetBackup High Availability Guide*:
http://www.veritas.com/docs/DOC5332
5 Install any Maintenance Packs and patches that are required to bring the newly installed NetBackup server to the same patch level as the server being replaced.

6 Configure required devices and media and recover the NetBackup catalogs. 
   See “Recovering the master server when root is intact” on page 124.

7 Bring the NetBackup resource group on each node in turn and run the **Device Configuration Wizard** to configure the devices.
   Configuration information on your particular cluster is available.
   Refer to the *NetBackup High Availability Guide*:
   http://www.veritas.com/docs/DOC5332

---

### About disk recovery procedures for Windows

The three different types of disk recovery for Windows are as follows:

- **Master server disk recovery procedures**
  See “About recovering the master server disk for Windows” on page 133.

- **Media server disk recovery procedures**
  See “About recovering the NetBackup media server disk for Windows” on page 139.

- **Client disk recovery procedures**
  See “Recovering a Windows client disk” on page 140.

The disk-based images that reside on AdvancedDisk or on OpenStorage disks cannot be recovered by means of the NetBackup catalog. These disk images must be recovered by means of the NetBackup import feature. For information on import, refer to the section on importing NetBackup images in the following manual:

See *NetBackup Administrator’s Guide, Volume I*:

http://www.veritas.com/docs/DOC5332

---

**Note:** When the disk image is imported, NetBackup does not recover the original catalog entry for the image. Instead, a new catalog entry is created.

---

### About recovering the master server disk for Windows

The procedure in this section explains how to recover data if one or more disk partitions are lost on a Windows NetBackup master server.

The following two scenarios are covered:
- Windows is intact and not corrupted. The system still starts Windows, but some or all other partitions are lost. NetBackup software is assumed to be lost. See “Recovering the master server with Windows intact” on page 134.

- All disk partitions are lost. Windows must be reinstalled, which is a total recovery. These procedures assume that the NetBackup master disk was running a supported version of Windows and that the defective hardware has been replaced.
  See “Recovering the master server and Windows” on page 136.

For NetBackup master and media servers, the directory locations of the NetBackup catalog become an integral part of NetBackup catalog backups. Any recovery of the NetBackup catalog requires the identical directory paths or locations be created before the catalog recovery.

Recovering the master server with Windows intact

This procedure shows how to recover the NetBackup master server with the Windows operating system intact.

To recover the master server with Windows intact

1. Determine the \install\_path in which NetBackup is installed. By default, NetBackup is installed in the C:\Program Files\VERITAS directory.

2. Determine if any directory paths or locations need to be created for NetBackup catalog recovery.

3. Partition any disks being recovered as they were before the failure (if partitioning is necessary). Then reformat each partition as it was before the failure.

4. Reinstall NetBackup software on the server.
   Refer to the NetBackup Installation Guide:
   http://www.veritas.com/docs/DOC5332

   __Note:__ For the NetBackup Web Services, you must use the same user account and credentials that were used when you backed up the NetBackup catalog. More information is available:
   http://www.veritas.com/docs/000081350

5. Install any NetBackup patches that had been previously installed. See the documentation that was included with the patch software.
6 If the catalog directories differ from those in the NetBackup catalog backups, recreate that directory structure on disk before you recover the catalog. For example, use the NetBackup nbdb_move command to relocate parts of the NetBackup relational database catalog.

7 If the recovery scenario involves restoring policy or catalog backups, the appropriate recovery devices must be configured. You may have to do some or all of the following:

- Install and configure the robotic software for the devices that read backups of the NetBackup catalog and regular backups of the disk being restored. If a non-robotic drive is available that can read these backups, then no robot is required. Although manual intervention is required if multiple pieces of media are required.
  See the NetBackup Device Configuration Guide: http://www.veritas.com/docs/DOC5332

- Use the NetBackup Device Configuration Wizard to discover and configure the recovery device in NetBackup.

- Use the NetBackup tpautoconf command to discover and configure the recovery device in NetBackup.

- Update the device mapping files.

8 If the recovery scenario involves restoring the policy backups or catalog backups that were done to media, the appropriate recovery device(s) must be configured. Configuring the media may involve the following actions:

- Manually load the required media into a standalone recovery device.

- Use NetBackup utilities such as robtest or vendor-specific robotic control software to load media into the required recovery devices.

- Use the NetBackup Volume Configuration Wizard to inventory the media contents of a robotic device.

- Use the vendor-specific robotic control software to load the media into the required recovery device(s).
9 Recover the NetBackup catalogs.

See “About recovering the NetBackup catalog” on page 146.

10 When catalog recovery is complete, stop and restart the NetBackup services.

Use the following `bpdown` and `bpup` commands, the Activity Monitor in the NetBackup Administration Console, or the Services application in the Windows Control Panel.

```
install_path\NetBackup\bin\bpdown
install_path\NetBackup\bin\bpup
```

**Warning:** In step 11, do not restore files to the `install_path\NetBackup\db`, `install_path\NetBackupDB`, `install_path\NetBackup\var`, or `install_path\Volmgr\database` directories. The catalogs were recovered in step 9 and overwriting them with regular backups leave them in an inconsistent state.

If the NetBackup relational database files were relocated using `nbdb_move` from `install_path\NetBackupDB\data`, they are recovered in step 9 and should not be restored in step 11.

11 To restore all other files, do the following actions in the order shown:

- Start the NetBackup Administration interface on the master server.
- Start the Backup, Archive, and Restore utility.
- Browse for restores and select only the partitions that were lost. Select the system directory (typically `C:\Windows`), which ensures that all registry files are restored.
- Deselect the `install_path\NetBackup\db`, `install_path\NetBackupDB`, `install_path\NetBackup\var`, and `install_path\Volmgr\database` directories (see the caution in step 10).
- If you reinstall Windows, select the Overwrite existing files option, which ensures that existing files are replaced with the backups.
- Start the restore.

12 Restart the system, which replaces any files that were busy during the restore. When the boot process is complete, the system is restored to the state it was in at the time of the last backup.

**Recovering the master server and Windows**

This procedure assumes that all disk partitions in Windows are lost.
To recover the master server and Windows

1 Install a minimal Windows operating system (perform the Express install).
   - Install the same type and version of Windows software that was used previously.
   - Install Windows in the same partition that was used before the failure.
   - Install any required patches. Take corrective action as needed.
   - Specify the default workgroup. Do not restore the domain.
   - Install and configure special drivers or other software that is required to get the hardware operational (for example, a special driver for the disk drive).
   - Install SCSI or other drivers as needed to communicate with the tape drives on the system.
   - Follow any hardware manufacturer’s instructions that apply, such as loading SSD on a Compaq system.
   - Restart the system when Windows installation is complete.

2 Determine the install_path in which NetBackup is installed. By default, NetBackup is installed in the C:\Program Files\VERITAS directory.

3 Determine if any directory paths or locations need to be created for NetBackup catalog recovery.

4 If necessary, partition any disks being recovered as they were before the failure. Then reformat each partition as it was before the failure.

5 Reinstall NetBackup software on the server being recovered. Do not configure any NetBackup policies or devices at this time.

Note: For the NetBackup Web Services, you must use the same user account and credentials that were used when you backed up the NetBackup catalog. More information is available:

http://www.veritas.com/docs/000081350

6 Install any NetBackup patches that had been previously installed. See the documentation that was included with the patch software.

7 If the catalog directories differ from those in the NetBackup catalog backups, recreate that directory structure on disk before you recover the catalog. For example, use the NetBackup nbdb_move command to relocate parts of the NetBackup relational database catalog.
If the recovery scenario involves restoring policy or catalog backups, the appropriate recovery device or devices have to be configured. You may have to do all or some of the following tasks:

- Install and configure the robotic software for the devices that read backups of the NetBackup catalog and regular backups of the disk being restored. If a non-robotic drive is available that can read these backups, then no robot is required. Although manual intervention is required if multiple pieces of media are required.
  
  See the NetBackup Device Configuration Guide: http://www.veritas.com/docs/DOC5332

- Use the NetBackup Device Configuration Wizard to discover and configure the recovery device in NetBackup.
  

- Use the NetBackup command `tpautoconf` to discover and configure the recovery device in NetBackup.
  

- Update the device mapping files.
  

If you must restore from the policy backups or catalog backups that were done to media, the appropriate media may have to be configured in NetBackup.


When you configure the media, you may have to do some or all of the following:

- Manually load the required media into a standalone recovery device.

- Use the NetBackup utilities such as `robtest` or vendor-specific robotic control software to load media into the required recovery devices.

- Use the NetBackup Volume Configuration Wizard to inventory the media contents of a robotic device.

- Use the vendor-specific robotic control software to load the media into the required recovery devices.

Recover the NetBackup catalogs.

See “About recovering the NetBackup catalog” on page 146.
When catalog recovery is complete, stop and restart the NetBackup services. Use the following `bpdown` and `bpup` commands, the Activity Monitor in the NetBackup Administration Console, or the Services application in the Windows Control Panel.

```
install_path\NetBackup\bin\bpdown
install_path\NetBackup\bin\bpup
```

Warning: In step 12, do not restore files to the `install_path\NetBackup\db`, `install_path\NetBackupDB`, `install_path\NetBackup\var`, or `install_path\Volmgr\database` directories. These directories were recovered in step 10 and overwriting them with regular backups leaves the catalogs in an inconsistent state. If the relational database files were relocated using `nbdb_move` from `install_path\NetBackupDB\data`, they are recovered in step 10 and should not be restored in step 12.

To restore all other files, do the following steps in the order presented:

- Start the NetBackup Administration interface on the master server.
- Start the Backup, Archive, and Restore client interface.
- Browse for restores and select only the partitions that were lost. Select the system directory (typically `C:\Windows`), which ensures that all registry files are restored.
- Deselect the `install_path\NetBackup\db`, `install_path\NetBackupDB` (or relocated NetBackup relational database path), `install_path\NetBackup\var`, or `install_path\Volmgr\database` directories.
  
  See the caution in this procedure.

- If you reinstall Windows, select the Overwrite existing files option, which ensures that existing files are replaced with the backups.

- Start the restore.

Restart the system, which replaces any files that were busy during the restore. When the boot process is complete, the system is restored to the state it was in at the time of the last backup.

About recovering the NetBackup media server disk for Windows

NetBackup media servers store their information in the NetBackup relational database. If you need to recover the system disk on a NetBackup media server, the recommended procedure is similar to disk recovery for the client.
Recovering a Windows client disk

The following procedure explains how to perform a total recovery of a Windows NetBackup client in the event of a system disk failure.

NetBackup Bare Metal Restore (BMR) protects client systems by backing them up with a policy configured for BMR protection. A complete description of BMR backup and recovery procedures is available.

See the Bare Metal Restore System Administrator's Guide:
http://www.veritas.com/docs/DOC5332

This procedure assumes that the Windows operating system and NetBackup are reinstalled to boot the system and perform a restore.

The following are additional assumptions:

- The NetBackup client was running a supported Microsoft Windows version.
- The NetBackup client was backed up with a supported version of NetBackup client and server software.
- The NetBackup master server to which the client sent its backups is operational. You request the restore from this server.
- The backups included the directory where the operating system and its registry resided.
  If the backups excluded any files that resided in the directory, you may not be able to restore the system identically to the previous configuration.
- Defective hardware has been replaced.

Before starting, verify that you have the following:

- Windows system software to reinstall on the NetBackup client that being restored. Reinstall the same type and version of software that was previously used.
- NetBackup client software to install on the client that being restored.
- Special drivers or other software that is required to make the hardware operational (for example, a special driver for the disk drive).
- IP address and host name of the NetBackup client.
- IP address and host name of the NetBackup master server.
- The partitioning and the formatting scheme that was used on the system to be restored. You must duplicate that scheme during Windows installation.
To recover a Windows client disk

1. Install a minimal Windows operating system (perform the Express install). During the installation, do the following tasks:
   - Partition the disk as it was before the failure (if partitioning is necessary). Then, reformat each partition as it was before the failure.
   - Install the operating system in the same partition that was used before the failure.
   - Specify the default workgroup. Do not restore to the domain.
   - Follow any hardware manufacturers’ instructions that apply.

2. Reboot the system when the installation is complete.

3. Configure the NetBackup client system to re-establish network connectivity to the NetBackup master server.
   For example, if your network uses DNS, the configuration on the client must use the same IP address that was used before the failure. Also, it must specify the same name server (or another name server that recognizes both the NetBackup client and master server). On the client, configure DNS in the Network dialog, accessible from the Windows Control Panel.

4. Install NetBackup client software.
   Ensure that you specify the correct names for the client server and master server.
   - To specify the client name, start the Backup, Archive, and Restore interface on the client and click NetBackup Client Properties on the File menu. Enter the client name on the General tab of the NetBackup Client Properties dialog.
   - To specify the server name, click Specify NetBackup Machines and Policy Type on the File menu.
   Refer to the NetBackup Installation Guide for instructions:
   http://www.veritas.com/docs/DOC5332

5. Install any NetBackup patches that had previously been installed.

6. Enable debug logging by creating the following debug log directories on the client:

   \install_path\NetBackup\Logs\tar
   \install_path\NetBackup\Logs\bpinetd

NetBackup creates logs in these directories.
7 Stop and restart the NetBackup Client service.
This action enables NetBackup to start logging to the `bpinetd` debug log.

8 Use the NetBackup Backup, Archive, and Restore interface to restore the system files and user files to the client system.
For example, if all files are on the `C` drive, restoring that drive restores the entire system.
To restore files, you do not need to be the administrator, but you must have restore privileges. For instructions, refer to the online Help or refer to the following:
See the *NetBackup Backup, Archive, and Restore Getting Started Guide*:
http://www.veritas.com/docs/DOC5332

NetBackup restores the registry when it restores the Windows system files.
For example, if the system files are in the `C:\Winnt` directory, NetBackup restores the registry when it restores that directory and its subordinate subdirectories and files.

9 Check for ERR or WRN messages in the log files that are in the directories you created in step 6.
If the logs indicate problems with the restore of Windows system files, resolve those problems before proceeding.

10 Stop the NetBackup Client service and verify that the `bpinetd` program is no longer running.

11 Restart the NetBackup client system.
When the boot process is complete, the system is restored to the state it was in at the time of the last backup.

**About clustered NetBackup server recovery for Windows**

NetBackup server clusters do not protect against catalog corruption, loss of the shared disk, or loss of the whole cluster. Regular catalog backups must be performed. More information is available about configuring catalog backups and system backup policies in a clustered environment.

Refer to topics about configuring NetBackup in the *NetBackup High Availability Guide*:
http://www.veritas.com/docs/DOC5332
Replacing a failed node on a Windows VCS cluster

Cluster technology-specific information is available about how to bring the NetBackup resource group online and offline. Also, it is available on how to freeze and unfreeze (disable and enable the monitoring for) the resource group.

Refer to topics about configuring NetBackup in the *NetBackup High Availability Guide*:

http://www.veritas.com/docs/DOC5332

Check the following conditions before you proceed with this procedure:

- The hardware, system software, and cluster environment on the replacement node have been configured.
- The reconfigured node or replacement node has been made a member of the cluster and has the same name as the failed node.

The following procedure applies when the shared disk and at least one configured cluster node remain available.

**To replace a failed node on a Windows cluster using VCS**

1. Freeze the NetBackup service.

2. Ensure that the NetBackup shared disks are not mounted on the node on which NetBackup is to be installed.

3. Reinstall NetBackup on the new node or replacement node. Be sure to use the NetBackup Virtual Name as the name of the NetBackup server. Follow the instructions for installing the NetBackup server software.

Refer to the *NetBackup Installation Guide*:

http://www.veritas.com/docs/DOC5332

**Note:** For the NetBackup Web Services, you must use the same user account and credentials that are used on the other nodes of the cluster. More information is available:

http://www.veritas.com/docs/000081350

4. Ensure that the node is a member of an existing cluster and that it performs the necessary configuration automatically.
5 Install any Maintenance Packs and patches that are required to bring the newly installed node to the same patch level as the other cluster nodes.

6 Unfreeze the NetBackup service and verify that it can be brought up on the replacement node.

Recovering the shared disk on a Windows VCS cluster

The following procedure is applicable in situations where the configured cluster nodes remain available but the NetBackup catalog, database files, or both on the shared disk have been corrupted or lost.

Check the following conditions before you proceed with this procedure:

- The shared storage hardware is restored to a working state, so that the shared disk resource can be brought online with an empty shared directory.
- Valid online catalog backups exist.

To recover the shared disk on a Windows cluster that uses VCS

1 Clear the faulted NetBackup resource group, disable monitoring, and bring up the shared disk and virtual name resources on a functioning node.

2 Ensure that all NetBackup shared disks are assigned the same drive letters that were used when NetBackup was originally installed and configured.

3 To reconfigure NetBackup for the cluster, initialize the database by running the following commands in sequence on the active node:

   ```
 bpclusterutil -ci
text
 bpclusterutil -online
   ```

4 Use the appropriate NetBackup catalog recovery procedure to restore the NetBackup catalog information on the shared disk.

   See "Recovering the master server and Windows" on page 136.

5 If the clustered NetBackup server is a media server, verify that the restored vm.conf file contains the correct host-specific MM_SERVER_NAME configuration entry for the active node. If MM_SERVER_NAME is different from the local host name, edit the file and change the server name to the local host name:

   ```
 MM_SERVER_NAME=<local host name>
   ```
6 Use NetBackup to restore any data on the shared disks. Details are available on how to perform a restore.

Refer to the *NetBackup Backup, Archive, and Restore Getting Started Guide*:
http://www.veritas.com/docs/DOC5332

7 Configure required devices and media and recover the NetBackup catalogs.

8 Manually shut down and restart NetBackup on the active node.

9 Re-enable monitoring of the NetBackup resource group.

10 Verify that the NetBackup server can now be brought online on all configured nodes.

Recovering the entire Windows VCS cluster

The following procedure applies to the clustered NetBackup server environment that must be re-created from scratch.

Before you proceed, ensure that you have valid online catalog backups.

**To recover the entire Windows VCS cluster**

1 Configure the hardware, system software, and cluster environment on the replacement cluster.

2 Ensure that the appropriate low-level tape device and robotic control device configuration necessary for your operating system has been performed.

Refer to the *NetBackup Device Configuration Guide*:
http://www.veritas.com/docs/DOC5332

3 Reinstall NetBackup on each of the cluster nodes. Be sure to use the NetBackup Virtual Name as the name of the NetBackup server. Follow the instructions for installing NetBackup server software.

Refer to the *NetBackup Installation Guide*:
http://www.veritas.com/docs/DOC5332

---

**Note:** For the NetBackup Web Services, you must use the same user account and credentials that were used when you backed up the NetBackup catalog.

More information is available:
http://www.veritas.com/docs/000081350
4 Configure the clustered NetBackup server.
   Refer to the NetBackup High Availability Guide:
   http://www.veritas.com/docs/DOC5332

5 Install any Maintenance Packs and patches that are required to bring the newly
   installed NetBackup server to the same patch level as the server that is being
   replaced

6 Configure required devices and media and recover the NetBackup catalogs.
   See “Recovering the master server and Windows” on page 136.

7 Bring the NetBackup resource group on each node in turn and run the Device
   Configuration Wizard to configure the devices.
   Configuration information on your cluster (WSFC or VCS) is available.
   Refer to the NetBackup High Availability Guide:
   http://www.veritas.com/docs/DOC5332

---

About recovering the NetBackup catalog

Before you recover the NetBackup catalog, ensure that NetBackup is running in
the recovery environment. Ensure that the recovery devices are configured in
NetBackup. Ensure that the media on which the catalog backups exist are available
to NetBackup. If the NetBackup master server is part of a cluster, ensure that the
cluster is functional.

The NetBackup catalog consists of several parts. How you recover the catalog
depends on which part or parts of the catalog you want to recover, as follows:

<table>
<thead>
<tr>
<th>Recovery option</th>
<th>Description</th>
</tr>
</thead>
</table>
| Recover the entire catalog               | Veritas recommends that you recover the entire catalog. Doing so helps ensure consistency among the various parts of the catalog. This method is most useful for recovering a catalog to the same environment from which it was backed up.  
   See “About recovering the entire NetBackup catalog” on page 153. |
| Recover the catalog image files and     | The image database contains information about the data that has been backed up. The configuration files (databases.conf and server.conf) are the flat files that contain instructions for the SQL Anywhere daemon.  
   configuration files                      | This type of recovery also restores the NetBackup relational database (NBDB) to the staging directory so that it is available for further processing if required.  
                                           | See “About recovering the NetBackup catalog image files” on page 164.                                                                                 |
Table 4-2  Catalog recovery options (continued)

<table>
<thead>
<tr>
<th>Recovery option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recover the relational database files</td>
<td>The NetBackup database (NBDB) is also known as the Enterprise Media Manager (EMM) database. It contains information about volumes and the robots and drives that are in NetBackup storage units. The NetBackup relational database also contains the NetBackup catalog images files. The images files contain the metadata that describes the backups. Recover the relational database if it is corrupt or lost but the catalog image files exist and are valid. See &quot;About recovering the NetBackup relational database&quot; on page 177.</td>
</tr>
</tbody>
</table>

Recovery of the entire catalog or the catalog image files relies on the disaster recovery information. That information is saved in a file during the catalog backup. The location of the disaster recovery file is configured in the catalog backup policy. See “NetBackup disaster recovery email example” on page 150. If you do not have the disaster recovery file, you still can recover the catalog. However, the process is much more difficult and time-consuming. See “Recovering the NetBackup catalog without the disaster recovery file” on page 188.

**Note:** After a catalog recovery, NetBackup freezes the removeable media that contains the catalog backup. This operation prevents a subsequent accidental overwrite action on the final catalog backup image on the media. This final image pertains to the actual catalog backup itself, and its recovery is not part of the catalog recovery. You can unfreeze the media. See “Unfreezing the NetBackup online catalog recovery media” on page 193.

Other procedures exist for special use cases. See “Recovering the NetBackup catalog when NetBackup Access Control is configured” on page 185.

Other topics provide more information about catalog recovery. See “About NetBackup catalog recovery on Windows computers” on page 148. See “About NetBackup catalog recovery from disk devices” on page 148. See “About NetBackup catalog recovery and OpsCenter” on page 149.
About NetBackup catalog recovery on Windows computers

On Windows computers, the NetBackup media server host names are stored in the Windows registry. (They also are stored in the NetBackup catalog.)

If you install NetBackup during a catalog recovery scenario, ensure that you enter your media server names during the installation. Doing so adds them to the registry. Your catalog recovery and any subsequent backups that use the existing media servers and storage devices then function correctly.

About NetBackup catalog recovery from disk devices

In a catalog recovery, the disk media IDs in the recovery environment may differ from the disk media IDs in the backup environment. They may differ in the following uses cases:

- The storage devices are the same but the NetBackup master server installation is new. A master server host or disk failure may require that you install NetBackup. Configuring the devices in NetBackup may assign different disk media IDs to the disk volumes than were assigned originally.

- The disk storage devices are different than those to which the catalog backups were written. It may be in the same environment after storage hardware failure or replacement. It may be at another site to which you replicate the catalog backups and the client backups. Regardless, the catalog backups and the client backups reside on different hardware. Therefore, the disk media IDs may be different.

In these scenarios, NetBackup processes the disk media IDs so that the catalog may be recovered. The processing maps the disk media IDs from the backup environment to the disk media IDs in the recovery environment.

This processing occurs when the catalog backup resides on one of the following storage types:

- An AdvancedDisk disk pool
- A **Media Server Deduplication Pool** (MSDP)
- An OpenStorage device

About NetBackup catalog recovery and symbolic links

When you recover the NetBackup catalog, you must account for any symbolic links in the NetBackup catalog directory structure, as follows:
db/images directory

If the NetBackup db/images directory resides on the storage that is the target of a symbolic link, that symbolic link must exist in the recovery environment. The symbolic link also must have the same target in the recovery environment.

db/images/client directories

If any of the client subdirectories under the db/images directory are symbolic links, they also must exist in the recovery environment. The symbolic links also must have the same targets in the recovery environment.

Catalog recovery of clustered master server

To recover the NetBackup catalog from a clustered master server to a single master server at a disaster recovery site, you must create the following symbolic links on the recovery host before you recover the catalog:

```
/usr/openv/netbackup/db -> /opt/VRTSnbu/netbackup/db
/usr/openv/db/staging -> /opt/VRTSnbu/db/staging
```

On Solaris systems only, you also must create the following symbolic links before you recover the catalog:

```
/usr/openv -> /opt/openv
```

If the symbolic links and their targets do not exist, catalog recovery fails.

About NetBackup catalog recovery and OpsCenter

When the NetBackup catalog is recovered, NetBackup resets the job ID to 1. NetBackup starts assigning job numbers beginning with 1.

If you use NetBackup OpsCenter to monitor NetBackup activity, you may see duplicate job IDs in OpsCenter after a catalog recovery. To prevent duplicate job IDs, you can specify the job ID from which NetBackup should number jobs after the recovery.

See “Specifying the NetBackup job ID number after a catalog recovery” on page 149.

Specifying the NetBackup job ID number after a catalog recovery

You can specify the NetBackup job ID number after a catalog recovery. If you use OpsCenter to monitor NetBackup activity, doing so prevents duplicate job ID numbers in OpsCenter.

See “About NetBackup catalog recovery and OpsCenter” on page 149.
To specify the NetBackup job ID number after a catalog recovery

1. If necessary, restore the OpsCenter database from a backup.
2. Determine the last job ID number that is recorded in OpsCenter.
3. Edit the NetBackup jobid file and set the value to one higher than the number from step 2. The following is the pathname to the jobid file:
   - UNIX: /usr/openv/netbackup/db/jobs/jobid
   - Windows: install_path\Veritas\NetBackup\db\jobs\jobid

   Because the recovery consumes job numbers, you must specify the number before the catalog recovery.
4. Recover the NetBackup catalog.

NetBackup disaster recovery email example

A catalog backup policy can send a disaster recovery email upon completion of a catalog backup. To configure a catalog backup policy, see the *NetBackup Administrator's Guide, Volume I*:

http://www.veritas.com/docs/DOC5332

The following is an example of a disaster recovery email after a successful catalog backup:

From: NetBackup@example.com
Sent: Thursday, July 30, 2015 05:48
To: NetBackup Administrator
Subject: NetBackup Catalog Backup successful on host master.example.com status 0
Attachments: cat_backup_1438271286_INCR

Server master.example.com

NetBackup Version
7.7.1

Date 7/30/2015 05:46:45 AM

Policy cat_backup
Catalog Backup Status

the requested operation was successfully completed (status 0).

DR image file: /dr/nbu_dr_file/cat_backup_1438271286_INCR

To ensure that the NetBackup catalog data is protected through 7/30/2015 10:46:45 AM, retain a copy of the attached file, and the media or files listed below:

Catalog Recovery Media

<table>
<thead>
<tr>
<th>Media Server</th>
<th>Disk Image Path</th>
<th>Image File Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>* media-server.example.com</td>
<td>@aaaab</td>
<td>cat_backup_1438267080_FULL</td>
</tr>
<tr>
<td>* media-server.example.com</td>
<td>@aaaab</td>
<td>cat_backup_1438271206_INCR</td>
</tr>
<tr>
<td>* media-server.example.com</td>
<td>@aaaab</td>
<td>cat_backup_1438271286_INCR</td>
</tr>
</tbody>
</table>

DR file written to
/dr/nbu_dr_file/cat_backup_1438271286_INCR

* - Primary Media

Catalog Recovery Procedure for the Loss of an Entire Catalog

You should create a detailed disaster recovery plan to follow should it become necessary to restore your organization's data in the event of a disaster. A checklist of required tasks can be a tremendous tool in assisting associates in triage. For example, after the facility is safe for data to be restored, the power and data infrastructure need to be verified. When these tasks are completed, the following scenarios will help to quickly restore the NetBackup environment, and in turn, restore applications and data.

Disaster Recovery Procedure using the DR Image File

In the event of a catastrophic failure, use the following procedure to rebuild the previous NetBackup environment.

Note: If new hardware is required, make sure that the devices contain drives capable of reading the media and that the drive controllers are capable of mounting the drives.

1. Install NetBackup.
2. Configure the devices necessary to read the media listed above.
3. Inventory the media.
4. Make sure that the master server can access the attached DR image file.
5. Start the NetBackup Recovery Wizard from the NetBackup Administration
   Console. Or, start the wizard from a command line by entering
   bprecover -wizard.

Disaster Recovery Procedure without the DR Image File

NOTE: ONLY ATTEMPT THIS AS A LAST RESORT If you do not have the
attachment included with this email, use the following instructions to
recover your catalog (If using OpenStorage disk pools, refer to the
Shared Storage Guide to configure the disk pools instead of step 2 and
3 below):

1. Install NetBackup.
2. Configure the devices necessary to read the media listed above.
3. Inventory the media.
4. Run
   To recover from copy 1:
   bpinport -create_db_info -stype AdvancedDisk -dp dp-advdisk
   -dv /storage/advdisk
5. Run:
   cat_export -client client1.example.com
6. Go to the following directory to find the DR image file
   cat_backup_1438271286_INCR:
   /usr/openv/netbackup/db.export/images/master.example.com/1438000000
7. Open cat_backup_1438271286_INCR file and find the BACKUP_ID
   (for example: master.example.com_1438271286).
8. Run:
   bpinport [-server name] -backupid master.example.com_1438271286
9. Run:
   bprestore -T -w [-L progress_log] -C master.example.com -t 35
   -p cat_backup -X -s 1438271286 -e 1438271286 /
10. Run the BAR user interface to restore the remaining image database
    if the DR image is a result of an incremental backup.
11. To recover the NetBackup relational database, run:
    bprecover -r -nbdb
12. Stop and Start NetBackup.
13. Configure the devices if any device has changed since the last
    backup.
14. To make sure the volume information is updated, inventory the
    media to update the NetBackup database.

See “About recovering the NetBackup catalog” on page 146.
About recovering the entire NetBackup catalog

Veritas recommends that you recover the entire catalog. Doing so helps ensure consistency among the various parts of the catalog.

Recovery includes the catalog image files and configuration files that are in the catalog backups that are identified by the disaster recovery file, as follows:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>The NetBackup relational database files identified by the DR file are restored. The images and configuration files that are identified by the disaster recovery file are restored.</td>
</tr>
<tr>
<td>Incremental backup</td>
<td>The NetBackup relational database files identified by the DR file are restored. All catalog backup image files back to the last full catalog backup are automatically included in an incremental catalog backup. Therefore, only catalog images and configuration files that changed since the last full backup are restored. You can then use the Backup, Archive, and Restore user interface to restore all backup images.</td>
</tr>
</tbody>
</table>

You can use either of the following methods to recover the entire catalog:

- The **Catalog Recovery Wizard** in the **NetBackup Administration Console**. See “Recovering the entire NetBackup catalog using the Catalog Recovery Wizard” on page 153.

- The text-based wizard launched by the `bprecover -wizard` command and option. See “Recovering the entire NetBackup catalog using bprecover -wizard” on page 160.

The relational database transaction log is not applied during full catalog recovery.

http://www.veritas.com/docs/DOC5332

**Recovering the entire NetBackup catalog using the Catalog Recovery Wizard**

This procedure describes how to recover the entire catalog using the **Catalog Recovery Wizard**. The relational database transaction log is not applied during full catalog recovery.

See “About recovering the NetBackup catalog” on page 146.
**Note:** Full catalog recovery restores the device and the media configuration information in the catalog backup. If you must configure storage devices during the recovery, Veritas recommends that you recover only the NetBackup image files. See “About recovering the NetBackup catalog image files” on page 164.

You must have root (administrative) privileges.

You must be logged on to the master server on which you want to recover the catalog. The Catalog Recovery Wizard does not work after you perform a change server operation.

**Note:** During the catalog recovery process, NetBackup may shut down and restart services. If NetBackup is configured as a highly available application (cluster or global cluster), freeze the cluster before you begin the recovery process. Doing so prevents a failover. Then, unfreeze the cluster after the recovery process is complete.

**Warning:** Do not run any client backups before you recover the NetBackup catalog.

**To recover the entire catalog by using the Catalog Recovery Wizard**

1. If NetBackup is not running, start all of the NetBackup services by entering the following:
   - On UNIX and Linux:
     ```
 /usr/openv/netbackup/bin/bp.start_all
     ```
   - On Windows:
     ```
 install_path\NetBackup\bin\bpup
     ```

2. Start the NetBackup Administration Console.
3 If the catalog backup and the recovery devices are not available, do the following:

   a Configure the necessary recovery device in NetBackup.

      For tape storage or BasicDisk storage, see the NetBackup Administrator's Guide, Volume I. For disk storage types, see the guide that describes the option. See the following website for NetBackup documentation:

   b Make available to NetBackup the media that contains the catalog backup:

      Inventory the robot or the disk pool, add the media for standalone drives, configure the storage server and disk pool, or so on.

      For tape storage or BasicDisk storage, see the NetBackup Administrator's Guide, Volume I. For disk storage types, see the guide that describes the option. See the following website for NetBackup documentation:

4 In the NetBackup Administration Console window, click NetBackup Management in the left pane and then Recover the catalogs in the right pane.

   The Catalog Recovery Wizard Welcome panel appears.

5 Click Next on the Welcome panel to display the Catalog Disaster Recovery File panel.
On the **Catalog Disaster Recovery File** panel, specify where the disaster recovery file is stored. You can browse to select the file or enter the full pathname to the disaster recovery file.

In most cases, you specify the most recent disaster recovery information file available. If the most recent catalog backup is an incremental backup, use the disaster recovery file from the incremental backup. (There is no need to first restore the full backup and then follow with the incremental backup.)

If some form of corruption has occurred, you may want to restore to an earlier state of the catalog.

Click **Next** to continue. The **Retrieving Disaster Recovery File** panel appears.
The wizard searches for the media that are required to recover the catalog, and **Retrieving Disaster Recovery File** panel informs you of the progress. It informs you if the necessary backup ID of the disaster recovery image is located. If the media is not located, the wizard lists which media is needed to update the database.

If necessary, follow the wizard instructions to insert the media that is indicated and run an inventory to update the NetBackup database. The information that is displayed on this panel depends on whether the recovery is from a full backup or an incremental backup.

When the required media sources are all found, click **Next** to display the **Disaster Recovery Method** panel.
By default, the **Recover entire NetBackup catalog** option is selected on the Disaster Recovery Method panel.

Select a **Job Priority** if desired and then click **Next** to initiate the recovery of the entire NetBackup catalog. The Recovering Catalog panel appears.

The **Recovering Catalog** panel displays the progress of recovering the various catalog components, as follows:

- NBDB database (including the EMM database)
- BMR database (if applicable)
- NetBackup policy files
- Backup image files to their proper image directories
- Other configuration files
Your action depends on the outcome of the recovery, as follows:

Not successful: Consult the log file messages for an indication of the problem. Click **Cancel**, fix the problem, and then run the wizard again.

Successful: Click **Next** to continue to the final wizard panel.

10 On the panel that informs you that the recovery is complete, click **Finish**.

11 Before you continue, be aware of the following points:

- If you recovered the catalog from removable media, NetBackup freezes the catalog media. See “**Unfreezing the NetBackup online catalog recovery media**” on page 193.

- Before you restart NetBackup, Veritas recommends that you freeze the media that contains the backups more recent than the date of the catalog from which you recovered.

- NetBackup does not run scheduled backup jobs until you stop and then restart NetBackup.

  You can submit backup jobs manually before you stop and restart NetBackup. However, if you do not freeze the media that contains the backups more recent than the date of the catalog from which you recovered, NetBackup may overwrite that media.

12 Stop and restart NetBackup services on all of the servers, as follows:

- On UNIX and Linux:
About recovering the NetBackup catalog

On Windows:

```
install_path\NetBackup\bin\bpdown
install_path\NetBackup\bin\bpup
```

If the NetBackup Administration Console is active on any of the hosts, the command that stops the NetBackup services shuts it down.

If the catalog recovery is part of a server recovery procedure, complete the remaining steps in the appropriate recovery procedure.

Recovery can include the following:

- Importing the backups from the backup media into the catalog.
- Write protecting the media.
- Ejecting the media and setting it aside.
- Freezing the media.

### Recovering the entire NetBackup catalog using bprecover -wizard

The `bprecover -wizard` command is an alternative to using the NetBackup Administration Console wizard. You must have root (administrative) privileges to perform this procedure.

The relational database transaction log is not applied during full catalog recovery.

You must have root (administrative) privileges to perform these procedures.

You must be logged on to the master server on which you want to recover the catalog.

---

**Note:** During the catalog recovery process, services may be shut down and restarted. If NetBackup is configured as a highly available application (cluster or global cluster), freeze the cluster before starting the recovery process to prevent a failover. Then unfreeze the cluster after the recovery process is complete.
**Note:** Full catalog recovery restores the device and the media configuration information in the catalog backup. If you must configure storage devices during the recovery, Veritas recommends that you recover only the NetBackup image files. See “About recovering the NetBackup catalog image files” on page 164.

**Warning:** Do not run any client backups before you recover the NetBackup catalog.

**To recover the entire catalog by using bprecover -wizard**

1. If recovering the catalog to a new NetBackup installation, such as at a disaster recovery site, do the following:
   - Install NetBackup.
   - Configure the devices that are required for the recovery.
   - Add the media that are required for the recovery to the devices.

2. Start NetBackup.
   The following are the commands to start NetBackup:
   - UNIX and Linux:
     `/usr/openv/netbackup/bin/bp.start_all`
   - Windows:
     `install_path\NetBackup\bin\bpup.exe`

3. Start the bprecover wizard by entering the following command:
   - UNIX and Linux:
     `/usr/openv/netBbckup/bin/admincmd/bprecover -wizard`
   - Windows:
     `install_path\Veritas\NetBackup\bin\admincmd\bprecover.exe -wizard`

   The following is displayed:

   Welcome to the NetBackup Catalog Recovery Wizard!

   Please make sure the devices and media that contain catalog disaster recovery data are available

   Are you ready to continue?(Y/N)
4 Enter Y to continue. The following prompt appears:

Please specify the full pathname to the catalog disaster recovery file:

5 Enter the fully qualified pathname to the disaster recovery file for the backup that you want to restore. For example:

/mnt/hdd2/netbackup/dr-file/Backup-Catalog_1318222845_FULL

If the most recent catalog backup was an incremental backup, use the disaster recovery file from the incremental backup. (There is no need to first restore the full backup and then follow with the incremental backup.) Alternately, you can recover from earlier version of the catalog.

If the pathname is to a valid DR file, a message similar to the following is displayed:

vm2.example.com_1318222845
All media resources were located
Do you want to recover the entire NetBackup catalog? (Y/N)

If the DR file or the pathname is not valid, the command-line wizard exits.

6 Enter Y to continue. The following is displayed:

Do you want to startup the NetBackup relational database (NBDB) after the recovery? (Y/N)

The image file is restored to the proper image directory and the NetBackup relational databases (NBDB and optionally BMRDB) are restored and recovered.
7 Enter Y or N to continue.

The following is displayed while the restore is in progress:

Catalog recovery is in progress. Please wait...

Beginning recovery of NBDB. Please wait...
Completed successful recovery of NBDB on vm2.example.com
INF - Catalog recovery has completed.

WRN - NetBackup will not run scheduled backup jobs until NetBackup is restarted.

For more information, please review the log file:
/usr/openv/netbackup/logs/user_ops/root/logs/Recover1318344410.log

When the recovery job is finished, each image file is restored to the proper image directory, and the NetBackup relational databases (NBDB and optionally BMRDB) have been restored and recovered.

8 Before you continue, be aware of the following points:

■ If you recovered the catalog from removable media, NetBackup freezes the catalog media.
   See “Unfreezing the NetBackup online catalog recovery media” on page 193.

■ Before you restart NetBackup, Veritas recommends that you freeze the media that contains the backups more recent than the date of the catalog from which you recovered.

■ NetBackup does not run scheduled backup jobs until you stop and then restart NetBackup.
   You can submit backup jobs manually before you stop and restart NetBackup. However, if you do not freeze the media that contains the backups more recent than the date of the catalog from which you recovered, NetBackup may overwrite that media.

■ Because this operation is a partial recovery, you must recover the relational database portion of the catalog.
   See “About recovering the NetBackup relational database” on page 177.

9 Stop and restart NetBackup.

The following are the commands to stop and restart NetBackup:

■ On UNIX and Linux:
   /usr/openv/netbackup/bin/bp.kill_all
   /usr/openv/netbackup/bin/bp.start_all
About recovering the NetBackup catalog image files

The catalog image files contain information about all the data that has been backed up. This information constitutes the largest part of the NetBackup catalog. This type of catalog recovery does the following:

- Recovers the image .f files.
- Recovers the configuration files (databases.conf and server.conf).
- Restores the NetBackup relational database (NBDB) to the staging directory so that it is available for further processing if required.

  See “About processing the relational database in staging” on page 184.
- Optionally, recovers the policy and the licensing data.

Table 4-3 is a list of the files that are included in a partial recovery.

Note: Beginning with the NetBackup 7.5 release, the images files are now stored in the NetBackup relational database. The images files contain the metadata that describes the backups.

NetBackup supports recovery of the catalog image files and configuration files from a clustered environment to a non-clustered master server at a disaster recovery.

Recovery recommendations

See “About NetBackup catalog recovery and symbolic links” on page 148.

Veritas recommends that you recover the catalog images files in the following scenarios:
The NetBackup relational database is valid, but NetBackup policy, backup image, or configuration files are lost or corrupt.

You want to restore part of the NetBackup catalog before you restore the entire catalog. This procedure recovers only the catalog images and configuration files.

After you recover the image files, you can recover the relational database. See “About recovering the NetBackup relational database” on page 177.

You recover the catalog using different storage devices. It may be to the same environment after storage hardware failure or replacement. It may be another site to which you replicate the catalog backups and the client backups. Regardless, the catalog backups and the client backups reside on different hardware.

This recovery does not overwrite the new storage device configuration with the old, no longer valid storage device information from the catalog backup.

**Catalog recovery and backup types**

Recovery includes the catalog image files and configuration files that are in the catalog backups listed in the disaster recovery file, as follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full backup</td>
<td>The image files and configuration files that are listed in the disaster recovery file are recovered.</td>
</tr>
<tr>
<td>Incremental backup</td>
<td>Two recover scenarios exist, as follows:</td>
</tr>
<tr>
<td></td>
<td>- The catalog contains no information about the corresponding full backup and other incremental backups.</td>
</tr>
<tr>
<td></td>
<td>NetBackup restores only the backup image .f files, configuration files, and NetBackup policy files that are backed up in that incremental backup.</td>
</tr>
<tr>
<td></td>
<td>However, all of the catalog backup image .f files up to the last full catalog backup are restored. Therefore, you can restore the rest of the policy, image .f files, and configuration files by using the Backup, Archive and Restore interface.</td>
</tr>
<tr>
<td></td>
<td>- The catalog contains information about the corresponding full backup and other incremental backups.</td>
</tr>
<tr>
<td></td>
<td>NetBackup restores all of the backup image .f files and the configuration files that were included in the related set of catalog backups.</td>
</tr>
</tbody>
</table>

**Catalog image files**

Table 4-3 lists the files that comprise a partial catalog recovery.
<table>
<thead>
<tr>
<th>UNIX and Linux</th>
<th>Windows</th>
</tr>
</thead>
<tbody>
<tr>
<td>/usr/openv/netbackup/bp.conf</td>
<td>Not applicable</td>
</tr>
<tr>
<td>/usr/openv/netbackup/db/*</td>
<td>install_path\NetBackup\db/*</td>
</tr>
<tr>
<td>/usr/openv/netbackup/db/class/*</td>
<td>install_path\NetBackup\db\class*</td>
</tr>
<tr>
<td>(optional)</td>
<td>(optional)</td>
</tr>
<tr>
<td>/usr/openv/netbackup/vault/sessions*</td>
<td>install_path\NetBackup\vault\sessions*</td>
</tr>
<tr>
<td>/usr/openv/var/* (optional)</td>
<td>install_path\NetBackup\var/*</td>
</tr>
<tr>
<td>(optional)</td>
<td>(optional)</td>
</tr>
<tr>
<td>/usr/openv/volmgr/database/*</td>
<td>install_path\Volmgr\database/*</td>
</tr>
<tr>
<td>/usr/openv/volmgr/vm.conf</td>
<td>install_path\Volmgr\vm.conf</td>
</tr>
</tbody>
</table>

**Recovery methods**

You can use either of the following methods to recover the catalog image files:

- The **Catalog Recovery Wizard** in the **NetBackup Administration Console**. See “Recovering the entire NetBackup catalog using the Catalog Recovery Wizard” on page 153.

- The text-based recovery wizard. The `bprecover -wizard` command and option start the text-based recovery wizard. See “Recovering the entire NetBackup catalog using bprecover -wizard” on page 160.

**Recovering the NetBackup catalog image files using the Catalog Recovery Wizard**

This procedure describes how to recover the NetBackup catalog image files by using the **Catalog Recovery Wizard**. The relational database transaction log is applied during image file recovery.

See “About recovering the NetBackup catalog image files” on page 164.

You must have root (administrative) privileges to perform this procedure.

You must be logged on to the master server on which you want to recover the catalog. The **Catalog Recovery Wizard** does not work after you perform a change server operation.
Note: This wizard relies on the disaster recovery file that was generated during the catalog backup. The path to the disaster recovery file is specified in the catalog backup policy.

Note: During the catalog recovery process, NetBackup may shutdown and restart services. If NetBackup is configured as a highly available application (cluster or global cluster), freeze the cluster before you begin the recovery process to prevent a failover. Then, unfreeze the cluster after the recovery process is complete.

Warning: Do not run any client backups before you recover the NetBackup catalog.

See “About recovering the NetBackup catalog image files” on page 164.

To recover the catalog image files using the Catalog Recovery Wizard

1  If NetBackup is not running, start all of the NetBackup services by entering the following:
   - On UNIX and Linux:
     /usr/openv/netbackup/bin/bp.start_all
   - On Windows:
     \install_path\NetBackup\bin\bpup

2  If the catalog backup and the recovery devices are not available, do the following:

   a  Configure the necessary recovery device in NetBackup.

      For tape storage or BasicDisk storage, see the NetBackup Administrator's Guide, Volume I. For disk storage types, see the guide that describes the option. See the following website for NetBackup documentation:

   b  Make available to NetBackup the media that contains the catalog backup: inventory the robot or the disk pool, add the media for standalone drives, configure the storage server and disk pool, or so on.

      For tape storage or BasicDisk storage, see the NetBackup Administrator's Guide, Volume I. For disk storage types, see the guide that describes the option. See the following website for NetBackup documentation:

   c  Create symbolic links to match those in the original environment.

      See “About NetBackup catalog recovery and symbolic links” on page 148.
3 In the NetBackup Administration Console window, click NetBackup Management in the left pane and then Recover the catalogs in the right pane. The Catalog Recovery Wizard Welcome panel appears.

4 Click Next on the Welcome panel to display the Catalog Disaster Recovery File panel.

5 On the Catalog Disaster Recovery File panel, specify where the disaster recovery file is stored. You can browse to select the file or enter the full pathname to the disaster recovery file.

In most cases, you specify the most recent disaster recovery information file available. If the most recent catalog backup is an incremental backup, use the disaster recovery file from the incremental backup. (There is no need to first restore the full backup and then follow with the incremental backup.) If some form of corruption has occurred, you may want to restore to an earlier state of the catalog.

Click Next to continue. The Retrieving Disaster Recovery File panel appears.
6 The wizard searches for the media that are required to recover the catalog, and **Retrieving Disaster Recovery File** panel informs you of the progress. It informs you if the necessary backup ID of the disaster recovery image is located. If the media is not located, the wizard lists which media is needed to update the database.

If necessary, follow the wizard instructions to insert the media that is indicated and run an inventory to update the NetBackup database. The information that is displayed on this panel depends on whether the recovery is from a full backup or an incremental backup.

When the required media sources are all found, click **Next** to display the **Disaster Recovery Method** panel.

The **Disaster Recovery Method** panel appears.

7 On the **Disaster Recovery Method** panel, do the following:

- Select **Recover only NetBackup catalog image and configuration files**.
- Specify a job priority.
To continue, click **Next**.

The **Recovering Catalog** panel appears.

The **Recovering Catalog** panel displays the recovery progress.

Your action depends on the outcome of the recovery, as follows:

- **Not successful**  Consult the log file messages for an indication of the problem. Click **Cancel**, fix the problem, and then run the wizard again.

- **Successful**  Click **Next** to continue to the final wizard panel.
9  On the final wizard panel, click Finish

   When the recovery job is finished, each image file is restored to the proper image directory and the configuration files are restored.

10 Export the image metadata from the relational database in the staging directory, as follows:

   cat_export -all -staging -source_master source-master-server-name

   The export is required so that the image metadata can be imported into the relational database. A catalog image file recovery does not recover the relational database.

11 Import the image metadata into the relational database, as follows:

   cat_import -all -replace_destination

12 If you recovered the catalog from a disk device, you may have to fix the disk media ID references in the image headers. The image headers were recovered from the catalog backup.

   To fix the disk media IDs in the image headers, run the following command:

   nbcatsync -backupid image_id -dryrun

   Replace image_id with the ID of the catalog backup. You can find the image ID of the catalog backup by examining the DR file.

13 Before you continue, be aware of the following points:

   ■ If you recovered the catalog from removable media, NetBackup freezes the catalog media.
     See “Unfreezing the NetBackup online catalog recovery media” on page 193.

   ■ Before you restart NetBackup, Veritas recommends that you freeze the media that contains the backups more recent than the date of the catalog from which you recovered.

   ■ NetBackup does not run scheduled backup jobs until you stop and then restart NetBackup.
     You can submit backup jobs manually before you stop and restart NetBackup. However, if you do not freeze the media that contains the backups more recent than the date of the catalog from which you recovered, NetBackup may overwrite that media.

   ■ Because this operation is a partial recovery, you must recover the relational database portion of the catalog.
     See “About recovering the NetBackup relational database” on page 177.

14 Stop and restart NetBackup on all the servers, as follows:
On UNIX and Linux:

/usr/openv/netbackup/bin/bp.kill_all
/usr/openv/netbackup/bin/bp.start_all

On Windows:

install_path\NetBackup\bin\bpdown
install_path\NetBackup\bin\bpup

If the catalog recovery is part of a server recovery procedure, complete the remaining steps in the appropriate recovery procedure.

Recovery can include the following:

- Importing the backups from the backup media into the catalog.
- Write protecting the media.
- Ejecting the media and setting it aside.
- Freezing the media.

Recovering the NetBackup catalog image files using bprecover -wizard

You must have root (administrative) privileges to perform this procedure.

You must be logged on to the master server on which you want to recover the catalog. The Catalog Recovery Wizard does not work after you perform a change server operation.

**Note:** This wizard relies on the disaster recovery file that was generated during the catalog backup. The path to the disaster recovery file is specified in the catalog backup policy.

**Note:** During the catalog recovery process, services may be shut down and restarted. If NetBackup is configured as a highly available application (cluster or global cluster), freeze the cluster before starting the recovery process to prevent a failover. Then unfreeze the cluster after the recovery process is complete.

**Warning:** Do not run any client backups before you recover the NetBackup catalog.

See “About recovering the NetBackup catalog image files” on page 164.
To recover the catalog image files using \texttt{bprecover -wizard}

1. If recovering the catalog to a new NetBackup installation, such as at a disaster recovery site, do the following:
   - Install NetBackup.
   - Configure the devices that are required for the recovery.
   - Add the media that are required for the recovery to the devices.
   - Create symlinks to match those in the original environment.
     See “About NetBackup catalog recovery and symbolic links” on page 148.

2. If the EMM server is on a different host than the master server, start the NetBackup services on that host by entering the following command:
   - On UNIX and Linux:
     \texttt{/usr/openv/netbackup/bin/bp.start\_all}
   - On Windows:
     \texttt{install\_path\NetBackup\bin\bpup}

3. Start the NetBackup services on the master server by entering the following command:
   - On UNIX and Linux:
     \texttt{/usr/openv/netbackup/bin/bp.start\_all}
   - On Windows:
     \texttt{install\_path\NetBackup\bin\bpup}

4. Start the \texttt{bprecover} wizard by entering the following command:
   \texttt{bprecover -wizard}

   The following is displayed:
   
   Welcome to the NetBackup Catalog Recovery Wizard!
   Please make sure the devices and media that contain catalog disaster recovery data are available
   Are you ready to continue?(Y/N)

5. Enter Y to continue. You are prompted to enter the full path name of the disaster recovery file, as follows:

   Please specify the full pathname to the catalog disaster recovery file:
6 Enter the fully qualified path name to the disaster recovery file for the backup that you want to restore. For example:

/mnt/hdd2/netbackup/dr-file/Backup-Catalog_1318222845_FULL

If the most recent catalog backup was an incremental backup, use the disaster recovery file from the incremental backup. (There is no need to first restore the full backup and then follow with the incremental backup.) Alternately, you can recover from earlier version of the catalog.

If you specified a DR file for a full backup, a message similar to the following appears:

vm2.example.com_1318222845
All media resources were located

Do you want to recover the entire NetBackup catalog? (Y/N)

If you specified a DR file for an incremental backup, a message similar to the following is displayed:

vm2.example.com_1318309224
All media resources were located

The last catalog backup in the catalog disaster recovery file is an incremental.
If no catalog backup images exist in the catalog, a PARTIAL catalog recovery will only restore the NetBackup catalog files backed up in that incremental backup.

However, all of the catalog backup images up to the last full catalog backup are restored. Then you can restore the remaining NetBackup catalog files from the Backup, Archive, and Restore user interface. If catalog backup images already exist, all files that were included in the related set of catalog backups are restored.

Do you want to recover the entire NetBackup catalog? (Y/N)

7 Enter N to continue. The following is displayed:

A PARTIAL catalog recovery includes the images directory containing the dotf files and staging of the NetBackup relational database (NBDB) for further processing.

Do you also want to include policy data?(Y/N)
8 Enter Y or N to continue. The following is displayed:

Do you also want to include licensing data? (Y/N)

9 Enter Y or N to continue. The following is displayed:

Catalog recovery is in progress. Please wait...

Completed successful recovery of NBDB in staging directory on vm2.example.com

This portion of the catalog recovery has completed. Because this was a PARTIAL recovery of the NetBackup catalog, any remaining files included in the catalog backup can be restored using the Backup, Archive, and Restore user interface.

The image metadata that is stored in NBDB in the staging directory can be exported using "cat_export -staging", and, imported using "cat_import".

The "nbdb_unload -staging" command can be used to unload one or more database tables from NBDB in the staging directory.

The "nbdb_restore -recover -staging" command can be used to replace NBDB in the data directory with the contents from the staging directory.

WRN - NetBackup will not run scheduled backup jobs until NetBackup is restarted.

For more information, please review the log file:
/usr/openv/netbackup/logs/user_ops/root/logs/Recover1318357550.log

10 When the recovery job is finished, each image file is restored to the proper image directory and the configuration files are restored. If you chose to recover the policy data and licensing data, it is restored also.

11 Export the image metadata from the relational database in the staging directory, as follows:

cat_export -all -staging -source_master source-master-server-name

The export is required so that the image metadata can be imported into the relational database. A catalog image file recovery does not recover the relational database.
12 Import the image metadata into the relational database, as follows:

```bash
cat_import -all -replace_destination
```

13 If you recovered the catalog from a disk device, you may have to fix the disk media ID references in the image headers. The image headers were recovered from the catalog backup.

See “About NetBackup catalog recovery from disk devices” on page 148.

To fix the disk media IDs in the image headers, run the following command:

```bash
nbcatsync -backupid image_id -prune_catalog
```

Replace `image_id` with the ID of the catalog backup. The `bprecover` output contains the image ID of the catalog backup being restored. Alternatively, you can find the image ID of the catalog backup by examining the DR file.

14 Before you continue, be aware of the following points:

- If you recovered the catalog from removable media, NetBackup freezes the catalog media.
  See “Unfreezing the NetBackup online catalog recovery media” on page 193.

- Before you restart NetBackup, Veritas recommends that you freeze the media that contains the backups more recent than the date of the catalog from which you recovered.

- NetBackup does not run scheduled backup jobs until you stop and then restart NetBackup. You can submit backup jobs manually before you stop and restart NetBackup. However, if you do not freeze the media that contains the backups more recent than the date of the catalog from which you recovered, NetBackup may overwrite that media.

- Because this operation is a partial recovery, you must recover the relational database portion of the catalog.
  See “About recovering the NetBackup relational database” on page 177.

15 Stop and restart NetBackup on all the servers, as follows:

- On UNIX and Linux:
  ```bash
 /usr/openv/netbackup/bin/bp.kill_all
 /usr/openv/netbackup/bin/bp.start_all
  ```

- On Windows:
install_path\NetBackup\bin\bpdown
install_path\NetBackup\bin\bpup

16 If the catalog recovery is part of a server recovery procedure, complete the remaining steps in the appropriate recovery procedure.

This procedure can include the following tasks:
- Importing the backups from the backup media into the catalog
- Write protecting the media
- Ejecting the media and setting it aside
- Freezing the media

About recovering the NetBackup relational database

The NetBackup database (NBDB) is also known as the Enterprise Media Manager (EMM) database. It contains information about volumes and the robots and drives that are in NetBackup storage units. The NetBackup relational database also contains the NetBackup catalog images files. The images files contain the metadata that describes the backups.

You can recover the NetBackup relational databases independently of an entire catalog backup.

Recover from a backup
See “Recovering NetBackup relational database files from a backup” on page 177.

Recover from the staging directory
See “Recovering the NetBackup relational database files from staging” on page 181.

Recovering NetBackup relational database files from a backup

You can recover the NetBackup (NBDB) or Bare Metal Restore (BMRDB) relational database files from a backup. A valid database must exist before you can recover the catalog backup. Therefore, the steps that you follow to recover from a backup depend on the use case, as follows:

The database is not corrupted
If the NBDB database is available and the SQL Anywhere server is running, you do not need to create a database. Do only step 11 and step 12 in the following procedure.
The database is corrupted. Follow all of the steps in the procedure only if the NBDB database has been corrupted or does not exist. You must create a valid, empty database, which is included in the full procedure.

**To recover the NetBackup relational database files from a catalog backup**

1. If the NetBackup services are running, stop them as follows:
   
   **UNIX:**
   `/usr/openv/netbackup/bin/bp.kill_all`
   
   **Windows:**
   `install_path\NetBackup\bin\bpdown`

2. Move the *.db and *.log files from the database file directories to a temporary directory. The following are the default locations for the database files:
   
   **UNIX:**
   `/usr/openv/db/data`
   
   **Windows:**
   `C:\Program Files\Veritas\NetBackupDB\data`

3. Configure SQL Anywhere so that it does not try to start automatically when the host is started, as follows:
   
   **UNIX:**
   `/usr/openv/db/bin/nbdb_admin -auto_start NONE`
   
   **Windows:**
   `install_path\NetBackup\bin\nbdb_admin -auto_start NONE`

4. Start the SQL Anywhere server, as follows:
   
   **UNIX:**
   `/usr/openv/netbackup/bin/nbdbms_start_stop start`
   
   **Windows:**
   `install_path\NetBackup\bin\bpup -e SQLANYs_VERITAS_NB`
Create the database. The command that you run depends on your scenario, as follows:

**Normal scenario**

**UNIX:** `/usr/openv/db/bin/create_nbdb -drop`

**Windows:** `install_path\NetBackup\bin\create_nbdb -drop`

**The database was relocated or the environment is clustered**

**UNIX:** `/usr/openv/db/bin/create_nbdb -data VXDBMS_NB_DATA -drop -staging VXDBMS_NB_STAGING`

**Windows:** `install_path\NetBackup\bin\create_nbdb -data VXDBMS_NB_DATA -drop -staging VXDBMS_NB_STAGING`

Obtain the values for `VXDBMS_NB_DATA` and `VXDBMS_NB_STAGING` from the `vxdbms.conf` file in the temporary directory that you created in step 2.

**The database was relocated or the environment is clustered, and space constraints force you to create this temporary database in the final location**

**UNIX:** `/usr/openv/db/bin/create_nbdb -drop -data VXDBMS_NB_DATA -index VXDBMS_NB_INDEX -tlog VXDBMS_NB_TLOG -staging VXDBMS_NB_STAGING`

**Windows:** `install_path\NetBackup\bin\create_nbdb -drop -data VXDBMS_NB_DATA -index VXDBMS_NB_INDEX -tlog VXDBMS_NB_TLOG -staging VXDBMS_NB_STAGING`

Obtain the values for the option arguments from the `vxdbms.conf` file in the temporary directory that you created in step 2.

Start the NetBackup services, as follows:

**UNIX:** `/usr/openv/netbackup/bin/bp.start_all`

**Windows:** `install_path\NetBackup\bin\bpup`

Load the default device protocols and settings into the NetBackup Enterprise Media Manager (EMM) database by running the following command:

**UNIX:** `/usr/openv/volmgr/bin/tpext -loadEMM`

**Windows:** `install_path\Volmgr\bin\tpext -loadEMM`
If you used the `nbdb_move` command to relocate the NetBackup database files, re-create the directories where the files were located when you backed up the catalog. The following are the default locations into which the `nbdb_move` command moves the database files:

UNIX: /usr/openv/db/data

Windows: `install_path\NetBackupDB\data`

Start the NetBackup device manager on the NetBackup master server, as follows:

UNIX: `/usr/openv/volmgr/bin/ltid -v`

Windows: Use Windows Computer Management to start the NetBackup Device Manager service (`ltid.exe`).

If the catalog backup and the recovery devices are not available, do the following:

a. Configure the necessary recovery device in NetBackup.
   
   For tape storage or BasicDisk storage, see the NetBackup Administrator’s Guide, Volume I. For disk storage types, see the guide that describes the option. See the following website for NetBackup documentation:

b. Make available to NetBackup the media that contains the catalog backup:
   Inventory the robot or the disk pool, add the media for standalone drives, configure the storage server and disk pool, or so on.
   
   For tape storage or BasicDisk storage, see the NetBackup Administrator’s Guide, Volume I. For disk storage types, see the guide that describes the option. See the following website for NetBackup documentation:

c. Import the catalog backup from the media on which it resides.
   
   See the NetBackup Administrator’s Guide, Volume I:

   `http://www.veritas.com/docs/DOC5332`
11 Recover the catalog by running the following command on the master server:

UNIX: `/usr/openv/netbackup/bin/admincmd/bprecover -r -nbdb`

Windows: `install_path\NetBackup\bin\admincmd\bprecover -r -nbdb`

12 Stop and restart NetBackup, as follows:

UNIX: `/usr/openv/netbackup/bin/bp.kill_all`  
`/usr/openv/netbackup/bin/bp.start_all`

Windows: `install_path\NetBackup\bin\bpdown`  
`install_path\NetBackup\bin\bpup`

---

**Recovering the NetBackup relational database files from staging**

During a catalog backup, NetBackup copies the relational database files to the staging directory. The recovery option that restores the image files and the configuration files also restores the relational database files to the staging directory. See “About recovering the NetBackup catalog image files” on page 164.

You can recover the NetBackup NBDB relational database files from the staging directory. You can also use NetBackup commands process the NBDB relational database files further. See “About processing the relational database in staging” on page 184.

When the relational database is recovered from staging, NetBackup also applies the current online transaction log during the recovery. Applying the transaction log ensures that the database is as consistent as possible with the current `db/images` directory.

Two recovery procedures from the staging directory exist, as follow:

The database is not corrupted  
See “To recover relational database files from staging if the database is corrupted” on page 182.

The database is corrupted  
See “To recover relational database files from staging if the database is corrupted” on page 182.
To recover relational database files from staging if the database is not corrupted

1. Run the following command on the master server to recover NBDB from staging:
   - UNIX: `/usr/openv/netbackup/bin/nbdb_restore -dbn NBDB -recover -staging`
   - Windows: `install_path\NetBackup\bin\nbdb_restore -dbn NBDB -recover -staging`

2. Stop and restart NetBackup, as follows:
   - UNIX:
     ```
 /usr/openv/netbackup/bin/bp.kill_all
 /usr/openv/netbackup/bin/bp.start_all
     ```
   - Windows:
     ```
 install_path\NetBackup\bin\bpdown
 install_path\NetBackup\bin\bpup
     ```

To recover relational database files from staging if the database is corrupted

1. If the NetBackup services are running, stop them as follows:
   - UNIX: `/usr/openv/netbackup/bin/bp.kill_all`
   - Windows: `install_path\NetBackup\bin\bpdown`

2. Move the `.db` and `.log` files from the following database file directories to a temporary directory:
   - UNIX: `/usr/openv/db/data`
   - Windows: `C:\Program Files\Veritas\NetBackupDB\data`

3. Configure SQL Anywhere so that it does not try to start automatically when the host is started, as follows:
   - Linux: `/usr/openv/db/bin/nbdb_admin -auto_start NONE`
   - Windows: `install_path\NetBackup\bin\nbdb_admin -auto_start NONE`

4. Start the SQL Anywhere server, as follows:
   - UNIX: `/usr/openv/netbackup/bin/nbdbms_start_stop start`
   - Windows: `install_path\NetBackup\bin\bpup -e SQLANYs_VERITAS_NB`
5 Create an empty database, as follows:
   UNIX: /usr/openv/db/bin/create_nbdb -drop
   Windows: install_path\NetBackup\bin\create_nbdb -drop

6 Stop and restart NetBackup, as follows:
   UNIX and Linux:
   /usr/openv/netbackup/bin/bp.kill_all
   /usr/openv/netbackup/bin/bp.start_all
   Windows:
   install_path\NetBackup\bin\bpdown
   install_path\NetBackup\bin\bpup

7 Run the NetBackup tpext command to update the device mapping files, as follows:
   UNIX: /usr/openv/volmgr/bin/tpext -loadEMM
   Windows: install_path\Volmgr\bin\tpext -loadEMM

8 If you used the nbdb_move command to relocate NetBackup database files, 
   re-create the directories where the files were located when you backed up the catalog.

9 Start the NetBackup Device Manager, as follows:
   UNIX: /usr/openv/volmgr/bin/ltid -v
   Windows: Start the device manager service.
10 Run the following command on the master server to recover NBDB from staging:

**UNIX:**
```
/usr/openv/netbackup/bin/nbdb_restore -dbn NBDB -recover -staging
```

**Windows:**
```
install_path\NetBackup\bin\nbdbrestore -dbn NBDB -recover -staging
```

11 Stop and restart NetBackup, as follows:

**UNIX:**
```
/usr/openv/netbackup/bin/bp.kill_all
/usr/openv/netbackup/bin/bp.start_all
```

**Windows:**
```
install_path\NetBackup\bin\bpdown
install_path\NetBackup\bin\bpopup
```

**About processing the relational database in staging**

A recovery of the NetBackup image files and configuration files also restores the NetBackup relational database (NBDB) to the staging directory. You can use the following NetBackup commands to further process the NBDB database if required:

- **cat_import**
  
  Use `cat_import` to import the image metadata that is in the legacy flat file format into an NBDB relational database. The NBDB database can be the actual production DB or an NBDB in a different NetBackup domain.

- **cat_export**
  
  Use `cat_export -staging` to extract the image metadata from the relational database. It writes the data to the `db.export` directory in the legacy flat file format. You can export all of the image metadata or a subset of the image metadata by client or backup ID. Then, you can use the `cat_import` command to insert the data into another NBDB database. Another NBDB can be the actual production DB or an NBDB in a different NetBackup domain.

- **nbdb_restore -staging**
  
  Use `nbdb_restore -staging` to recover the relational database from the staging directory.

  See “Recovering the NetBackup relational database files from staging” on page 181.
Use `nbdb_unload -staging` to unload the media table and related tables to a set of flat files. Then, you can use SQL tools to insert the subset of data into another NBDB. Another NBDB can be the actual production DB or an NBDB in a different NetBackup domain.

**Warning:** Veritas recommends that you manipulate or process the NetBackup relational database *only* when directed to do so by a Veritas Support Representative. For help with NetBackup domain merges and splits, contact the Veritas Information Management Consulting Services:

http://www.veritas.com/business/services/consulting_services.jsp

More information about the commands is available.

See the *NetBackup Commands Reference Guide*:

http://www.veritas.com/docs/DOC5332

### Recovering the NetBackup catalog when NetBackup Access Control is configured

If you have configured NetBackup Access Control (NBAC), the online, hot catalog backup automatically backs up your authentication information and authorization configuration information.

Both the Operate and Configure permission sets are required on the catalog object to successfully back up and recover NBAC authentication and authorization data.

Separate recovery procedures exist based on operating system, as follows:

- UNIX: Table 4-4
- Windows: Table 4-5

#### Table 4-4  To recover the NetBackup catalog on UNIX when NetBackup Access Control is configured

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>If recovering to a master server on which NBAC is configured and operational, disable NBAC (that is, set it to PROHIBITED mode).</td>
<td>See the <em>NetBackup Security and Encryption Guide</em>: <a href="http://www.veritas.com/docs/DOC5332">http://www.veritas.com/docs/DOC5332</a></td>
</tr>
<tr>
<td>Step 2</td>
<td>Recover the NetBackup catalog from the online catalog backup using the Catalog Recovery Wizard or the <code>bprecover</code> command.</td>
<td>See “About recovering the entire NetBackup catalog” on page 153.</td>
</tr>
</tbody>
</table>
### Table 4-4
To recover the NetBackup catalog on UNIX when NetBackup Access Control is configured (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Configure NetBackup to use NBAC by setting it to AUTOMATIC or REQUIRED as per the security level desired.</td>
<td>See the NetBackup Security and Encryption Guide: <a href="http://www.veritas.com/docs/DOC5332">http://www.veritas.com/docs/DOC5332</a></td>
</tr>
<tr>
<td>Step 4</td>
<td>Restart NetBackup.</td>
<td>/usr/openv/netbackup/bin/bp.kill_all /usr/openv/netbackup/bin/bp.start_all</td>
</tr>
</tbody>
</table>

### Table 4-5
To recover the NetBackup catalog on Windows when NetBackup Access Control is configured

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>If recovering to a master server on which NBAC is configured and operational, disable NBAC (that is, set it to PROHIBITED mode).</td>
<td>See the NetBackup Security and Encryption Guide: <a href="http://www.veritas.com/docs/DOC5332">http://www.veritas.com/docs/DOC5332</a></td>
</tr>
<tr>
<td>Step 2</td>
<td>Stop the NetBackup services.</td>
<td>install_path\Veritas\NetBackup\bin\bpdown.exe</td>
</tr>
<tr>
<td>Step 3</td>
<td>In Windows, change the startup type of the NetBackup Authentication Service and NetBackup Authorization Service to Disabled.</td>
<td>Instructions for configuring Microsoft Windows are beyond the scope of the NetBackup documentation. Refer to the appropriate Microsoft documentation.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Start the NetBackup services.</td>
<td>install_path\Veritas\NetBackup\bin\bpup.exe</td>
</tr>
<tr>
<td>Step 5</td>
<td>Recover the NetBackup catalog from the online catalog backup using the Catalog Recovery Wizard or the bprecover command.</td>
<td>See &quot;About recovering the entire NetBackup catalog&quot; on page 153.</td>
</tr>
<tr>
<td>Step 6</td>
<td>In Windows, change the startup type of the NetBackup Authentication Service and NetBackup Authorization Service to Automatic.</td>
<td>Instructions for configuring Microsoft Windows are beyond the scope of the NetBackup documentation. Refer to the appropriate Microsoft documentation.</td>
</tr>
</tbody>
</table>
Table 4-5 To recover the NetBackup catalog on Windows when NetBackup
Access Control is configured (continued)

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Step 7 Configure NetBackup to use NBAC.</td>
<td>The procedure depends on the environment, as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ For a NetBackup master server in a Windows Server Failover Clustering environment, run the following command on the NetBackup master server on the active node:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bpnbaz -setupmaster</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This command provisions the Windows registry on all nodes with the required entries for NBAC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ For recovery to a new installation, run the following command on the NetBackup master server:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bpnbaz -setupmaster</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ For recovery in an existing environment, set NBAC to AUTOMATIC or REQUIRED as per the security level desired.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See the NetBackup Security and Encryption Guide:</td>
</tr>
<tr>
<td></td>
<td></td>
<td><a href="http://www.veritas.com/docs/DOC5332">http://www.veritas.com/docs/DOC5332</a></td>
</tr>
<tr>
<td></td>
<td>Step 8 Restart NetBackup.</td>
<td>install_path\Veritas\NetBackup\bin\bpdown.exe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>install_path\Veritas\NetBackup\bin\bpup.exe</td>
</tr>
</tbody>
</table>

See “About recovering the NetBackup catalog” on page 146.

Recovering the NetBackup catalog from a nonprimary copy of a catalog backup

By default, catalog backup can have multiple copies, and the catalog is recovered from the primary backup copy. The primary copy is the first or the original copy. However, you can recover from a copy other than the primary.

**Note:** You must be logged on to the master server on which you want to recover the catalog. You cannot change server while running the NetBackup Administration Console on a different host and then run the wizard.

**Note:** You must have root (administrative) privileges to perform these procedures.
To recover the catalog from a non-primary copy

1 If the copy of the catalog backup is on a medium other than tape, do the following:

   **BasicDisk**  Make sure that the disk that contains the backup is mounted against
   the correct mount path (as displayed in the disaster recovery file).

   **Disk pool**  For a catalog backup file in a disk pool, do the following:
   - Create the disk storage server for the storage by using the Storage
     Server Configuration Wizard.
   - Create the disk pool for the storage by using the Disk Pool
     Configuration Wizard.
   - Run the following command to synchronize the disaster recovery
     file to the new disk pool.
     
     nbcatsync \-sync\_dr\_file disaster\_recovery\_file

2 Run the following NetBackup command to recover the catalog:

   bprecover \-wizard \-copy \N

   \N is the number of the copy from which you want to recover.

Recovering the NetBackup catalog without the disaster recovery file

If the disaster recovery file has been lost, consult the email that was sent to the
administrator when the catalog was backed up. The disaster recovery file is written
to the location you specify in the catalog backup policy and is appended to the
backup stream itself.

To recover the catalog without the disaster recovery file

1 The email identifies the media that contains the disaster recovery file, and the
media that was used to back up critical policies. Ensure that this media is
available.

2 Follow the normal catalog recovery steps until the point where the Catalog
Recovery Wizard or bprecover command is called for.

3 Run the following command to retrieve all disaster recovery files from the
catalog backup media:

   bpimport \-drfile \-id media\_id \-drfile\_dest
   fully\_qualified\_dir\_name

   This command recovers all disaster recovery files from the specified media ID
   and places them in the specified directory. The ID can be either a tape media
   ID or the fully qualified location of a disk storage unit.
4 Verify that the correct disaster recovery file is available in the specified directory and that it is available from the NetBackup master server.

5 Continue with the normal catalog recovery procedure by running the Catalog Recovery Wizard or bprecover command, providing the disaster recovery file location when prompted.

Refer to the email as your primary source for recovery instructions, because they are the most current instructions for recovering your catalog. The instructions are sent when the catalog backup is completed, or when a catalog backup image is duplicated.

**Note:** If you restore catalog files directly by using bprestore on a Solaris system, use the following path: `/opt/openv/netbackup/bin/bprestore`.

The name of the online catalog backup policy is CatalogBackup. The email is written to the following file:

```
/storage/DR/CatalogBackup_1123605764_FULL
```

The file name itself indicates if the backup was full or not.

See “NetBackup disaster recovery email example” on page 150.

### Recovering a NetBackup user-directed online catalog backup from the command line

This procedure recovers the catalog manually through the command line interface (CLI) without a Phase 1 import when the disaster recovery (DR) file is available. You must have root (administrative) privileges to perform this procedure.

**Note:** Use this procedure only if you want to restore the minimal NetBackup catalog information that lets you begin to recover critical data.
To recover the user-directed online catalog from the command line interface

1   Verify the location of the disaster recovery files that are created from Full and Incremental Hot Catalog backups. These files can be stored in a specified path of the file system on the master server and in email attachments to the NetBackup administrator.

2   Set up each master server and media server in the same configuration as the configuration that is used during the last catalog backup. The master server and media servers have the following same properties as the backed up catalog configuration: name, NetBackup version, operating system patch level, and path to storage devices.

   Configure any devices and volumes you may need for the recovery.

3   Locate the latest DR image file corresponding to the backups that are used for recovery. Open the file in an editor and find values for the following:

   `master_server` Use the exact name that is specified in NetBackup configuration for the master server.

   `media_server` The location of the robot or disk storage unit that is used for catalog backup.

   `timestamp` The four most significant digits in the DR file name and six zeroes attached.

   `media` The location of the catalog backup media as specified by the disaster recovery file under the FRAGMENT keyword.

   `backup_id` Found in the DR file under BACKUP_ID.

   Example:

   file: Hot_Backup_1122502016_INCR

   timestamp: 1122000000

4   Create the DR recovery directory on the master server.

   UNIX and Linux:

   /usr/openv/netbackup/db/images/master_server/timestamp/tmp

   Windows:

   C:\Program Files\VERITAS\NetBackup\db\images\master_server\timestamp\tmp

   Copy the DR file to the newly created directory.
5 Edit the DR file in `netbackup/db/images/master_server/timestamp/tmp` as follows:
   - Change the value of IMAGE_TYPE to 1.
   - Change the value of TIR_INFO to 0.
   - Change the value of NUM_DR_MEDIAS to 0.
   - Remove ALL lines containing DR_MEDIA_REC.

6 If your catalog recover media is on tape, run the `vmquery` command to assign the media to the media server.

   ```
 vmquery -assigntohost media timestamp master_server
   ```

   Example:

   ```
 vmquery -assigntohost DL005L 1122000000 klingon
   ```

7 To recover the catalog .f file from the hot catalog backup, run a Phase II import on the media that is specified by the disaster recovery file.

   ```
 bpimport -server master_server -backupid backup_id
   ```

8 If your catalog backup was incremental, recover all the other catalog backup images up to and including the most recent Full Catalog backup.

   - Open the Backup, Archive, and Restore client interface for NetBackup.
     Select NBU-Catalog as the policy type. Set the source clients and destination clients to your master server.
   - Search the backups and restore all files that are located in the following directory:

     ```
 install_path/netbackup/db/images/master_server
     ```

   - Verify that all files are restored successfully on the master server.

9 Restore your critical data by using the Backup, Archive, and Restore client interface or the command line.

   - Restore the catalog backup images for each media server which requires data recovery.
   - To restore the backup images, select NBU-Catalog as the policy type. Source and destination clients should be your master server. Refresh your view in the BAR GUI. Traverse the file system for the master server to the following:
install_path/netbackup/db/images

Restore the images for each configured media server. Verify that your images are present by searching for them in the catalog.

10 Recover backup data from each media server in the previous step. Change the Policy Type, Source, and Destination client to match the client that is used to back up the desired data. Select the desired files from the Backup, Archive, and Restore client interface and restore them.

11 To recover the NetBackup relational database, run the following:

   bprecover -r -nbdb

This command restores NetBackup media usage information, ensure that media containing backups are not overwritten, and restore the storage unit configuration.

You cannot recover the NetBackup relational database to a configuration that is not identical to the configuration on which the catalog was backed up. Instead, you must import each piece of backup media.

12 If your catalog recovery media is on tape, freeze the media that contains the catalog backup that is used for recovery. This action protects the media from being reused:

   bpmmedia -freeze -m media -h master_server

Run bpmmedialist to verify that the media is frozen.

13 Recover your policies and configuration data on each master server and media server.

   Before recovering NetBackup policy files, ensure that you have recovered all of your critical data, or protected the media that contains your critical data.

   When policy information is recovered, NetBackup starts to run the scheduled jobs that may overwrite the media that was written after the last catalog backup.

   Open the Backup, Archive, and Restore client interface for NetBackup and select NBU-Catalog as the policy type.

   For each server to be restored, set the source clients and destination clients to your server, starting with the master server.

   Restore all files that are backed up by the hot catalog backup on each server.

14 Stop and restart the NetBackup services.
Restoring files from a NetBackup online catalog backup

Because the online catalog backup uses the standard backup format, you may recover specific files using the NetBackup Backup, Archive, and Restore user interface. Restoring catalog files directly to their original location may cause inconsistencies in the NetBackup catalog or cause NetBackup to fail. Instead, you should restore catalog files to an alternate location.

To restore files from an online catalog backup

1. From the Specify NetBackup Machines and Policy Type menu, select the NBU-Catalog policy type.
2. Specify the master server as the source client for the restore.
3. Select the catalog files to restore.

Unfreezing the NetBackup online catalog recovery media

This procedure describes how to unfreeze your removable catalog recovery media.

See “About recovering the NetBackup catalog” on page 146.

To unfreeze the online catalog recovery media

1. On the master server, for each removable media that is identified in the disaster recovery file or email, run the following command:

   bpimport -create_db_info -server server_name -id media_id

2. On the master server, run the following command:

   bpimport

3. On the master server, for each media that is identified in the disaster recovery file or email, run the following command:

   bpmmedia -unfreeze -m media_id -h server_name
communications problems
  PC clients 43
  UNIX clients 39
compression
  for NBCC 107
  for nbsu 102
configuration problems 26
debug logs
  analysis utilities 93
debugging
  NBCC 106
  nbsu 100
device configuration problems 28
Device Configuration Wizard 135
disaster recovery
  preparing for disaster 119
disk full 63
disk recovery
  Windows client 140
duplex mode and performance 88
disaster recovery
  preparing for disaster 119
disk full 63
disk recovery
  Windows client 140
duplex mode and performance 88
disc full 63
disk recovery
  Windows client 140
duplex mode and performance 88
Half duplex and poor performance 88
host name entries
  checking 51
Host Properties 62
host.xlate file 50
communications problems
  PC clients 43
  UNIX clients 39
compression
  for NBCC 107
  for nbsu 102
configuration problems 26
debug logs
  analysis utilities 93
debugging
  NBCC 106
  nbsu 100
device configuration problems 28
Device Configuration Wizard 135
disaster recovery
  preparing for disaster 119
disk full 63
disk recovery
  Windows client 140
duplex mode and performance 88
disc full 63
disk recovery
  Windows client 140
duplex mode and performance 88
Half duplex and poor performance 88
host name entries
  checking 51
Host Properties 62
host.xlate file 50
communication problems
  PC clients 43
  UNIX clients 39
compression
  for NBCC 107
  for nbsu 102
configuration problems 26
debug logs
  analysis utilities 93
debugging
  NBCC 106
  nbsu 100
device configuration problems 28
Device Configuration Wizard 135
disaster recovery
  preparing for disaster 119
disk full 63
disk recovery
  Windows client 140
duplex mode and performance 88
disc full 63
disk recovery
  Windows client 140
duplex mode and performance 88
Half duplex and poor performance 88
host name entries
  checking 51
Host Properties 62
host.xlate file 50
communications problems
  PC clients 43
  UNIX clients 39
compression
  for NBCC 107
  for nbsu 102
configuration problems 26
debug logs
  analysis utilities 93
debugging
  NBCC 106
  nbsu 100
device configuration problems 28
Device Configuration Wizard 135
disaster recovery
  preparing for disaster 119
disk full 63
disk recovery
  Windows client 140
duplex mode and performance 88
disc full 63
disk recovery
  Windows client 140
duplex mode and performance 88
Half duplex and poor performance 88
host name entries
  checking 51
Host Properties 62
host.xlate file 50
communications problems
  PC clients 43
  UNIX clients 39
compression
  for NBCC 107
  for nbsu 102
configuration problems 26
debug logs
  analysis utilities 93
debugging
  NBCC 106
  nbsu 100
device configuration problems 28
Device Configuration Wizard 135
disaster recovery
  preparing for disaster 119
disk full 63
disk recovery
  Windows client 140
duplex mode and performance 88
I
ifconfig
   for checking NIC duplex mode 88
inetd 26
Information E-mail 122
installation
   Linux 26
installation problems 25
ipconfig
   for checking NIC duplex mode 88

J
jobs
   queued for long periods 63

L
Linux 26
log analysis utilities
   debug logs 93
   limitations 96
   output format 97

M
master server
   test procedure 31, 35
media server
   test procedure 35

N
NB_dbsrv daemon 63
NBCC
   archiving and compression 107
   does the following 105
   introduction 105
   location of 105
   nbcc-info.txt file 106
   Notes on running 105
   output 107
   progress display 107
   troubleshooting 106
   when to use 105
   nbcc-info.txt file 106
   nbdb_move 135
   nbemm 21
   nbftclnt
      and bp.conf 89
   nbjm 21
   nbpem 21
   nbrb 21, 63
   nbsu
      and status codes 103
      archiving and compression 102
      bundling 102
      creating xml output file 103
      introduction 99
      location of 99
      nbsu_info.txt file 100
      output files 101
      progress display 104
      troubleshooting 100
      when to use 99
   nbsu_info.txt file 100
   NetBackup
      if unresponsive 63
   NetBackup Authentication service
      start and stop 23
   NetBackup Client Service
      start and stop 23–24
   NetBackup CloudStore Service Container service
      start and stop 23
   NetBackup Compatibility service
      start and stop 23
   NetBackup consistency check
      see NBCC 105
   NetBackup Database Manager service
      start and stop 23
   NetBackup Deduplication Engine service
      start and stop 24
   NetBackup Deduplication Manager service
      start and stop 24
   NetBackup Device Manager service
      start and stop 24
   NetBackup Discovery Framework service
      start and stop 23
   NetBackup Enterprise Media Manager service
      start and stop 23
   NetBackup Event Manager service
      start and stop 23
   NetBackup Indexing Manager service
      start and stop 23
   NetBackup Job Manager service
      start and stop 23
   NetBackup Legacy Client Service
      start and stop 24
   NetBackup Policy Execution Manager service
      start and stop 23
NetBackup Relational Database Manager 63
NetBackup Relational Database Manager Service
  start and stop 23
NetBackup Remote Manager and Monitor Service
  start and stop 23–24
NetBackup Request Daemon service
  start and stop 23
NetBackup Resource Broker service
  start and stop 23
NetBackup Service Layer service
  start and stop 23
NetBackup Service Monitor service
  start and stop 23
NetBackup Storage Lifecycle Manager service
  start and stop 23
NetBackup Support Utility
  see nbsu 99
NetBackup Vault Manager service
  start and stop 23
NetBackup Volume Manager service
  start and stop 23–24
NetBackup Web Management Console service
  start and stop 23
NetBackup Deduplication Multi-Threaded Agent service
  start and stop 24
network connections
  multiple 47
  network interface cards 88
network problems
  PC clients 43
  UNIX clients 39
NIC cards and full duplex 88

Q
  odltest 117
  OpenStorage 123, 133

P
  patches (installing during recovery) 141
PBX
  Auth User 73
  logging 73
  Secure Mode 73–74
  starting 72
  starting/stopping 75
  troubleshooting 70
  pbx_exchange 72
  pbxcfg 72

preliminary troubleshooting procedure 17
Private Branch Exchange (PBX) 70
Private Branch Exchange service
  start and stop 23–24
  procedures
    recovery
      Windows client disk 140
troubleshooting
  communications problems 39, 43
  host names and services 51
  installation and configuration 25
  introduction 15
  master server and clients 31
  media server and clients 35
  preliminary 17

Q
  queued jobs 63

R
  recording information 9
  recovery procedures
    Windows client disk 140
  RedHat 26
  relational database 63
  robotic test utility 116
    acstest 118
    odltest 117
    tl4test 117–118
    tl8test 117–118
    tltdtest 117–118
    tlhtest 118
    tshtest 117
    robtest 117–118

S
  SAN client
    and bp.conf 89
  Secure Mode
    for PBX 73
  server
    installation problems 25
    test procedure for master 31, 35
    test procedure for media server 35
  SERVER entries
    bp.conf 89
  services entries
    checking 51
SharedDisk 123, 133
slow performance and NIC cards 88
starting NetBackup processes 76
status codes
  and nbsu 103
stopping NetBackup processes 75–76
storage units 89
SuSE 26

T
  test utility
    robotic 116
t4test 117–118
t8test 117–118
tdtest 117–118
tfhtest 118
tpautoconf 127
traceroute 50
tracert 50
troubleshooting procedure
  communication problems
    PC clients 43
    UNIX clients 39
general
    master server and clients 31, 35
    media server and clients 35
    host name and services entries 51
installation 25
  preliminary 17
tshtest 117

U
  unavailable 89
  utility
    robotic test 116

V
  Volume Configuration Wizard 135
vxpbx_exchanged 75

W
  web services account
    during recovery 124, 127, 131–132, 134, 137, 143, 145

X
  xinetd 26