Storage Foundation 7.1
Administrator's Guide -
Linux

VERITAS

Storage Foundation 7.1 Administrator's Guide

Last updated: 2017-12-19

Document version: 7.1 Rev 2

Legal Notice
Copyright © 2016 Veritas Technologies LLC. All rights reserved.

Veritas, the Veritas Logo, Veritas InfoScale, and NetBackup are trademarks or registered
trademarks of Veritas Technologies LLC or its affiliates in the U.S. and other countries. Other
names may be trademarks of their respective owners.

This product may contain third party software for which Veritas is required to provide attribution
to the third party (“Third Party Programs”). Some of the Third Party Programs are available
under open source or free software licenses. The License Agreement accompanying the
Software does not alter any rights or obligations you may have under those open source or
free software licenses. Refer to the third party legal notices document accompanying this
Veritas product or available at:

https://www.veritas.com/about/legal/license-agreements

The product described in this document is distributed under licenses restricting its use, copying,
distribution, and decompilation/reverse engineering. No part of this document may be
reproduced in any form by any means without prior written authorization of Veritas Technologies
LLC and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. VERITAS TECHNOLOGIES LLC
SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
DOCUMENTATION. THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS
SUBJECT TO CHANGE WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software
as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19
"Commercial Computer Software - Restricted Rights" and DFARS 227.7202, et seq.
"Commercial Computer Software and Commercial Computer Software Documentation," as
applicable, and any successor regulations, whether delivered by Veritas as on premises or
hosted services. Any use, modification, reproduction release, performance, display or disclosure
of the Licensed Software and Documentation by the U.S. Government shall be solely in
accordance with the terms of this Agreement.

Veritas Technologies LLC
500 E Middlefield Road
Mountain View, CA 94043

https://www.veritas.com/about/legal/license-agreements

http://www.veritas.com

Technical Support

Technical Support maintains support centers globally. All support services will be delivered
in accordance with your support agreement and the then-current enterprise technical support
policies. For information about our support offerings and how to contact Technical Support,
visit our website:

https://www.veritas.com/support
You can manage your Veritas account information at the following URL:
https://my.veritas.com

If you have questions regarding an existing support agreement, please email the support
agreement administration team for your region as follows:

Worldwide (except Japan) CustomerCare@yveritas.com
Japan CustomerCare_Japan@veritas.com
Documentation

Make sure that you have the current version of the documentation. Each document displays
the date of the last update on page 2. The document version appears on page 2 of each
guide. The latest documentation is available on the Veritas website:

https://sort.veritas.com/documents

Documentation feedback

Your feedback is important to us. Suggest improvements or report errors or omissions to the
documentation. Include the document title, document version, chapter title, and section title
of the text on which you are reporting. Send feedback to:

doc.feedback@veritas.com
You can also see documentation information or ask a question on the Veritas community site:

http://www.veritas.com/community/

Veritas Services and Operations Readiness Tools (SORT)

Veritas Services and Operations Readiness Tools (SORT) is a website that provides information
and tools to automate and simplify certain time-consuming administrative tasks. Depending
on the product, SORT helps you prepare for installations and upgrades, identify risks in your
datacenters, and improve operational efficiency. To see what services and tools SORT provides
for your product, see the data sheet:

https://sort.veritas.com/data/support/SORT_Data_Sheet.pdf

http://www.veritas.com
https://www.veritas.com/support
https://my.veritas.com
mailto:CustomerCare@veritas.com
mailto:CustomerCare_Japan@veritas.com
https://sort.veritas.com/documents
mailto:doc.feedback@veritas.com
http://www.veritas.com/community/
https://sort.veritas.com/data/support/SORT_Data_Sheet.pdf

Section 1
Chapter 1

Chapter 2

Chapter 3

Introducing Storage Foundation ... 23
Overview of Storage Foundation 24
About Storage Foundation ... 24
About Dynamic Multi-Pathing (DMP) ..o, 26
About Veritas Volume Managercccooviiiiiiiiiiiiie 26
About Veritas File System ... 27
About the Veritas File System intentlogccooiiiiiiinn, 27
ADOUL €XEENTS ..o 28
About file system disk layoutscooiiiiiiiii 29
About Storage Foundation Cluster File System (SFCFS) 29
About Veritas File System features supported in cluster file
SY S M .o 29
About Veritas InfoScale Operations Managerc.cooceeiviiiininnnen. 30
About Veritas Replicator ..o 31
What is VER? ..o 31
Features of VFR ... 31
Use cases for Storage Foundationcoooiiiiiiiiiiini 32
How Dynamic Multi-Pathing works 33
HOW DMP WOIKS ... 33
DeVIiCe ISCOVEIY ...t 37
How DMP monitors /O onpathscooviiiiiiiie 39
Load balanCingccooviiiiii 41
DMP in a clustered environment ... 42
Veritas Volume Manager co-existence with Oracle Automatic Storage
Management diSKSoiiiiiiii 43
How Veritas Volume Manager works 46
How Veritas Volume Manager works with the operating system 47
How data is stored ... 47
How Veritas Volume Manager handles storage management 48
Physical Objectso 48

Virtual ObJeCtS ... 50

Contents

About the configuration daemon in Veritas Volume Manager 53
Multiple paths to disk arrayscooooiiiiiiii 54
Volume layouts in Veritas Volume Managercooovviiiiiiiniiinnenns 55
Non-layered vOIUMESot 55
Layered VOIUMESvuiiiniii e 55
Layout methodscoviiiii 56
Concatenation, spanning, and Carvingc.ccooveeviininininienennn. 56
Striping (RAID-0) ..oeii e 58
Mirroring (RAID-1) ..eeei e 61
Striping plus mirroring (mirrored-stripe or RAID-0+1) 62
Mirroring plus striping (striped-mirror, RAID-1+0, or RAID-10)
... 63
RAID-5 (striping with parity)ccooviiii 64
ONline relayout ... 71
How online relayout Worksooiiiiiiiiiiii e 71
Limitations of online relayout ... 74
Transformation characteristicscocoiiiiiiiii 75
Transformations and volume length ..., 75
Volume resynchronizationcooveiiiiiii e 76
Dirty flags ..o 76
Resynchronization processcccoviiiiiiiiiiiii 76
HO-reloCationc.ouii 77
Dirty region 10ggingcueuinieie e 77
Log subdisks and PIEXEScuiuiiiiiiiiiii 78
Sequential DRLc.oui 78
Volume SNAPShOLSieiiii 78
Comparison of snapshot featuresccociiiiiiii 80
Support for atomic WHLESouviiii 81
FastRESYNC ... 82
How FastResync Worksooooiiiiiiiii e, 82
How non-persistent FastResync works with snapshots 83
How persistent FastResync works with snapshots 84
DCO volume VErSIONINGcuitiiiiiiit e 87
Effect of growing a volume on the FastResyncmap 89
FastResync limitations ..., 90
VOIUME SIS ..ot 91
How VxVM handles hardware clones or snapshotscccoveeene. 91
How VxVM uses the unique disk identifier (UDID)c.c.cocevne. 92
Volume enCrypPlion ... 93
Using passphrases for encryptioncccoveiiiiiiiiiiiiniiie, 98
Using Key Management Server for encryptioncocooiiinint. 98

Recommendations for encryptioncoocoiiiiiiiiii 99

5

Chapter 4

Section 2
Chapter 5

Chapter 6

Contents

How Veritas File System works 100
Veritas File System featurescooiviiiiiiii 100
Veritas File System performance enhancementscocooeee. 110

Enhanced I/O performanceccooiiiiiiiiiiii e 111

Delayed allocation for extending writesccccooeviiiiniiinan... 112
Using Veritas File System ... 112

Online system administrationcooiiiiiii 113

Application program interfaceccocooiiiiiiiiii 114
Provisioning storage ... 115
Provisioning new storage ..., 116
Provisioning new storagecoiiiiiiiiii 116
Growing the existing storage by adding a new LUN 117
Growing the existing storage by growing the LUN 118
Displaying SF information with vxlist ... 118

Advanced allocation methods for configuring

StOrage ..o 119
Customizing allocation behavior ..o 120
Setting default values for vxassistcooeiiiiiiiii 121
Using rules to make volume allocation more efficient 123
Understanding persistent attributes ... 126
Customizing disk classes for allocationccocooviiiiinn. 128
Specifying allocation constraints for vxassist operations with the
use clause and the require clausecccooviiiiiiiiinnnnn.. 131
Management of the use and require type of persistent attributes
.. 139
Creating volumes of a specific layout ..o, 142
Types of volume 1ayoutsooiiiiiiii e 143
Creating a mirrored volumecoooiiiiiiii 144
Creating a striped volume ... 146
Creating @ RAID-5 vOIUMEcouiiiiiii e 148
Creating a volume on specific disksccocoiiiiiiiini 150
Creating volumes on specific media typescccoivviiiiiii i, 151
Creating encrypted vOIUMESc.oiiiiiii i 151
Changing the encryption passwordc.coviiiiiiiiniiiiiieens 152
Viewing encrypted VOIUMEScooiiiiiii e 152
Automating startup for encrypted volumes ..ol 153

Configuring a Key Management Servercooviviiiiiiiiininiiinennn. 154

6

Chapter 7

Chapter 8

Contents

Specifying ordered allocation of storage to volumes 154
Site-based allocation 157
Changing the read policy for mirrored volumescoooiienn.. 158
Creating and mounting VxFS file systems 161
Creating a VxFSfile system ... 161
File system block Sizeccoiiiiiiii 163
INtENt 10Q SIZE ...vieii 163
Converting a file system to VXFS ... 164
Mounting a VXFS file system ... 164
10g MOUNt OPLION ...t 166
delaylog mount option ..o 166
tmplog mount Optioncoieiiii 167
logiosize mount Optionoiiii i 168
nodatainlog mount option ... 168
blkclear mount optioncoooiiii 169
mincache mount option ... 169
CONVOSYNC MOUNE OPLION ... 170
ioerror mouNnt OPtioNo 171
largefiles and nolargefiles mount optionscoooiiiinnl. 172
CIO MOUNt OPLION ... 174
mntlock mount Option ..o 174
ckptautomnt mount option ... 174
Combining mount command optionscooviiiiiiiinen. 174
Unmounting a file system ... 175
Resizing afile system ... 176
Extending a file system using fsadmocoo 176
Shrinking a file system ..., 177
Reorganizing afile system ... 178
Displaying information on mounted file systemsoolL 179
Identifying file system typesc.cooviiiiiiiiiii 180
Monitoring fre€ SPaCEc.iviriii i 181
Monitoring fragmentation ..o 182
Extent attributes ... 184
About extent attributes 184
Reservation: preallocating space to afileooooiiiinn. 185
Fixed extent Size ... 185
How the fixed extent size works with the shared extents 186
Other extent attribute controlscccooiiiiiiiiiis 186
Commands related to extent attributes ... 188

About failing to preserve extent attributesoonl 189

7

Section 3

Chapter 9

Contents

Administering multi-pathing with DMP
.. 191
Administering Dynamic Multi-Pathing 192
Discovering and configuring newly added disk devices 192
Partial device diSCOVEry ..o 193
About discovering disks and dynamically adding disk arrays 194
About third-party driver coexistence ... 196
How to administer the Device Discovery Layer 197
Making devices invisible to VXVM 210
Making devices visible to VXVM ... 211
About enabling and disabling 1/O for controllers and storage processors
.. 212
About displaying DMP database informationccL 213
Displaying the paths to a disk ..o 213
Administering DMP using the vxdmpadm utility 216
Retrieving information abouta DMP nodeooooiiiiiiintn. 218
Displaying consolidated information about the DMP nodes 219
Displaying the members of a LUN groupcccoivviiiiininnnnnne. 220
Displaying paths controlled by a DMP node, controller, enclosure,

Lo = 14 =V o o] o (PP 220
Displaying information about controllersccocoooiinne. 223
Displaying information about enclosurescc 224
Displaying information about array portsccoceeiviiiininnne. 225
Displaying information about devices controlled by third-party

AFIVEIS o 225
Displaying extended device attributeso 226
Suppressing or including devices from VxVM control 229
Gathering and displaying 1/O statisticsccovviiiiiiiiiiii. 229
Setting the attributes of the paths to an enclosure 236
Displaying the redundancy level of a device or enclosure 237
Specifying the minimum number of active paths 238
Displaying the 1/O poliCyccouviiiiii e 239
Specifying the 1/O pPoliCyovieiiiiii e 239
Disabling 1/O for paths, controllers, array ports, or DMP nodes

.. 245
Enabling I/O for paths, controllers, array ports, or DMP nodes

.. 247
Renaming an enclosure ... 248
Configuring the response to /O failuresc.coooviiiiiiiiininnnnen. 248

Configuring the 1/O throttling mechanismocooni. 250

8

Chapter 10

Chapter 11

Contents

Configuring Low Impact Path Probing (LIPP)ccocoiiiiianen. 251
Configuring Subpaths Failover Groups (SFG)ccocovviveinanen. 251
Displaying recovery option valuescooviiiiiiiiiiininnanns 252
Configuring DMP path restoration policiescocooiiiin.. 253
Stopping the DMP path restoration threado.onl. 254
Displaying the status of the DMP path restoration thread 255
Configuring Array Policy Modulesccocoiiiiiiiiiiii, 255
Dynamic Reconfiguration of devices ... 257
About online Dynamic Reconfigurationcoooiiiiiiiiineene. 257
Reconfiguring a LUN online that is under DMP control using the
Dynamic Reconfiguration toolcccoiiiiiiiiiiiie 258
Removing LUNs dynamically from an existing target ID 258
Adding new LUNs dynamically toatargetIDcoooeeiennt. 262
Replacing LUNs dynamically from an existing target ID 265
Dynamic LUN eXpansionc..ccoeiiiiiiiiiii i 267
Replacing a host bus adapter onlinecoooiiiiiiiiiiiinen.n. 269
Manually reconfiguring a LUN online that is under DMP control 269
Overview of manually reconfiguringa LUNc. 269
Manually removing LUNs dynamically from an existing target ID
.. 273
Manually adding new LUNs dynamically to a new target ID 275
About detecting target ID reuse if the operating system device
treeisnotcleaned Upcoooiiiiiii i 276
Scanning an operating system device tree after adding or removing
LUNS e 277
Manually cleaning up the operating system device tree after
removing LUNS ... 278
Changing the characteristics of a LUN from the array side 278
Upgrading the array controller firmware onlinec.cooiiini. 280
Managing deviCes ... 282
Displaying disk informationcoooiiiiiii 282
Displaying disk information with vxdiskadm 283
Changing the disk device naming schemec.ooone. 284
Displaying the disk-naming scheme ..., 285
Setting customized names for DMP nodescccovveivvenennanee. 286
Regenerating persistent device namescco, 287
Changing device naming for enclosures controlled by third-party
AIIVEIS o 288
About the Array Volume Identifier (AVID) attribute 289

About disk installation and formattingcooiii i 291

9

Chapter 12

Section 4
Chapter 13

Adding and removing diSKSc.iiuiiiiiiii e
Adding a disk to VXVM ...
Removing diSKSouiiiii

Renaming @ diskcouiiiniii

Event monitoring ...

About the Dynamic Multi-Pathing (DMP) event source daemon (vxesd)

Fabric Monitoring and proactive error detectionooiiinil

Dynamic Multi-Pathing (DMP) discovery of iSCSI and SAN Fibre
Channel topologyccviiii

DMP event I0ggingovirieiie e

Starting and stopping the Dynamic Multi-Pathing (DMP) event source
JABIMON ...

Administering Storage Foundation ...

Administering sites and remote mirrors

About sites and remote Mirrorsocovveiiiiiiiii
About site-based allocationcooiiiii
About site conSIStENCYo
About site tags ...
About the site read poliCy ..o

Making an existing disk group site consistent ...l

Configuring a new disk group as a Remote Mirror configuration

Fire drill — testing the configurationcooiiiiiiiin .
Simulating site failure ...
Verifying the secondary siteccoooiiiiiiii
Recovery from simulated site failurecoll

Changing the site name
Resetting the site name forahost ...

Administering the Remote Mirror configurationcccoeennne.
Configuring site tagging for disks or enclosures
Configuring automatic site tagging for a disk group
Configuring site consistency on a volumeccoooiieiennne.

Examples of storage allocation by specifying sitesc.cccceenanee.

Displaying site information ..o

Failure and recovery SCeNArioso.ieieiiiiiiiiiiiiiieie e
Recovering from a loss of site connectivitycoini.
Recovering from storage failure ...

Recovering from site failure ..o

Contents

10

Section 5
Chapter 14

Chapter 15

Section 6
Chapter 16

Recovering from disruption to connectivity to storage at all sites
fromthe hostsatasite ...
Automatic site reattachment ...

Optimizing 1/O performance ...

Veritas File System /O ...

About Veritas File System I/Ocooiiiii
Buffered and DireCt 1/O ..o
DireCt 1/O ..
Unbuffered /O ...
Data synchronous /O ..o
Concurrent 1/Ooe
Cache adVISOMES
Freezing and thawing afile system ...
Getting the 1/O SIZe ...
About Veritas InfoScale product components database accelerators

Veritas Volume Manager I/O ...,

Veritas Volume Manager throttling of administrative 1/O
Managing application /O workloads using maximum IOPS settings
About application volume groupsccooeiiiiiiiiiiii
Creating application volume groupsccooovviiiinninieenen.
Viewing the list of application volume groupscceoeennnn.
Setting the maximum IOPS threshold on application volume groups
Viewing the IOPS statistics for application volume groups
Removing the maximum IOPS setting from application volume
o o o T
Adding volumes to an application volume groupcoooienns
Removing volumes from an application volume group
Removing an application volume groupcoooiiiiiiiiiiiean..

Using Point-in-time copies ...

Understanding point-in-time copy methods

About point-in-time COoPIESovviiiiii
When to use point-in-time COopIescovviiriiiiiiii

Contents

1

Chapter 17

Contents

Implementing point-in time copy solutions on a primary host 349
Implementing off-host point-in-time copy solutions 351
About Storage Foundation point-in-time copy technologies 357
Comparison of Point-in-time copy solutionsc.oviiianee. 358
Volume-level snapshots ... 359
Persistent FastResync of volume snapshotsc..cooeenen. 359
Data integrity in volume snapshotscocoiiiiins 359
Third-mirror break-off snapshotscooviii 360
Space-optimized instant volume snapshotsn. 361
Choices for snapshot resynchronizationccooats 362
Disk group split/joinc.oeiniii e 362
Storage ChecKpointsoiuiiiiiii 363
How Storage Checkpoints differ from snapshots 363
How a Storage Checkpoint workscoooviiiiiiiiiiin, 364
Types of Storage Checkpointsc.cooiiiiiiiiiiiii, 368
ADOUL FileSNapsouiii 371
Properties of FileSnapscocoiiiiiiii 371
Concurrent /O to FileSnapsocovvviiiiiii 372
Copy-on-write and FileSNapscccooeiiiiiiiii e 372
Reading from FileSnapscoooiiiiiii e 373
Block map fragmentation and FileSnapscoooviiiiiiiinnn. 373
Backup and FileSnapscocoviiiiii 373
About snapshot file systems ... 374
How a snapshot file system worksccccooiiiiiiiiiininn, 374
Administering volume snapshots 376
About volume snapshotscooviiiii 376
Traditional third-mirror break-off snapshotscoooiiin. 377
Creating traditional third-mirror break-off snapshots 378
Full-sized instant snapshots ..o 387
Creating instant snapshotscccooiii 388
Linked break-off snapshotscoooiiiiiiiii 421
Cascaded sNAPShOLSoviviiiiii e 422
Creating a snapshot of a snapshotooon, 424
Creating multiple snapshots ... 426
Restoring the original volume from a snapshotccoole. 427
Adding a version 0 DCO and DCO voIUMEccovniiiiiiiiiiiiiiieeans 428
Specifying storage for version 0 DCO plexesccccevvivivinannnnn. 429
Removing a version 0 DCO and DCO volumecccevnnen... 431

Reattaching a version 0 DCO and DCO volume 431

12

Chapter 18

Chapter 19

Chapter 20

Administering Storage Checkpoints

About Storage Checkpointscooviiiiiiiiii
Storage Checkpoint administrationcocoiiiiiiiiiin
Creating a Storage Checkpointccoooviiiiiiiiiiieeee
Removing a Storage Checkpointccooviiiiiiiiiiiiiiien
Accessing a Storage Checkpointcooiiiiiiiiiiii
Converting a data Storage Checkpoint to a nodata Storage
Checkpointcooviii
Enabling and disabling Storage Checkpoint visibility
Storage Checkpoint space management considerations
Restoring from a Storage Checkpointcc.cooiiiiiiiiiin,
Storage Checkpoint qUOLaSsciuiiiiiii

Administering FileSnaps ...,

FileSnap creationo

FileSnap creation over Network File Systemocoieeis

USING FileSNaPs ...t

Using FileSnaps to create point-in-time copies of files

Using FileSnaps to provision virtual desktopscocooveieents
Using FileSnaps to optimize write intensive applications for virtual

MACKINES ...eiiei e

Using FileSnaps to create multiple copies of data instantly

An example to perform FileSnapcccooiiiiii
Comparison of the logical size output of the fsadm -S shared, du, and

df COMMANAS ..o

Administering snapshot file systems ...

Snapshot file system backupscocoviiiiiiii
Snapshot file system performancecooviiiiiii
About snapshot file system disk structurec.cco
Differences between snapshots and Storage Checkpoints
Creating a snapshot file system ...

Contents

13

Section 7

Chapter 21

Chapter 22

Chapter 23

Contents

Optimizing storage with Storage

Foundation ... 465
Understanding storage optimization solutions in
Storage Foundation ..., 466
About thin provisioningcooiiiii 466
About thin optimization solutions in Storage Foundation 467
ADbOUL SMArMOVE ... 468
SmartMove for thin provisioningcccooiiiiiiiiiii 468
About the Thin Reclamation featurecocoiiiii 469
About reclaiming space on Solid State Devices (SSDs) with the TRIM
OPEIALION ..ttt 469
Determining when to reclaim space on a thin reclamation LUN 470
How automatic reclamation Workscooiiiiiiiiii, 471

Migrating data from thick storage to thin storage

.. 473
About using SmartMove to migrate to Thin Storage 473
Migrating to thin provisioningc.coooiiiii 473
Maintaining Thin Storage with Thin Reclamation

.. 477
Reclamation of storage on thin reclamation arrays 477

About Thin Reclamation of a disk, a disk group, or an enclosure

.. 478

About Thin Reclamation of a file systemoine. 479
Identifying thin and thin reclamation LUNScocoiiiiiiiiiini, 479

Displaying detailed information about reclamation commands

.. 480
Displaying VxFS file system usage on thin reclamation LUNs 482
Reclaiming space on afile system ... 484
Reclaiming space on a disk, disk group, or enclosure 486
About the reclamation log file ... 488
Monitoring Thin Reclamation using the vxtask command 489

Configuring automatic reclamationocoii 490

14

Section 8
Chapter 24

Chapter 25

Chapter 26

Contents

Maximizing storage utilization ... 492
Understanding storage tiering with SmartTier
.. 493
ADOUL SMANTIEreeieei e 493
About VXFS multi-volume file systemscocooiiiiiiiinns 495
About VXVM volume Setsooiiiiiiiiiii 496
About VOIUME tagS ... 496
SmartTier file management ... 496
SmartTier sub-file object management ... 497
How the SmartTier policy works with the shared extents 497
SmartTier in a High Availability (HA) environmentc.onie 498
Creating and administering volume sets 499
ADbOUL VOIUME SELS ...oeiiii 499
Creating @ VoIUME SEtiuiiiii 500
Adding a volume to a volume Setc.ccoiiiiiiiiii 501
Removing a volume from a volume setcoiiiiiiiiiin, 501
Listing details of volume sets ..o 501
Stopping and starting volume sets ... 502
Managing raw device nodes of component volumes 503
Enabling raw device access when creating a volume set 504
Displaying the raw device access settings for a volume set 505
Controlling raw device access for an existing volume set 505
Multi-volume file systems ... 507
About multi-volume file systems ..o 507
AbOUt VOIUME tYPES .. 508
Features implemented using multi-volume file system (MVFS) support
.. 508
Volume availabilitycoooiii 509
Creating multi-volume file systems ..o 510
Converting a single volume file system to a multi-volume file system
.. 511
Adding a volume to and removing a volume from a multi-volume file
SY S M e 513
Adding a volume to a multi-volume file system 513
Removing a volume from a multi-volume file system 513
Forcibly removing a volume in a multi-volume file system 514

Moving volume 0 in a multi-volume file system 514

15

Chapter 27

Volume encapsulationcoooiiiiiiiii
Encapsulating a volume ...
Deencapsulating a volumecoooiiiiiiiii

Reporting file extents ..o

Load balanCingc.ieuiuiiii e
Defining and assigning a load balancing allocation policy
Rebalancing extents ...

Converting a multi-volume file system to a single volume file system

Administering SmartTier ...

ADOUL SMATIET ...t
About compressing files with SmartTierooooiiin..
Supported SmartTier document type definitions
Placement ClasSesc.couiuiiiii
Tagging volumes as placement classescccocevviiiiiiiinnnn..
Listing placement Classescoovviiiiiiiiiiii s
Administering placement poliCiesccccviiiiiiiiiiii
Assigning a placement poliCyccooeiiiiiiiiiii
Unassigning a placement PoliCYcoovviiiiiiiiiiiiiiceeieieeens
Analyzing the space impact of enforcing a placement policy
Querying which files will be affected by enforcing a placement
POICY e
Enforcing a placement poliCyccooeiiiiiiiiiii e,
Validating a placement poliCyccoviiiiiiiiiii e
File placement policy grammarc.ooooiiiiiiiii i
File placement policy rulesooiiiiiii e
SELECT statement ..o
CREATE statementc.ooiiiiiii e
RELOCATE statementcooiiiiiiiiiii e
DELETE statement ...
COMPRESS statementccooeiiiiiiie e
UNCOMPRESS statementcccooeiiiiiiiiiieee
Calculating 1/0 temperature and access temperature
Multiple criteria in file placement policy rule statements
Multiple file selection criteria in SELECT statement clauses
Multiple placement classes in <ON> clauses of CREATE
statements and in <TO> clauses of RELOCATE statements
Multiple placement classes in <FROM> clauses of RELOCATE
and DELETE statements ...,

Contents

16

Chapter 28

Chapter 29

Contents

Multiple conditions in <WHEN> clauses of RELOCATE and

DELETE statements ..o 579

File placement policy rule and statement orderingcocoeieinne. 579
File placement policies and extending filesc.cocoiiiiini. 582
Using SmartTier with solid state diskscooviiiii, 582
Fine grain temperatures with solid state disks 583
Prefer mechanism with solid state disksll. 583
Average /O activity with solid state disksccoooiiiiiiints 584
Frequent SmartTier scans with solid state disks 584
Quick identification of cold files with solid state disks 585
Example placement policy when using solid state disks 586
Sub-file relocationo 590
Moving sub-file data of files to specific target tiers 590
Administering hot-relocation 591
About hot-relocation ... 591
How hot-relocation WOrKSoeiiiiiiiiii e 592
Partial disk failure mail messagesccoceviiiiiiiiiiiii, 595
Complete disk failure mail messagescocoeviiiiiiiiiiininnnn. 596
How space is chosen for relocationcoooooiiiiiiiinn, 597
Configuring a system for hot-relocationcccoceiiiiinn. 598
Displaying spare disk informationooiii 598
Marking a disk as a hot-relocation sparec.coiiiiiiiiiiiinn. 599
Removing a disk from use as a hot-relocation spare 600
Excluding a disk from hot-relocation usecoooeviiiiiiiiiininn.. 601
Making a disk available for hot-relocation usecooenil. 602
Configuring hot-relocation to use only spare diskscceenene. 602
Moving relocated subdiSKScooiiiiiiiiii 603
Moving relocated subdisks using vxunrelocc.ooeienins 603
Restarting vxunreloc after errorscccooiiiiiiiiii 606
Modifying the behavior of hot-relocation ..., 606
Deduplicatingdata ... 608
About deduplicating data ... 608
About deduplication chunk size ... 609
Deduplication and file system performancecc.coeoeents 610
About the deduplication scheduler ... 610
Deduplicating data ... 611
Enabling and disabling deduplication on a file system 614
Scheduling deduplication of a file systemcocoiiiinne. 614
Performing a deduplication dry runcoooiiiiiiiiiiii 616

Querying the deduplication status of a file system 616

17

Chapter 30

Section 9
Chapter 31

Contents

Starting and stopping the deduplication scheduler daemon 616
Deduplication reSultscoiuiiiii 617
Deduplication supportabilityc.coouiiiiiiii 617
Deduplication USE CaSeSoeuiuiiiiiiiii e 617
Deduplication limitationscooiiiiii 618
Compressing files ... 620
About compressing fileso 620

About the compressed file format ... 621

About the file compression attributesoo 621

About the file compression block sizec.cocoiil 622
Compressing files with the vxcompress command 622
Interaction of compressed files and other commands 624
Interaction of compressed files and other features 625
Interaction of compressed files and applicationsooceill 626
Use cases for compressing filescocooiiiiiiiiiii 627

Compressed files and databasescccoceiiiiin 627

Compressing all files that meet the specified criteria 631
Administering storage ... 632
Managing volumes and disk groups 633
Rules for determining the default disk groupccocoooiiiiinianen. 633

Displaying the system-wide boot disk groupcoooiieene. 634

Displaying and specifying the system-wide default disk group

.. 634
Moving volumes or diskscoooiiii 635

Moving volumes from a VXVM diskcooviiiiiiiiiiiiiieeeen 635

Moving disks between disk groupsccoooiiiiiiiiiiiiii 636

Reorganizing the contents of disk groupsccccociiiiiiinen, 637
Monitoring and controlling tasks ... 650

Specifying task tagsovoeeiiiiiii e 651

Managing tasks with vxtask ... 652
Using vxnotify to monitor configuration changesoooee. 654
Performing online relayoutoooiiiiii 654

Permitted relayout transformationsccooiii 655

Specifying a non-default layoutcoooiiiiiiiii 658

Specifying a plex for relayoutc.oooiiiiiiiiiii 659

Tagging a relayout operation ... 659

Viewing the status of a relayoutcooiiiiiii 659

Controlling the progress of a relayoutccoooiiiiiiiiiinnnn.n. 660

18

Chapter 32

Contents

Adding @ mirror to @ VOIUMEoeuiiiiiiii e 661
Mirroring all VOIUMES ... 661
Mirroring volumes on a VXVM diskc.oooviiiiiiiiiiii, 662

Configuring SMartMOVeooiriiii 663

Removing @ MIrror ... 664

Setting tags on VOIUMEScoiviiii 665

Managing disk groUpSc.oeieiiiiiii e 666
DiSK group VEISIONSvuieeiiie e 666
Displaying disk group informationcc.cooviiiiiii 672
Creating @ diSK groupvevuiiii e 674
Removing a disk from a disk groupc.coociiiiiiiiiii 675
Deporting @ disk groupcovuiiiinii 676
Importing @ disk groupc.iuiniiii e 678
Handling of minor number conflictscooviiii 679
Moving disk groups between systemsc.oooiiiiiiin 680
Importing a disk group containing hardware cloned disks 687
Setting up configuration database copies (metadata) for a disk

IOUPD ettt ettt et 693
Renaming @ disk groupociuiiiiiiii e 694
Handling conflicting configuration copiesccocoooviiiininnn. 696
Disabling @ disk groupc.ouiiiiiiii 703
Destroying a disk groupc.ocviiiiiiiii 703
Backing up and restoring disk group configuration data 704
Working with existing ISP disk groupscccoviiiiiiiiiinininns 706

Managing plexes and subdiSKscccooiiiiiiiiiii 708
Reattaching plexesooiiiiiiii 708
Plex synchronization ... 71

Decommissioning StOrageovuveiiiiiiiiii 712
Removing @ voluMEe ..o 712
Removing a disk from VXVM controlcoooviiiiiiiiininnns 713
About shredding datac.coooiiii 713
Shredding @ VXVM disk ... 714
Failed disk shred operation results in a disk with no label 717
Removing and replacing diskscocoiiiiiiiii 717

Rootability ... 723

Encapsulating @ diskcooiiiii 723
Failure of disk encapsulationc.cooiiiiiiiiiiiiie 727
Using nopriv disks for encapsulationcccooiiii. 728

Device name format changes in RHEL 7 environments after
encapsulation ... 729

ROOADIIIY ... 730

19

Chapter 33

Chapter 34

Section 10
Appendix A

Contents

Restrictions on using rootability with Linuxcooints 731
Sample supported root disk layouts for encapsulation 733
Booting root VOIUMESooiiiiiii 740
Boot-time volume restrictionsc.cooiiiiiiiii 740
Creating redundancy for the root diskcoooiiiiiiin... 741
Creating an archived back-up root disk for disaster recovery 741
Encapsulating and mirroring the root diskc.ocooiiiiinns 741
Upgrading the kernel on a root encapsulated system 747
Administering an encapsulated boot diskc.coo 749
Creating a snapshot of an encapsulated boot disk 749
Unencapsulating the root disk ... 750
QUOLAS ... 751
About Veritas File System quota limitscocooiiii, 751
About quota files on Veritas File System ..., 752
About Veritas File System quota commandscooeviiiiinnn, 753
About quota checking with Veritas File Systemconl. 754
Using Veritas File System quotascccoooiiiiiiiiiiiicea 754
Turning on Veritas File System quotasc.cocoiiiiinnn. 755
Turning on Veritas File System quotas at mount time 755
Editing Veritas File System quotascccocooiiiiiiiiiiil, 756
Modifying Veritas File System quota time limits 756
Viewing Veritas File System disk quotas and usage 757
Displaying blocks owned by users or groupscccocvvvieeeenennn.. 757
Turning off Veritas File System quotasc.cocoiiiinn. 757
Support for 64-bit QUOTASceuiiiiii 758
File Change Log ... 759
About Veritas File System File Change Logccccoviiiiiiiiiiiinenn.. 759
About the Veritas File System File Change Logfile 760
Veritas File System File Change Log administrative interface 761
Veritas File System File Change Log programmatic interface 763
Summary of Veritas File System File Change Log API functions 765
Reference ... 767
Reverse path name lookup ... 768

About reverse path name lookUpcooviiiiiiii 768

20

Appendix B

Appendix C

Appendix D

Contents

Tunable parameters ... 770
About tuning Storage Foundationcocooiiiiii 770
Tuning the VXFS file system ..o 770
Tuning inode table size ... 771
Tuning performance optimization of inode allocation 771
Tuning file system parallel direct /Occoooiiiiiiiiiii, 772
Partitioned direCtoriescccviiiiiiiii 772
Veritas Volume Manager maximum /O sizeccooienanen. 772
Native asynchronous I/O with cloned processesc..c.c...... 773
DMP tunable parameterscccoveiiiiiiii e 773
Methods to change Dynamic Multi-Pathing tunable parameters 780
Changing the values of DMP parameters with the vxdmpadm
settune command line ... 780
About tuning Dynamic Multi-Pathing (DMP) with templates 780
Tunable parameters for VXVM ... 788
Tunable parameters for core VXVMcoiiiiiiiiiiiiiiin, 788
Tunable parameters for FlashSnap (FMR)ccooiiiiiiiianen. 795
Tunable parameters for CVM ..., 800
Tunable parameters for VVRccooiiiiiiiii 801
Points to note when changing the values of the VVR tunables
.. 802
Methods to change Veritas Volume Manager tunable parameters
.. 803
Changing the values of the Veritas Volume Manager tunable
parameters using the vxtune command line 804
Changing the value of the Veritas Volume Manager tunable
parameters using templates ... 806
Veritas File System disk layout 808
About Veritas File System disk layoutscccoociiiiiiiiiiins 808
VXFS Version 7 disk layoutccoiiiiii 810
VXFS Version 8 disk layoutcccoiiiiiiii 811
VXFS Version 9 disk layoutccooiiiiiii 811
VXFS Version 10 disk layoutcooiiiiiiii e 812
VXFS Version 11 disk layout ..o 812
Command reference ..o, 814
Command completion for Veritas commandscoooiiiin. 814
Veritas Volume Manager command referencecccooviviiinnnn. 816
Veritas Volume Manager manual pagesccoeveviiiiiiinininieinn. 837

Section 1M — administrative commandsccccoiiiiiinnn. 837

21

Contents

Section 4 — file formats

... 841
Veritas File System command summaryc.coooiiiiiiiiiiiiiinens 841
Veritas File System manual pagescoooviiiiiiiiiiiii 843
SmartlO command referencecooovviiiiiiiiii 849

22

Introducing Storage
Foundation

= Chapter 1. Overview of Storage Foundation
= Chapter 2. How Dynamic Multi-Pathing works
s Chapter 3. How Veritas Volume Manager works

= Chapter 4. How Veritas File System works

Overview of Storage
Foundation

This chapter includes the following topics:

= About Storage Foundation

= About Dynamic Multi-Pathing (DMP)

= About Veritas VVolume Manager

= About Veritas File System

= About Storage Foundation Cluster File System (SFCFS)
= About Veritas InfoScale Operations Manager

= About Veritas Replicator

= Use cases for Storage Foundation

About Storage Foundation

Storage Foundation is a storage management solution to enable robust,
manageable, and scalable storage deployment. SF maximizes your storage
efficiency, availability, agility, and performance across heterogeneous server and
storage platforms.

Storage Foundation consists of product components and features that can be used
individually and together to improve performance, resilience and ease of
management for your storage and applications.

Table 1-1 describes the components of Storage Foundation.

Overview of Storage Foundation
About Storage Foundation

Table 1-1 Storage Foundation components

Component

Description

Dynamic Multi-Pathing
(DMP)

Manages the I/O performance and path availability of the physical
storage devices that are configured on the system.

DMP creates DMP metadevices across all of the paths to each
LUN. DMP uses the DMP metadevices to manage path failover
and /O load balancing across the paths to the physical devices.

DMP metadevices provide the foundation for Veritas Volume
Manager (VxVM) and Veritas File System (VxFS). DMP also
supports native operating system volumes and file systems on
DMP devices.

Veritas Volume Manager
(VxVM)

Provides a logical storage abstraction layer or storage
management between your operating system devices and your
applications.

VxVM enables you to create logical devices called volumes on
the physical disks and LUNs.The applications such as file systems
or databases access the volumes as if the volumes were physical
devices but without the physical limitations.

VxVM features enable you to configure, share, manage, and
optimize storage 1/O performance online without interrupting data
availability. Additional VxVM features enhance fault tolerance and
fast recovery from disk failure or storage array failure.

Veritas File System
(VXFS)

Provides a high-performance journaling file system.

VxFS is designed for use in operating environments that deal with
large amounts of data and that require high performance and
continuous availability.

VxFS features provide quick-recovery for applications, scalable
performance, continuous availability, increased 1/0O throughput,
and increased structural integrity.

Replicator (VR)

Enables you to maintain a consistent copy of application data at
one or more remote locations for disaster recovery.

Replicator provides the flexibility of block-based continuous
replication with Volume Replicator (VVR) and file-based periodic
replication with File Replicator (VFR). Replicator option is a
separately-licensable feature of Storage Foundation.

A related product, Veritas Operations Manager, provides a centralized management

console that you can use with Veritas InfoScale products.

See “About Veritas InfoScale Operations Manager” on page 30.

25

Overview of Storage Foundation | 26
About Dynamic Multi-Pathing (DMP)

About Dynamic Multi-Pathing (DMP)

Dynamic Multi-Pathing (DMP) provides multi-pathing functionality for the operating
system native devices that are configured on the system. DMP creates DMP
metadevices (also known as DMP nodes) to represent all the device paths to the
same physical LUN.

DMP is available as a component of Storage Foundation. DMP supports Veritas
Volume Manager (VxVM) volumes on DMP metadevices, and Veritas File System
(VxFS) file systems on those volumes.

DMP metadevices support the OS native logical volume manager (LVM). You can
create LVM volumes and volume groups on DMP metadevices.

Veritas Volume Manager (VxVM) volumes and disk groups can co-exist with LVM
volumes and volume groups. But, each device can only support one of the types.
If a disk has a VxVM label, then the disk is not available to LVM. Similarly, if a disk
is in use by LVM, then the disk is not available to VxVM.

About Veritas Volume Manager

Veritas™ Volume Manager (VxVM) by Veritas is a storage management subsystem
that allows you to manage physical disks and logical unit numbers (LUNs) as logical
devices called volumes. A VxVM volume appears to applications and the operating
system as a physical device on which file systems, databases, and other managed
data objects can be configured.

VxVM provides easy-to-use online disk storage management for computing
environments and Storage Area Network (SAN) environments. By supporting the
Redundant Array of Independent Disks (RAID) model, VxVM can be configured to
protect against disk and hardware failure, and to increase I/O throughput.
Additionally, VxVM provides features that enhance fault tolerance and fast recovery
from disk failure or storage array failure.

VxVM overcomes restrictions imposed by hardware disk devices and by LUNs by
providing a logical volume management layer. This allows volumes to span multiple
disks and LUNSs.

VxVM provides the tools to improve performance and ensure data availability and
integrity. You can also use VxVM to dynamically configure storage while the system
is active.

Overview of Storage Foundation | 27
About Veritas File System

About Veritas File System

A file system is simply a method for storing and organizing computer files and the
data they contain to make it easy to find and access them. More formally, a file
system is a set of abstract data types (such as metadata) that are implemented for
the storage, hierarchical organization, manipulation, navigation, access, and retrieval
of data.

Veritas File System (VxFS) was the first commercial journaling file system. With
journaling, metadata changes are first written to a log (or journal) then to disk. Since
changes do not need to be written in multiple places, throughput is much faster as
the metadata is written asynchronously.

VxFS is also an extent-based, intent logging file system. VxFS is designed for use
in operating environments that require high performance and availability and deal
with large amounts of data.

VxFS major components include:

File system logging About the Veritas File System intent log
Extents About extents
File system disk layouts About file system disk layouts

About the Veritas File System intent log

Most file systems rely on full structural verification by the £sck utility as the only
means to recover from a system failure. For large disk configurations, this involves
a time-consuming process of checking the entire structure, verifying that the file
system is intact, and correcting any inconsistencies. VxFS provides fast recovery
with the VxFS intent log and VxFS intent log resizing features.

VxFS reduces system failure recovery times by tracking file system activity in the
VxFS intent log. This feature records pending changes to the file system structure
in a circular intent log. The intent log recovery feature is not readily apparent to
users or a system administrator except during a system failure. By default, VxXFS
file systems log file transactions before they are committed to disk, reducing time
spent recovering file systems after the system is halted unexpectedly.

During system failure recovery, the VxFS fsck utility performs an intent log replay,
which scans the intent log and nullifies or completes file system operations that
were active when the system failed. The file system can then be mounted without
requiring a full structural check of the entire file system. Replaying the intent log
might not completely recover the damaged file system structure if there was a disk

Overview of Storage Foundation | 28
About Veritas File System

hardware failure; hardware problems might require a complete system check using
the f£sck utility provided with VxFS.

The mount command automatically runs the VxFS fsck command to perform an
intent log replay if the mount command detects a dirty log in the file system. This
functionality is only supported on a file system mounted on a Veritas Volume
Manager (VxVM) volume, and is supported on cluster file systems.

See the fsck_vxfs(1M) manual page and mount_vxfs(1M) manual page.

The VxFS intent log is allocated when the file system is first created. The size of
the intent log is based on the size of the file system—the larger the file system, the
larger the intent log. You can resize the intent log at a later time by using the £sadm
commnad.

See the fsadm vxfs(1M) manual page.

The maximum default intent log size for disk layout Version 7 or later is 256
megabytes.

Note: Inappropriate sizing of the intent log can have a negative impact on system
performance.

See “Intent log size” on page 163.

About extents

An extent is a contiguous area of storage in a computer file system, reserved for a
file. When starting to write to a file, a whole extent is allocated. When writing to the
file again, the data continues where the previous write left off. This reduces or
eliminates file fragmentation. An extent is presented as an address-length pair,
which identifies the starting block address and the length of the extent (in file system
or logical blocks). Since Veritas File System (VxFS) is an extent-based file system,
addressing is done through extents (which can consist of multiple blocks) rather
than in single-block segments. Extents can therefore enhance file system throughput.

Extents allow disk 1/O to take place in units of multiple blocks if storage is allocated
in contiguous blocks. For sequential I/0, multiple block operations are considerably
faster than block-at-a-time operations; almost all disk drives accept I/O operations
on multiple blocks.

Extent allocation only slightly alters the interpretation of addressed blocks from the
inode structure compared to block-based inodes. A VxFS inode references 10 direct
extents, each of which are pairs of starting block addresses and lengths in blocks.

Disk space is allocated in 512-byte sectors to form logical blocks. VXFS supports
logical block sizes of 1024, 2048, 4096, and 8192 bytes. The default block size is

Overview of Storage Foundation | 29
About Storage Foundation Cluster File System (SFCFS)

1 KB for file system sizes of up to 2 TB, and 8 KB for file system sizes 2 TB or
larger.

About file system disk layouts

The disk layout is the way file system information is stored on disk. On Veritas File
System (VxFS), several disk layout versions, numbered 1 through 11, were created
to support various new features and specific UNIX environments.

Currently, only the Version 7, 8, 9, 10, and 11 disk layouts can be created and
mounted. The Version 6 disk layout can be mounted, but only for upgrading to a
supported version. No other versions can be created or mounted.

See “About Veritas File System disk layouts” on page 808.

About Storage Foundation Cluster File System
(SFCFS)

Extends the VxFS file system for use with multiple systems (or nodes) in a cluster.
CFS enables you to simultaneously mount the same file system on multiple nodes.
CFS features simplify management, improve performance, and enable fast failover
of applications and databases.

About Veritas File System features supported in cluster file systems

Storage Foundation Cluster File System High Availability is based on Veritas File
System (VxFS).

Most of the major features of VxFS local file systems are available on cluster file
systems, including the following features:

= Extent-based space management that maps files up to one terabyte in size

= Fastrecovery from system crashes using the intent log to track recent file system
metadata updates

= Online administration that allows file systems to be extended and defragmented
while they are in use

Every VxFS manual page has a section on "Storage Foundation Cluster File System
Issues" with information on whether the command functions on a cluster-mounted
file system and indicates any difference in behavior from local mounted file systems.

Overview of Storage Foundation | 30
About Veritas InfoScale Operations Manager

Veritas File System features not in cluster file systems

See Table 1-2 on page 30.lists functionality that is not supported in a cluster file
system. You can attempt to use the listed functionality, but there is no guarantee
that the functionality will operate as intended.

It is not advisable to use unsupported functionality on SFCFSHA, or to alternate
mounting file systems with these options as local and cluster mounts.

Table 1-2 Veritas File System features not supported in cluster file systems

glog Quick log is not supported.

Swap files Swap files are not supported on cluster-mounted file
systems.

mknod The mknod command cannot be used to create

devices on a cluster mounted file system.

Cache advisories Cache advisories are set with the mount command
on individual file systems, but are not propagated to
other nodes of a cluster.

Cached Quick I/0 This Quick I/O for Databases feature that caches data
in the file system cache is not supported.

Commands that depend on file File access times may appear different across nodes

access times because the atime file attribute is not closely

synchronized in a cluster file system. So utilities that
depend on checking access times may not function
reliably.

About Veritas InfoScale Operations Manager

Veritas InfoScale Operations Manager provides a centralized management console
for Veritas InfoScale products. You can use Veritas InfoScale Operations Manager
to monitor, visualize, and manage storage resources and generate reports.

Veritas recommends using Veritas InfoScale Operations Manager to manage
Storage Foundation and Cluster Server environments.

You can download Veritas InfoScale Operations Manager from
https://sort.veritas.com/.

Refer to the Veritas InfoScale Operations Manager documentation for installation,
upgrade, and configuration instructions.

The Veritas Enterprise Administrator (VEA) console is no longer packaged with
Veritas InfoScale products. If you want to continue using VEA, a software version

https://sort.veritas.com/

Overview of Storage Foundation | 31
About Veritas Replicator

is available for download from
https://www.veritas.com/product/storage-management/infoscale-operations-manager.
Storage Foundation Management Server is deprecated.

About Veritas Replicator

Veritas Replicator provides organizations with a comprehensive solution for
heterogeneous data replication. As an option to Storage Foundation, Veritas
Replicator enables cost-effective replication of data over IP networks, giving
organizations an extremely flexible, storage hardware independent alternative to
traditional array-based replication architectures. Veritas Replicator provides the
flexibility of block-based continuous replication with Volume Replicator Option (VVR)
and file-based periodic replication with File Replicator Option (VFR).

What is VFR?

Veritas File Replicator (VFR) enables cost-effective periodic replication of data over
IP networks, giving organizations an extremely flexible storage independent data
availability solution for disaster recovery and off-host processing. With flexibility of
scheduling the replication intervals to match the business requirements, Veritas
File Replicator tracks all updates to the file system and replicates these updates at
the end of the configured time interval. VFR leverages data deduplication provided
by Veritas File System (VxFS) to reduce the impact that replication can have on
scarce network resources. VFR is included, by default, with Virtual Store 6.0 on
Linux and is available as an option with Storage Foundation and associated products
on Linux.

Features of VFR

Veritas File Replicator (VFR) includes the following features:

= Supports periodic replication of a subset of a file system ranging from a single
file to an entire file system.

= Supports reversible data transfer. The target of replication may become the
source at runtime, with the former source system becoming a target.

= Provides efficiency of data transfer when transferring shared extents, so that
the data is not sent multiple times over the network.

= Supports automatic recovery from the last good successfully replicated point in
time image.

» Periodically replicates changes. The interval is configurable by the user.

= Supports deduplication to increase storage efficiency on the target system.

https://www.veritas.com/product/storage-management/infoscale-operations-manager

Overview of Storage Foundation | 32
Use cases for Storage Foundation

Supports protection of the target file system from accidental writes.

See the Storage Foundation and High Availability Solutions Replication
Administrator’s Guide for more information.

Use cases for Storage Foundation

Storage Foundation components and features can be used individually and together
to improve performance, resilience, and ease of management for your storage and
applications. Storage Foundation features can be used for:

Improving database performance: you can use Storage Foundation database
accelerators to improve 1/0 performance. SFHA Solutions database accelerators
achieve the speed of raw disk while retaining the management features and
convenience of a file system.

Optimizing thin array usage: you can use Storage Foundation thin provisioning
and thin reclamation solutions to set up and maintain thin storage.

Backing up and recovering data: you can use Storage Foundation Flashsnap,
Storage Checkpoints, and NetBackup point-in-time copy methods to back up
and recover your data.

Processing data off-host: you can avoid performance loss to your production
hosts by using Storage Foundation volume snapshots.

Optimizing test and development environments: you can optimize copies of your
production database for test, decision modeling, and development purposes
using Storage Foundation point-in-time copy methods.

Optimizing virtual desktop environments: you can use Storage Foundation
FileSnap to optimize your virtual desktop environment.

Maximizing storage utilization: you can use Storage Foundation SmartTier to
move data to storage tiers based on age, priority, and access rate criteria.

Maximizing storage utilization: you can use Storage Foundation Flexible Storage
Sharing for data redundancy, high availability, and disaster recovery, without
physically shared storage.

Migrating your data: you can use Storage Foundation Portable Data Containers
to easily and reliably migrate data from one environment to another.

For a supplemental guide that documents Storage Foundation use case solutions
using example scenarios: See the Veritas InfoScale Solutions Guide.

How Dynamic
Multi-Pathing works

This chapter includes the following topics:
= How DMP works

= Veritas Volume Manager co-existence with Oracle Automatic Storage
Management disks

How DMP works

Dynamic Multi-Pathing (DMP) provides greater availability, reliability, and
performance by using the path failover feature and the load balancing feature.
These features are available for multiported disk arrays from various vendors.

Disk arrays can be connected to host systems through multiple paths. To detect
the various paths to a disk, DMP uses a mechanism that is specific to each
supported array. DMP can also differentiate between different enclosures of a
supported array that are connected to the same host system.

See “Discovering and configuring newly added disk devices” on page 192.

The multi-pathing policy that DMP uses depends on the characteristics of the disk
array.

DMP supports the following standard array types:

Table 2-1

How Dynamic Multi-Pathing works
How DMP works

Array type

Description

Active/Active (A/A)

Allows several paths to be used concurrently for
1/0O. Such arrays allow DMP to provide greater /O
throughput by balancing the 1/O load uniformly
across the multiple paths to the LUNs. In the event
that one path fails, DMP automatically routes 1/O
over the other available paths.

Asymmetric Active/Active (A/A-A)

A/A-A or Asymmetric Active/Active arrays can be
accessed through secondary storage paths with
little performance degradation. The behavior is
similar to ALUA, except that it does not support
the SCSI commands that an ALUA array supports.

Asymmetric Logical Unit Access (ALUA)

DMP supports all variants of ALUA.

Active/Passive (A/P)

Allows access to its LUNs (logical units; real disks
or virtual disks created using hardware) via the
primary (active) path on a single controller (also
known as an access port or a storage processor)
during normal operation.

In implicit failover mode (or autotrespass mode),
an A/P array automatically fails over by scheduling
1/0 to the secondary (passive) path on a separate
controller if the primary path fails. This passive port
is not used for I/O until the active port fails. In A/P
arrays, path failover can occur for a single LUN if
1/O fails on the primary path.

This array mode supports concurrent I/O and load
balancing by having multiple primary paths into a
controller. This functionality is provided by a
controller with multiple ports, or by the insertion of
a SAN switch between an array and a controller.
Failover to the secondary (passive) path occurs
only if all the active primary paths fail.

34

Table 2-1 (continued)

How Dynamic Multi-Pathing works
How DMP works

Array type

Description

Active/Passive in explicit failover mode
or non-autotrespass mode (A/PF)

The appropriate command must be issued to the
array to make the LUNSs fail over to the secondary
path.

This array mode supports concurrent I/O and load
balancing by having multiple primary paths into a
controller. This functionality is provided by a
controller with multiple ports, or by the insertion of
a SAN switch between an array and a controller.
Failover to the secondary (passive) path occurs
only if all the active primary paths fail.

Active/Passive with LUN group failover
(A/PG)

For Active/Passive arrays with LUN group failover
(A/PG arrays), a group of LUNs that are connected
through a controller is treated as a single failover
entity. Unlike A/P arrays, failover occurs at the
controller level, and not for individual LUNs. The
primary controller and the secondary controller are
each connected to a separate group of LUNSs. If a
single LUN in the primary controller’'s LUN group
fails, all LUNs in that group fail over to the
secondary controller.

This array mode supports concurrent I/O and load
balancing by having multiple primary paths into a
controller. This functionality is provided by a
controller with multiple ports, or by the insertion of
a SAN switch between an array and a controller.
Failover to the secondary (passive) path occurs
only if all the active primary paths fail.

An array policy module (APM) may define array types to DMP in addition to the
standard types for the arrays that it supports.

Storage Foundation uses DMP metanodes (DMP nodes) to access disk devices

connected to the system. For each disk in a supported array, DMP maps one node
to the set of paths that are connected to the disk. Additionally, DMP associates the

appropriate multi-pathing policy for the disk array with the node.

For disks in an unsupported array, DMP maps a separate node to each path that

is connected to a disk. The raw and block devices for the nodes are created in the

directories /dev/vx/rdmp and /dev/vx/dmp respectively.

Figure 2-1 shows how DMP sets up a node for a disk in a supported disk array.

35

How Dynamic Multi-Pathing works
How DMP works
Figure 21 How DMP represents multiple physical paths to a disk as one
node
VxVM
Host
$ Single DMP node
N

Mapped by DMP
—_—

Multiple paths

T_l l_T Multiple paths
oo -

DMP implements a disk device naming scheme that allows you to recognize to
which array a disk belongs.

Figure 2-2 shows an example where two paths, sdf and sdm, exist to a single disk

in the enclosure, but VxVM uses the single DMP node, enc0_0, to access it.

Figure 2-2 Example of multi-pathing for a disk enclosure in a SAN
environment

Host
VxVM

i encO 0

)

Mapped

Fibre Channel by DMP
SW|tches ./)' k* .//'

Disk enclosure
enc0

Disk is sdf or sdm
depending on the path

See “About enclosure-based naming” on page 37.

See “Changing the disk device naming scheme” on page 284.

36

How Dynamic Multi-Pathing works | 37
How DMP works

See “Discovering and configuring newly added disk devices” on page 192.

Device discovery

Device discovery is the term used to describe the process of discovering the disks
that are attached to a host. This feature is important for DMP because it needs to
support a growing number of disk arrays from a number of vendors. In conjunction
with the ability to discover the devices attached to a host, the Device Discovery
service enables you to add support for new disk arrays. The Device Discovery uses
a facility called the Device Discovery Layer (DDL).

The DDL enables you to add support for new disk arrays without the need for a
reboot.

About enclosure-based naming

Enclosure-based naming provides an alternative to operating system-based device
naming. In a Storage Area Network (SAN) that uses Fibre Channel switches,
information about disk location provided by the operating system may not correctly
indicate the physical location of the disks. Enclosure-based naming allows SF to
access enclosures as separate physical entities. By configuring redundant copies
of your data on separate enclosures, you can safeguard against failure of one or
more enclosures.

Figure 2-3 shows a typical SAN environment where host controllers are connected
to multiple enclosures through a Fibre Channel switch.

How Dynamic Multi-Pathing works
How DMP works
Figure 2-3 Example configuration for disk enclosures connected through a
Fibre Channel switch
Host
Fibre Channel
switch
Disk enclosures
enc0 enci enc2

In such a configuration, enclosure-based naming can be used to refer to each disk
within an enclosure. For example, the device names for the disks in enclosure enco
are named enc0_0, enc0_1, and so on. The main benefit of this scheme is that it
lets you quickly determine where a disk is physically located in a large SAN
configuration.

In most disk arrays, you can use hardware-based storage management to represent
several physical disks as one LUN to the operating system. In such cases, VxVM
also sees a single logical disk device rather than its component disks. For this
reason, when reference is made to a disk within an enclosure, this disk may be
either a physical disk or a LUN.

Another important benefit of enclosure-based naming is that it enables VxVM to
avoid placing redundant copies of data in the same enclosure. This is a good thing
to avoid as each enclosure can be considered to be a separate fault domain. For
example, if a mirrored volume were configured only on the disks in enclosure enci,
the failure of the cable between the switch and the enclosure would make the entire
volume unavailable.

If required, you can replace the default name that SF assigns to an enclosure with
one that is more meaningful to your configuration.

38

How Dynamic Multi-Pathing works | 39
How DMP works

Figure 2-4 shows a High Availability (HA) configuration where redundant-loop access
to storage is implemented by connecting independent controllers on the host to
separate switches with independent paths to the enclosures.

Figure 2-4 Example HA configuration using multiple switches to provide
redundant loop access

Host

Fibre Channel [Qh
switches ||’

Disk enclosures

enc0 enci enc2

Such a configuration protects against the failure of one of the host controllers (c1
and c2), or of the cable between the host and one of the switches. In this example,
each disk is known by the same name to VxVM for all of the paths over which it
can be accessed. For example, the disk device enc0 0 represents a single disk for
which two different paths are known to the operating system, such as sdf and sdm.

See “Changing the disk device naming scheme” on page 284.

To take account of fault domains when configuring data redundancy, you can control
how mirrored volumes are laid out across enclosures.

How DMP monitors 1/O on paths

In VXVM prior to release 5.0, DMP had one kernel daemon (errord) that performed
error processing, and another (restored) that performed path restoration activities.

From release 5.0, DMP maintains a pool of kernel threads that are used to perform
such tasks as error processing, path restoration, statistics collection, and SCSI
request callbacks. The name restored has been retained for backward compatibility.

How Dynamic Multi-Pathing works
How DMP works

One kernel thread responds to I/O failures on a path by initiating a probe of the host
bus adapter (HBA) that corresponds to the path. Another thread then takes the
appropriate action according to the response from the HBA. The action taken can
be to retry the I/O request on the path, or to fail the path and reschedule the I/O on
an alternate path.

The restore kernel task is woken periodically (by default, every 5 minutes) to check
the health of the paths, and to resume I/O on paths that have been restored. As
some paths may suffer from intermittent failure, I/O is only resumed on a path if the
path has remained healthy for a given period of time (by default, 5 minutes). DMP
can be configured with different policies for checking the paths.

See “Configuring DMP path restoration policies” on page 253.

The statistics-gathering task records the start and end time of each I/O request,
and the number of 1/O failures and retries on each path. DMP can be configured to
use this information to prevent the SCSI driver being flooded by I/O requests. This
feature is known as I/O throttling.

If an 1/0 request relates to a mirrored volume, VxVM specifies the FAILFAST flag.
In such cases, DMP does not retry failed I/O requests on the path, and instead
marks the disks on that path as having failed.

See “Path failover mechanism” on page 40.

See “I/O throttling” on page 41.

Path failover mechanism

DMP enhances system availability when used with disk arrays having multiple
paths. In the event of the loss of a path to a disk array, DMP automatically selects
the next available path for /0 requests without intervention from the administrator.

DMP is also informed when a connection is repaired or restored, and when you
add or remove devices after the system has been fully booted (provided that the
operating system recognizes the devices correctly).

If required, the response of DMP to I/O failure on a path can be tuned for the paths
to individual arrays. DMP can be configured to time out an 1/O request either after
a given period of time has elapsed without the request succeeding, or after a given
number of retries on a path have failed.

See “Configuring the response to I/O failures” on page 248.

Subpaths Failover Group (SFG)

A subpaths failover group (SFG) represents a group of paths which could fail and
restore together. When an I/O error is encountered on a path in an SFG, DMP does
proactive path probing on the other paths of that SFG as well. This behavior adds

40

How Dynamic Multi-Pathing works | 41
How DMP works

greatly to the performance of path failover thus improving I/O performance. Currently
the criteria followed by DMP to form the subpaths failover groups is to bundle the
paths with the same endpoints from the host to the array into one logical storage
failover group.

See “Configuring Subpaths Failover Groups (SFG)” on page 251.

Low Impact Path Probing (LIPP)

The restore daemon in DMP keeps probing the LUN paths periodically. This behavior
helps DMP to keep the path states up-to-date even when no 1/0 occurs on a path.
Low Impact Path Probing adds logic to the restore daemon to optimize the number
of the probes performed while the path status is being updated by the restore
daemon. This optimization is achieved with the help of the logical subpaths failover
groups. With LIPP logic in place, DMP probes only a limited number of paths within
a subpaths failover group (SFG), instead of probing all the paths in an SFG. Based
on these probe results, DMP determines the states of all the paths in that SFG.

See “Configuring Low Impact Path Probing (LIPP)” on page 251.

1/0O throttling

If I/O throttling is enabled, and the number of outstanding I/O requests builds up
on a path that has become less responsive, DMP can be configured to prevent new
I/O requests being sent on the path either when the number of outstanding I/O
requests has reached a given value, or a given time has elapsed since the last
successful I/O request on the path. While throttling is applied to a path, the new I/O
requests on that path are scheduled on other available paths. The throttling is
removed from the path if the HBA reports no error on the path, or if an outstanding
I/0 request on the path succeeds.

See “Configuring the 1/O throttling mechanism” on page 250.

Load balancing

By default, DMP uses the Minimum Queue I/O policy for load balancing across
paths for all array types. Load balancing maximizes 1/O throughput by using the
total bandwidth of all available paths. I/O is sent down the path that has the minimum
outstanding 1/Os.

For Active/Passive (A/P) disk arrays, I/0 is sent down the primary paths. If all of
the primary paths fail, 1/O is switched over to the available secondary paths. As the
continuous transfer of ownership of LUNs from one controller to another results in
severe |/O slowdown, load balancing across primary and secondary paths is not
performed for A/P disk arrays unless they support concurrent 1/0.

For other arrays, load balancing is performed across all the currently active paths.

How Dynamic Multi-Pathing works | 42
How DMP works

You can change the I/O policy for the paths to an enclosure or disk array. This
operation is an online operation that does not impact the server or require any
downtime.

DMP in a clustered environment

In a clustered environment where Active/Passive (A/P) type disk arrays are shared
by multiple hosts, all nodes in the cluster must access the disk through the same
physical storage controller port. Accessing a disk through multiple paths
simultaneously can severely degrade I/O performance (sometimes referred to as
the ping-pong effect). Path failover on a single cluster node is also coordinated
across the cluster so that all the nodes continue to share the same physical path.

Prior to release 4.1 of VxVM, the clustering and DMP features could not handle
automatic failback in A/P arrays when a path was restored, and did not support
failback for explicit failover mode arrays. Failback could only be implemented
manually by running the vxdctl enable command on each cluster node after the
path failure had been corrected. From release 4.1, failback is now an automatic
cluster-wide operation that is coordinated by the master node. Automatic failback
in explicit failover mode arrays is also handled by issuing the appropriate low-level
command.

Note: Support for automatic failback of an A/P array requires that an appropriate
Array Support Library (ASL) is installed on the system. An Array Policy Module
(APM) may also be required.

See “About discovering disks and dynamically adding disk arrays” on page 194.

For Active/Active type disk arrays, any disk can be simultaneously accessed through
all available physical paths to it. In a clustered environment, the nodes do not need
to access a disk through the same physical path.

See “How to administer the Device Discovery Layer” on page 197.

See “Configuring Array Policy Modules” on page 255.

About enabling or disabling controllers with shared disk
groups

Prior to release 5.0, Veritas Volume Manager (VxVM) did not allow enabling or
disabling of paths or controllers connected to a disk that is part of a shared Veritas
Volume Manager disk group. From VxVM 5.0 onward, such operations are supported
on shared DMP nodes in a cluster.

How Dynamic Multi-Pathing works | 43

Veritas Volume Manager co-existence with Oracle Automatic Storage Management disks

Veritas Volume Manager co-existence with Oracle
Automatic Storage Management disks

Automatic Storage Management (ASM) disks are the disks used by Oracle Automatic
Storage Management software. Veritas Volume Manager (VxVM) co-exists with
Oracle ASM disks, by recognizing the disks as the type Oracle ASM. VxVM protects
ASM disks from any operations that may overwrite the disk. VxVM classifies and
displays the ASM disks as ASM format disks. You cannot initialize an ASM disk,
or perform any VxVM operations that may overwrite the disk.

If the disk is claimed as an ASM disk, disk initialization commands fail with an
appropriate failure message. The vxdisk init command and the vxdisksetup
command fail, even if the force option is specified. The vxprivutil command also
fails for disks under ASM control, to prevent any on-disk modification of the ASM
device.

If the target disk is under ASM control, any rootability operations that overwrite the
target disk fail. A message indicates that the disk is already in use as an ASM disk.
The rootability operations include operations to create a VM root image
(vxcp_lvmroot command) , create a VM root mirror (vxrootmir command), or
restore the LVM root image (vxres lvmroot command). The vxdestroy lvmroot
command also fails for ASM disks, since the target disk is not under LVM control
as expected.

Disks that ASM accessed previously but that no longer belong to an ASM disk group
are called FORMER ASM disks. If you remove an ASM disk from ASM control,
VxVM labels the disk as a FORMER ASM disk. VxVM enforces the same restrictions
for FORMER ASM disks as for ASM disks, to enable ASM to reuse the disk in the
future. To use a FORMER ASM disk with VxVM, you must clean the disk of ASM
information after you remove the disk from ASM control. If a disk initialization
command is issued on a FORMER ASM disk, the command fails. A message
indicates that the disk must be cleaned up before the disk can be initialized for use
with VXVM.

How Dynamic Multi-Pathing works | 44

Veritas Volume Manager co-existence with Oracle Automatic Storage Management disks

To remove a FORMER ASM disk from ASM control for use with VxVM

1

Clean the disk with the dd command to remove all ASM identification information
on it. For example:

dd if=/dev/zero of=/dev/rdsk/<wholedisk|partition> count=1 bs=1024

where wholedisk is a disk name in the format: cxtydz
where patrtition is a partition name in the format:cxtydzsn

Perform a disk scan:

vxdisk scandisks

To view the ASM disks

*

You can use either of the following commands to display ASM disks:

The vxdisk 1ist command displays the disk type as asw.

wvxdisk list

DEVICE TYPE DISK GROUP STATUS
Disk 0s2 auto:LVM - - LVM
Disk 1 auto:ASM - - ASM
EVA4K6KO 0 auto - - online
EVA4K6KO 1 auto - - online

The vxdisk classifycommand classifies and displays ASM disks as oracle
ASM.

vxdisk -d classify disk=clt0d5
device: clt0d5

status: CLASSIFIED

type: Oracle ASM
groupid: -

hostname: -

domainid: -

centralhost: -

Specify the - £ option to the vxdisk classify command, to perform afull scan
of the OS devices.

How Dynamic Multi-Pathing works
Veritas Volume Manager co-existence with Oracle Automatic Storage Management disks

To check if a particular disk is under ASM control

& Use the vxisasm utility to check if a particular disk is under ASM control.

/etc/vx/bin/vxisasm 3pardatal_2799
3pardatal_2799 ACTIVE

/etc/vx/bin/vxisasm 3pardata0_2798
3pardata0_2798 FORMER

Alternatively, use the vxisforeign utility to check if the disk is under control
of any foreign software like LVM or ASM:

/etc/vx/bin/vxisforeign 3pardatal_2799
3pardata0 2799 ASM ACTIVE

/etc/vx/bin/vxisforeign 3pardatal_2798
3pardatal_ 2798 ASM FORMER

45

How Veritas Volume
Manager works

This chapter includes the following topics:

= How Veritas Volume Manager works with the operating system
= How Veritas Volume Manager handles storage management
= Volume layouts in Veritas Volume Manager

= Online relayout

= Volume resynchronization

= Hot-relocation

= Dirty region logging

= Volume snapshots

= Support for atomic writes

= FastResync

= Volume sets

= How VxVM handles hardware clones or snapshots

= Volume encryption

How Veritas Volume Manager works | 47

How Veritas Volume Manager works with the operating system

How Veritas Volume Manager works with the
operating system

Veritas Volume Manager (VxVM) operates as a subsystem between your operating
system and your data management systems, such as file systems and database
management systems. VxVM is tightly coupled with the operating system. Before
a disk or LUN can be brought under VxVM control, the disk must be accessible
through the operating system device interface. VxVM is layered on top of the
operating system interface services, and is dependent upon how the operating
system accesses physical disks.

VxVM is dependent upon the operating system for the following functionality:
= operating system (disk) devices

= device handles

= VXVM Dynamic Multi-Pathing (DMP) metadevice

VxVM relies on the following constantly-running daemons and kernel threads for
its operation:

vxconfigd The VxVM configuration daemon maintains disk and group
configurations and communicates configuration changes
to the kernel, and modifies configuration information stored
on disks.

See the vxconfigd(1m) manual page.

vxiod VxVM 1/O kernel threads provide extended I/O operations
without blocking calling processes. By default, 16 1/0
threads are started at boot time, and at least one I/O thread
must continue to run at all times.

See the vxiod(1m) manual page.

vxrelocd The hot-relocation daemon monitors VxVM for events that
affect redundancy, and performs hot-relocation to restore
redundancy. If thin provision disks are configured in the
system, then the storage space of a deleted volume is
reclaimed by this daemon as configured by the policy.

See the vxrelocd(1m) manual page.

How data is stored

Several methods are used to store data on physical disks. These methods organize
data on the disk so the data can be stored and retrieved efficiently. The basic method

How Veritas Volume Manager works | 48
How Veritas Volume Manager handles storage management

of disk organization is called formatting. Formatting prepares the hard disk so that
files can be written to and retrieved from the disk by using a prearranged storage
pattern.

Two methods are used to store information on formatted hard disks: physical-storage
layout and logical-storage layout. VxXVM uses the logical-storage layout method.

See “How Veritas Volume Manager handles storage management” on page 48.

How Veritas Volume Manager handles storage
management

Veritas Volume Manager (VxVM) uses the following types of objects to handle
storage management:

Physical objects Physical disks, LUNs (virtual disks implemented in hardware), or
other hardware with block and raw operating system device
interfaces that are used to store data.

See “Physical objects” on page 48.

Virtual objects When one or more physical disks are brought under the control of
VxVM, it creates virtual objects called volumes on those physical
disks. Each volume records and retrieves data from one or more
physical disks. Volumes are accessed by file systems, databases,
or other applications in the same way that physical disks are
accessed. Volumes are also composed of other virtual objects
(plexes and subdisks) that are used in changing the volume
configuration. Volumes and their virtual components are called
virtual objects or VxVM objects.

See “Virtual objects” on page 50.

Physical objects

A physical disk is the basic storage device (media) where the data is ultimately
stored. You can access the data on a physical disk by using a device name to locate
the disk. The physical disk device hame varies with the computer system you use.
Not all parameters are used on all systems.

Typical device names are of the form sda or hdb, where sda references the first (a)
SCSI disk, and nhdb references the second (b) EIDE disk.

Figure 3-1 shows how a physical disk and device name (devname) are illustrated
in the Veritas Volume Manager (VxVM) documentation.

How Veritas Volume Manager works | 49
How Veritas Volume Manager handles storage management

Figure 3-1 Physical disk example

VxVM writes identification information on physical disks under VxVM control (VM
disks). VxVM disks can be identified even after physical disk disconnection or
system outages. VxVM can then re-form disk groups and logical objects to provide
failure detection and to speed system recovery.

About disk partitions

Figure 3-2 shows how a physical disk can be divided into one or more partitions.

Figure 3-2 Partition example

Physical disk with several partitions Partition

devname1
devname?2

_devname |

The partition number is added at the end of the devname.

Disk arrays

Performing 1/O to disks is a relatively slow process because disks are physical
devices that require time to move the heads to the correct position on the disk
before reading or writing. If all of the read or write operations are done to individual
disks, one at a time, the read-write time can become unmanageable. Performing
these operations on multiple disks can help to reduce this problem.

A disk array is a collection of physical disks that VxVM can represent to the operating
system as one or more virtual disks or volumes. The volumes created by VxVM
look and act to the operating system like physical disks. Applications that interact
with volumes should work in the same way as with physical disks.

Figure 3-3 shows how VxVM represents the disks in a disk array as several volumes
to the operating system.

How Veritas Volume Manager works | 50
How Veritas Volume Manager handles storage management

Figure 3-3 How VxVM presents the disks in a disk array as volumes to the
operating system

< Operating system>

Veritas Volume Manager I

Volumes

Physical disks

N
T T P e

Data can be spread across several disks within an array, or across disks spanning
multiple arrays, to distribute or balance I/O operations across the disks. Using
parallel I/O across multiple disks in this way improves I/O performance by increasing
data transfer speed and overall throughput for the array.

Virtual objects

Veritas Volume Manager (VxVM) uses multiple virtualization layers to provide distinct
functionality and reduce physical limitations. The connection between physical
objects and VxVM objects is made when you place a physical disk under VxVM
control.

Table 3-1 describes the virtual objects in VxVM.

Table 3-1 VxVM virtual objects
Virtual object Description
Disk groups A disk group is a collection of disks that share a common

configuration and which are managed by VxVM. A disk group
configuration is a set of records with detailed information about
related VxVM objects, their attributes, and their connections. A disk
group name can be up to 31 characters long. Disk group names
must not contain periods (.).

Table 3-1

How Veritas Volume Manager works
How Veritas Volume Manager handles storage management

VxVM virtual objects (continued)

Virtual object

Description

VxVM disks

A VxVM disk is assigned to a physical disk, when you place the
physical disk under VxVM control. A VxVM disk is usually in a disk
group. VxXVM allocates storage from a contiguous area of VxVM
disk space.

Each VxVM disk corresponds to at least one physical disk or disk
partition.

A VxVM disk typically includes a public region (allocated storage)
and a small private region where VxVM internal configuration
information is stored.

Subdisks

A subdisk is a set of contiguous disk blocks. A block is a unit of
space on the disk. VxVM allocates disk space using subdisks. A
VxVM disk can be divided into one or more subdisks. Each subdisk
represents a specific portion of a VxVM disk, which is mapped to
a specific region of a physical disk.

Plexes

A plex consists of one or more subdisks located on one or more
physical disks.

Volumes

A volume is a virtual disk device that appears to applications,
databases, and file systems like a physical disk device, but does
not have the physical limitations of a physical disk device. A volume
consists of one or more plexes, each holding a copy of the selected
data in the volume. Due to its virtual nature, a volume is not
restricted to a particular disk or a specific area of a disk. The
configuration of a volume can be changed by using VxVM user
interfaces. Configuration changes can be accomplished without
causing disruption to applications or file systems that are using the
volume. For example, a volume can be mirrored on separate disks
or moved to use different disk storage.

After installing VXVM on a host system, you must bring the contents of physical
disks under VxVM control by collecting the VxVM disks into disk groups and
allocating the disk group space to create logical volumes.

Bringing the contents of physical disks under VxVM control is accomplished only
if VXVM takes control of the physical disks and the disk is not under control of
another storage manager such as LVM.

For more information on how LVM and VxVM disks co-exist or how to convert LVM
disks to VxVM disks, see the Veritas InfoScale Solutions Guide.

VxVM creates virtual objects and makes logical connections between the objects.
The virtual objects are then used by VxVM to do storage management tasks.

51

How Veritas Volume Manager works | 52
How Veritas Volume Manager handles storage management

The vxprint command displays detailed information about the VxVM objects that
exist on a system.

See the vxprint(1M) manual page.

Combining virtual objects in Veritas Volume Manager

Veritas Volume Manager (VxVM) virtual objects are combined to build volumes.
The virtual objects contained in volumes are VxVM disks, disk groups, subdisks,
and plexes. VxVM virtual objects are organized in the following ways:

= VXVM disks are grouped into disk groups

» Subdisks (each representing a specific region of a disk) are combined to form
plexes

= Volumes are composed of one or more plexes

Figure 3-4 shows the connections between VxVM virtual objects and how they
relate to physical disks.

How Veritas Volume Manager works | 53
How Veritas Volume Manager handles storage management

Figure 3-4 Connection between objects in VxVM

C3CT]

disk01-01 disk02-01 disk03-01

disk01-01 disk02-01 disk03-01

disk01-01 disk02-01 disk03-01

Physical
disks

The disk group contains three VxVM disks which are used to create two volumes.
Volume vo101 is simple and has a single plex. Volume vo102 is a mirrored volume
with two plexes.

The various types of virtual objects (disk groups, VM disks, subdisks, plexes, and
volumes) are described in the following sections. Other types of objects exist in
Veritas Volume Manager, such as data change objects (DCOs), and volume sets,
to provide extended functionality.

About the configuration daemon in Veritas Volume Manager

The Veritas Volume Manager (VxVM) configuration daemon (vxconfigd) provides
the interface between VxVM commands and the kernel device drivers. vxconfigd
handles configuration change requests from VxVM utilities, communicates the

How Veritas Volume Manager works | 54
How Veritas Volume Manager handles storage management

change requests to the VxVM kernel, and modifies configuration information stored
on disk. vxconfigd also initializes VXVM when the system is booted.

The vxdctl command is the command-line interface to the vxconfigd daemon.
You can use vxdctl to:

= Control the operation of the vxconfigd daemon.

= Change the system-wide definition of the default disk group.

In VxVM 4.0 and later releases, disk access records are no longer stored in the
/etc/vx/volboot file. Non-persistent disk access records are created by scanning
the disks at system startup. Persistent disk access records for simple and nopriv
disks are permanently stored in the /etc/vx/darecs file in the root file system.
The vxconfigd daemon reads the contents of this file to locate the disks and the
configuration databases for their disk groups.

The /etc/vx/darecs file is also used to store definitions of foreign devices that
are not autoconfigurable. Such entries may be added by using the vxddiladm
addforeign command.

See the vxddladm(1M) manual page.

If your system is configured to use Dynamic Multi-Pathing (DMP), you can also use
vxdctl to:

= Reconfigure the DMP database to include disk devices newly attached to, or
removed from the system.

» Create DMP device nodes in the /dev/vx/dmp and /dev/vx/rdmp directories.

= Update the DMP database with changes in path type for active/passive disk
arrays. Use the utilities provided by the disk-array vendor to change the path
type between primary and secondary.

See the vxdct1(1M) manual page.

Multiple paths to disk arrays

Some disk arrays provide multiple ports to access their disk devices. These ports,
coupled with the host bus adaptor (HBA) controller and any data bus or I/O processor
local to the array, make up multiple hardware paths to access the disk devices.
Such disk arrays are called multipathed disk arrays. This type of disk array can be
connected to host systems in many different configurations, (such as multiple ports
connected to different controllers on a single host, chaining of the ports through a
single controller on a host, or ports connected to different hosts simultaneously).

See “How DMP works” on page 33.

How Veritas Volume Manager works | 55
Volume layouts in Veritas Volume Manager

Volume layouts in Veritas Volume Manager

A Veritas Volume Manager (VxVM) virtual device is defined by a volume. A volume
has a layout defined by the association of a volume to one or more plexes, each
of which map to one or more subdisks. The volume presents a virtual device interface
that is exposed to other applications for data access. These logical building blocks
re-map the volume address space through which 1/O is re-directed at run-time.

Different volume layouts provide different levels of availability and performance. A
volume layout can be configured and changed to provide the desired level of service.

Non-layered volumes

In a non-layered volume, a subdisk maps directly to a VxVM disk. This allows the
subdisk to define a contiguous extent of storage space backed by the public region
of a VxVM disk. When active, the VxVM disk is directly associated with an underlying
physical disk. The combination of a volume layout and the physical disks therefore
determines the storage service available from a given virtual device.

Layered volumes

A layered volume is constructed by mapping its subdisks to underlying volumes.
The subdisks in the underlying volumes must map to VxVM disks, and hence to
attached physical storage.

Layered volumes allow for more combinations of logical compositions, some of
which may be desirable for configuring a virtual device. For example, layered
volumes allow for high availability when using striping. Because permitting free use
of layered volumes throughout the command level would have resulted in unwieldy
administration, some ready-made layered volume configurations are designed into
VxVM.

See “About layered volumes” on page 69.

These ready-made configurations operate with built-in rules to automatically match
desired levels of service within specified constraints. The automatic configuration

is done on a “best-effort” basis for the current command invocation working against
the current configuration.

To achieve the desired storage service from a set of virtual devices, it may be
necessary to include an appropriate set of VxVM disks into a disk group and to
execute multiple configuration commands.

To the extent that it can, VxVM handles initial configuration and on-line
re-configuration with its set of layouts and administration interface to make this job
easier and more deterministic.

How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

Layout methods

Data in virtual objects is organized to create volumes by using the following layout
methods:

= Concatenation, spanning, and carving

See “Concatenation, spanning, and carving” on page 56.
= Striping (RAID-0)

See “Striping (RAID-0)" on page 58.
= Mirroring (RAID-1)

See “Mirroring (RAID-1)” on page 61.
= Striping plus mirroring (mirrored-stripe or RAID-0+1)

See “Striping plus mirroring (mirrored-stripe or RAID-0+1)” on page 62.
= Mirroring plus striping (striped-mirror, RAID-1+0 or RAID-10)

See “Mirroring plus striping (striped-mirror, RAID-1+0, or RAID-10)” on page 63.
= RAID-5 (striping with parity)

See “RAID-5 (striping with parity)” on page 64.

Concatenation, spanning, and carving

Concatenation maps data in a linear manner onto one or more subdisks in a plex.
To access all of the data in a concatenated plex sequentially, data is first accessed
in the first subdisk from the beginning to the end. Data is then accessed in the
remaining subdisks sequentially from the beginning to the end of each subdisk,
until the end of the last subdisk.

The subdisks in a concatenated plex do not have to be physically contiguous and
can belong to more than one VxVM disk. Concatenation using subdisks that reside
on more than one VxVM disk is called spanning.

Figure 3-5 shows the concatenation of two subdisks from the same VxVM disk.

If a single LUN or disk is split into multiple subdisks, and each subdisk belongs to
a unique volume, it is called carving.

56

How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

Figure 3-5 Example of concatenation

Data in Data in
M ,ﬂ;km -03

E Data blocks

[disk01-01 || disk01-03 | Plex with concatenated subdisks

[disk01-01 || disk01-03 | Subdisks

[disk01-01 | disk01-02 || disk01-03 |\ gisk
disk01

devname
[+ 2

Physical disk

The blocks n, n+1, n+2 and n+3 (numbered relative to the start of the plex) are
contiguous on the plex, but actually come from two distinct subdisks on the same
physical disk.

The remaining free space in the subdisk disk01-02 on VxVM disk disk01 can be
put to other uses.

You can use concatenation with multiple subdisks when there is insufficient
contiguous space for the plex on any one disk. This form of concatenation can be
used for load balancing between disks, and for head movement optimization on a
particular disk.

Figure 3-6 shows data spread over two subdisks in a spanned plex.

57

How Veritas Volume Manager works | 58
Volume layouts in Veritas Volume Manager

Figure 3-6 Example of spanning

Datain Datain
disk01-01 gisk02-01
]

E Data blocks

| disk01-01 | disk02-01 | Plex with concatenated subdisks
[disk01-01 || disk02-01 | Subdisks
[disk01-01 | [disk02-01][disk02-02] VM disks
disk01 disk02

devname2

[e

Physical disks

The blocks n, n+1, n+2 and n+3 (numbered relative to the start of the plex) are
contiguous on the plex, but actually come from two distinct subdisks from two distinct
physical disks.

The remaining free space in the subdisk disk02-02 on VxVM disk disk02 can be
put to other uses.

Warning: Spanning a plex across multiple disks increases the chance that a disk
failure results in failure of the assigned volume. Use mirroring or RAID-5 to reduce
the risk that a single disk failure results in a volume failure.

Striping (RAID-0)
Striping (RAID-0) is useful if you need large amounts of data written to or read from
physical disks, and performance is important. Striping is also helpful in balancing
the I/0 load from multi-user applications across multiple disks. By using parallel
data transfer to and from multiple disks, striping significantly improves data-access
performance.

Striping maps data so that the data is interleaved among two or more physical disks.
A striped plex contains two or more subdisks, spread out over two or more physical
disks. Data is allocated alternately and evenly to the subdisks of a striped plex.

How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

The subdisks are grouped into “columns,” with each physical disk limited to one
column. Each column contains one or more subdisks and can be derived from one
or more physical disks. The number and sizes of subdisks per column can vary.
Additional subdisks can be added to columns, as necessary.

Warning: Striping a volume, or splitting a volume across multiple disks, increases
the chance that a disk failure will result in failure of that volume.

If five volumes are striped across the same five disks, then failure of any one of the
five disks will require that all five volumes be restored from a backup. If each volume
is on a separate disk, only one volume has to be restored. (As an alternative to or
in conjunction with striping, use mirroring or RAID-5 to substantially reduce the
chance that a single disk failure results in failure of a large number of volumes.)

Data is allocated in equal-sized stripe units that are interleaved between the columns.
Each stripe unit is a set of contiguous blocks on a disk. The default stripe unit size
is 64 kilobytes.

Figure 3-7 shows an example with three columns in a striped plex, six stripe units,
and data striped over the three columns.

Figure 3-7 Striping across three columns
Column 0 Column 1 Column 2
’ stripe unit stripe unit stripe unit
Stripe 1 1 5 3
" stripe unit stripe unit stripe unit
Stripe 2 4 5 6

Sub$isk

Subdisk
2

Plex

Subdisk
3

59

How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

A stripe consists of the set of stripe units at the same positions across all columns.
In the figure, stripe units 1, 2, and 3 constitute a single stripe.

Viewed in sequence, the first stripe consists of:
= stripe unit 1 in column 0

= stripe unit 2 in column 1

= stripe unit 3 in column 2

The second stripe consists of:

» stripe unit 4 in column 0

» stripe unit 5 in column 1

= stripe unit 6 in column 2

Striping continues for the length of the columns (if all columns are the same length),
or until the end of the shortest column is reached. Any space remaining at the end
of subdisks in longer columns becomes unused space.

Figure 3-8 shows a striped plex with three equal sized, single-subdisk columns.

Figure 3-8 Example of a striped plex with one subdisk per column
sul su2 su3 su4 sub sub Stripe units
Column 0 Column 1 Column 2 Stri
disk01-01 [| disko201 | | disko3-01 | triped plex
[disko1-01 | | disko2-01 | [disk03-01 | Subdisks
disk01-01 disk02-01 disk03-01 .
I I I I I I VM disks
disk01 disk02 disk03

devname1 devname2 devname3

Physical disk

There is one column per physical disk. This example shows three subdisks that
occupy all of the space on the VM disks. It is also possible for each subdisk in a

How Veritas Volume Manager works | 61
Volume layouts in Veritas Volume Manager

striped plex to occupy only a portion of the VM disk, which leaves free space for
other disk management tasks.

Figure 3-9 shows a striped plex with three columns containing subdisks of different

sizes.
Figure 3-9 Example of a striped plex with concatenated subdisks per column
sul su2 su3 su4 sub su6 - - - Stripe units
Column 0 Column 1 Column 2
. disk03-01
disk02-01 .
disk01-01 disk03-02 Striped plex
ol disk03-03
disk02-01 disk03-01
disk01-01 disk03-02 Subdisks
sk disk03-03
disk02-01 disk03-01
disk01-01 disk03-02 .
SieK02.02 = VM disks
1SkD2- disk03-03
disk01 disk02 disk03

"=)

Each column contains a different number of subdisks. There is one column per
physical disk. Striped plexes can be created by using a single subdisk from each
of the VM disks being striped across. It is also possible to allocate space from
different regions of the same disk or from another disk (for example, if the size of
the plex is increased). Columns can also contain subdisks from different VM disks.

Physical disks

See “Creating a striped volume” on page 146.

Mirroring (RAID-1)

Mirroring uses multiple mirrors (plexes) to duplicate the information contained in a
volume. In the event of a physical disk failure, the plex on the failed disk becomes

How Veritas Volume Manager works | 62
Volume layouts in Veritas Volume Manager

unavailable, but the system continues to operate using the unaffected mirrors.
Similarly, mirroring two LUNs from two separate controllers lets the system operate
if there is a controller failure.

Although a volume can have a single plex, at least two plexes are required to provide
redundancy of data. Each of these plexes must contain disk space from different
disks to achieve redundancy.

When striping or spanning across a large number of disks, failure of any one of
those disks can make the entire plex unusable. Because the likelihood of one out
of several disks failing is reasonably high, you should consider mirroring to improve
the reliability (and availability) of a striped or spanned volume.

See “Creating a mirrored volume” on page 144.

Striping plus mirroring (mirrored-stripe or RAID-0+1)

VxVM supports the combination of mirroring above striping. The combined layout
is called a mirrored-stripe layout. A mirrored-stripe layout offers the dual benefits
of striping to spread data across multiple disks, while mirroring provides redundancy
of data.

For mirroring above striping to be effective, the striped plex and its mirrors must be
allocated from separate disks.

Figure 3-10 shows an example where two plexes, each striped across three disks,
are attached as mirrors to the same volume to create a mirrored-stripe volume.

Figure 3-10 Mirrored-stripe volume laid out on six disks

Mirrored-stripe

Striped vl

column O column 1 column 2
plex
column 0 column 1 column 2 .
Striped
plex

See “Creating a mirrored-stripe volume” on page 147.

Mirror

The layout type of the data plexes in a mirror can be concatenated or striped. Even
if only one is striped, the volume is still termed a mirrored-stripe volume. If they are
all concatenated, the volume is termed a mirrored-concatenated volume.

How Veritas Volume Manager works | 63

Volume layouts in Veritas Volume Manager

Mirroring plus striping (striped-mirror, RAID-1+0, or RAID-10)

Veritas Volume Manager (VxVM) supports the combination of striping above
mirroring. This combined layout is called a striped-mirror layout. Putting mirroring
below striping mirrors each column of the stripe. If there are multiple subdisks per
column, each subdisk can be mirrored individually instead of each column.

A striped-mirror volume is an example of a layered volume.
See “About layered volumes” on page 69.

As for a mirrored-stripe volume, a striped-mirror volume offers the dual benefits of
striping to spread data across multiple disks, while mirroring provides redundancy
of data. In addition, it enhances redundancy, and reduces recovery time after disk
failure.

Figure 3-11 shows an example where a striped-mirror volume is created by using
each of three existing 2-disk mirrored volumes to form a separate column within a
striped plex.

Figure 3-11 Striped-mirror volume laid out on six disks

Underlying mi‘rrored volumes

column 0 column column 2

Striped-mirror

volume
:> Mirror

Striped plex

See “Creating a striped-mirror volume” on page 147.

Figure 3-12 shows that the failure of a disk in a mirrored-stripe layout detaches an
entire data plex, thereby losing redundancy on the entire volume.

How Veritas Volume Manager works | 64
Volume layouts in Veritas Volume Manager

Figure 3-12 How the failure of a single disk affects mirrored-stripe and
striped-mirror volumes

Mirrored-stripe volume

. with no
: Striped plex redundancy
Mirror
@ 8 Detached
‘ striped plex

Failure of disk detaches plex

Striped-mirror volume

with partial
:> Mirror

redundancy
Striped plex

Gt
At
i Ul

Failure of disk removes redundancy from a mirror

When the disk is replaced, the entire plex must be brought up to date. Recovering
the entire plex can take a substantial amount of time. If a disk fails in a striped-mirror
layout, only the failing subdisk must be detached, and only that portion of the volume
loses redundancy. When the disk is replaced, only a portion of the volume needs
to be recovered. Additionally, a mirrored-stripe volume is more vulnerable to being
put out of use altogether should a second disk fail before the first failed disk has
been replaced, either manually or by hot-relocation.

Compared to mirrored-stripe volumes, striped-mirror volumes are more tolerant of
disk failure, and recovery time is shorter.

If the layered volume concatenates instead of striping the underlying mirrored
volumes, the volume is termed a concatenated-mirror volume.

RAID-5 (striping with parity)

Although both mirroring (RAID-1) and RAID-5 provide redundancy of data, they
use different methods. Mirroring provides data redundancy by maintaining multiple
complete copies of the data in a volume. Data being written to a mirrored volume

How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

is reflected in all copies. If a portion of a mirrored volume fails, the system continues
to use the other copies of the data.

RAID-5 provides data redundancy by using parity. Parity is a calculated value used
to reconstruct data after a failure. While data is being written to a RAID-5 volume,
parity is calculated by doing an exclusive OR (XOR) procedure on the data. The
resulting parity is then written to the volume. The data and calculated parity are
contained in a plex that is “striped” across multiple disks. If a portion of a RAID-5
volume fails, the data that was on that portion of the failed volume can be recreated
from the remaining data and parity information. It is also possible to mix
concatenation and striping in the layout.

Figure 3-13 shows parity locations in a RAID-5 array configuration.

Figure 3-13 Parity locations in a RAID-5 model

Stripe 1
Stripe 2
Stripe 3
Stripe 4

Every stripe has a column containing a parity stripe unit and columns containing
data. The parity is spread over all of the disks in the array, reducing the write time
for large independent writes because the writes do not have to wait until a single
parity disk can accept the data.

RAID-5 volumes can additionally perform logging to minimize recovery time. RAID-5
volumes use RAID-5 logs to keep a copy of the data and parity currently being
written. RAID-5 logging is optional and can be created along with RAID-5 volumes
or added later.

See “Veritas Volume Manager RAID-5 arrays” on page 66.

Note: Veritas Volume Manager (VxVM) supports RAID-5 for private disk groups,
but not for shareable disk groups in a Cluster Volume Manager (CVM) environment.
In addition, VxXVM does not support the mirroring of RAID-5 volumes that are
configured using VxVM software. RAID-5 LUNs hardware may be mirrored.

Traditional RAID-5 arrays

A traditional RAID-5 array is several disks organized in rows and columns. A column
is a number of disks located in the same ordinal position in the array. A row is the
minimal number of disks necessary to support the full width of a parity stripe.

65

How Veritas Volume Manager works | 66
Volume layouts in Veritas Volume Manager

Figure 3-14 shows the row and column arrangement of a traditional RAID-5 array.

Figure 3-14 Traditional RAID-5 array

: Stripe 1
| Stripe3
1 Row 0

|

|

|

===

: Stripe 2
: Row 1

|

|

|

This traditional array structure supports growth by adding more rows per column.
Striping is accomplished by applying the first stripe across the disks in Row 0, then
the second stripe across the disks in Row 1, then the third stripe across the Row
0 disks, and so on. This type of array requires all disks columns and rows to be of
equal size.

Veritas Volume Manager RAID-5 arrays

The RAID-5 array structure in Veritas Volume Manager (VxVM) differs from the
traditional structure. Due to the virtual nature of its disks and other objects, VxXVM
does not use rows.

Figure 3-15 shows how VxVM uses columns consisting of variable length subdisks,
where each subdisk represents a specific area of a disk.

How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

Figure 3-15 Veritas Volume Manager RAID-5 array

-+ Stripe 1
= Stripe 2
SD SD
SD
SD
SD SD SD SD SD = subdisk
Column 0 Column 1 Column 2 Column 3

VxVM allows each column of a RAID-5 plex to consist of a different number of
subdisks. The subdisks in a given column can be derived from different physical
disks. Additional subdisks can be added to the columns as necessary. Striping is
implemented by applying the first stripe across each subdisk at the top of each
column, then applying another stripe below that, and so on for the length of the
columns. Equal-sized stripe units are used for each column. For RAID-5, the default
stripe unit size is 16 kilobytes.

See “Striping (RAID-0)" on page 58.

Note: Mirroring of RAID-5 volumes is not supported.

See “Creating a RAID-5 volume” on page 148.

Left-symmetric layout

There are several layouts for data and parity that can be used in the setup of a
RAID-5 array. The implementation of RAID-5 in VxVM uses a left-symmetric layout.
This provides optimal performance for both random 1/O operations and large
sequential I/O operations. However, the layout selection is not as critical for
performance as are the number of columns and the stripe unit size.

Left-symmetric layout stripes both data and parity across columns, placing the parity
in a different column for every stripe of data. The first parity stripe unit is located in
the rightmost column of the first stripe. Each successive parity stripe unit is located

67

How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

in the next stripe, shifted left one column from the previous parity stripe unit location.
If there are more stripes than columns, the parity stripe unit placement begins in
the rightmost column again.

Figure 3-16 shows a left-symmetric parity layout with five disks (one per column).

Figure 3-16 Left-symmetric layout

Column . . .
Parity stripe unit

Stripe 5 6 7 (P1) 4

10 11 P2 8 @j

15 P3 12 13 14 Data stripe unit

P4 16 17 18 19

For each stripe, data is organized starting to the right of the parity stripe unit. In the
figure, data organization for the first stripe begins at PO and continues to stripe units
0-3. Data organization for the second stripe begins at P1, then continues to stripe
unit 4, and on to stripe units 5-7. Data organization proceeds in this manner for the
remaining stripes.

Each parity stripe unit contains the result of an exclusive OR (XOR) operation
performed on the data in the data stripe units within the same stripe. If one column’s
data is inaccessible due to hardware or software failure, the data for each stripe
can be restored by XORing the contents of the remaining columns data stripe units
against their respective parity stripe units.

For example, if a disk corresponding to the whole or part of the far left column fails,
the volume is placed in a degraded mode. While in degraded mode, the data from
the failed column can be recreated by XORing stripe units 1-3 against parity stripe
unit PO to recreate stripe unit 0, then XORing stripe units 4, 6, and 7 against parity
stripe unit P1 to recreate stripe unit 5, and so on.

Failure of more than one column in a RAID-5 plex detaches the volume. The volume
is no longer allowed to satisfy read or write requests. Once the failed columns have
been recovered, it may be necessary to recover user data from backups.

68

How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

RAID-5 logging

Logging is used to prevent corruption of data during recovery by immediately
recording changes to data and parity to a log area on a persistent device such as
a volume on disk or in non-volatile RAM. The new data and parity are then written
to the disks.

Without logging, it is possible for data not involved in any active writes to be lost or
silently corrupted if both a disk in a RAID-5 volume and the system fail. If this
double-failure occurs, there is no way of knowing if the data being written to the
data portions of the disks or the parity being written to the parity portions have
actually been written. Therefore, the recovery of the corrupted disk may be corrupted
itself.

Figure 3-17 shows a RAID-5 volume configured across three disks (A, B, and C).

Figure 3-17 Incomplete write to a RAID-5 volume

Cosay (CDiska g
-—

In this volume, recovery of disk B’s corrupted data depends on disk A's data and
disk C’s parity both being complete. However, only the data write to disk A is
complete. The parity write to disk C is incomplete, which would cause the data on
disk B to be reconstructed incorrectly.

Completed }:Z’I.V’I 1'1 Corrupted data ~ Incomplete
A

data write parity write

This failure can be avoided by logging all data and parity writes before committing
them to the array. In this way, the log can be replayed, causing the data and parity
updates to be completed before the reconstruction of the failed drive takes place.

Logs are associated with a RAID-5 volume by being attached as log plexes. More
than one log plex can exist for each RAID-5 volume, in which case the log areas
are mirrored.

About layered volumes

A layered volume is a virtual Veritas Volume Manager (VxVM) object that is built
on top of other volumes. The layered volume structure tolerates failure better and
has greater redundancy than the standard volume structure. For example, in a
striped-mirror layered volume, each mirror (plex) covers a smaller area of storage
space, so recovery is quicker than with a standard mirrored volume.

69

How Veritas Volume Manager works | 70
Volume layouts in Veritas Volume Manager

Figure 3-18 shows a typical striped-mirror layered volume where each column is
represented by a subdisk that is built from an underlying mirrored volume.

Figure 3-18 Example of a striped-mirror layered volume
vol01
Striped mirror
vol01-01 volume
vol01-01
Managed Column 0 Column 1 Striped plex
by user
Managed |_vopot | [vopo2 | Subdisks
by VXVM | |
vop01 vop02 Underlying
mirrored
volumes
[askos01 | [askosor | [aiskoso1 | [Laiskoror | Concatenated
= o = S | = plexes
- - - | - | Subdisks on
| disk04-01 | [disk05-01 | | disk06-01 | [disk07-01 | \/pp gisks

The volume and striped plex in the “Managed by user” area allow you to perform
normal tasks in VxVM. User tasks can be performed only on the top-level volume
of a layered volume.

Underlying volumes in the “Managed by VxVM” area are used exclusively by VxVM
and are not designed for user manipulation. You cannot detach a layered volume
or perform any other operation on the underlying volumes by manipulating the
internal structure. You can perform all necessary operations in the “Managed by
user” area that includes the top-level volume and striped plex (for example, resizing
the volume, changing the column width, or adding a column).

System administrators can manipulate the layered volume structure for
troubleshooting or other operations (for example, to place data on specific disks).
Layered volumes are used by VxVM to perform the following tasks and operations:

How Veritas Volume Manager works | 71
Online relayout

Creating striped-mirrors See “Creating a striped-mirror volume” on page 147.

See the vxassist(1M) manual page.

Creating concatenated-mirrors See “Creating a concatenated-mirror volume”
on page 146.

See the vxassist(1M) manual page.

Online Relayout See “Online relayout” on page 71.
See the vxassist(1M) manual page.

See the vxrelayout(1M) manual page.
Moving RAID-5 subdisks See the vxsd(1M) manual page.

Creating Snapshots See “Volume snapshots” on page 78.
See the vxassist(1M) manual page.

See the vxsnap(1M) manual page.

Online relayout

Online relayout allows you to convert between storage layouts in VxVM, with
uninterrupted data access. Typically, you would do this to change the redundancy
or performance characteristics of a volume. VxVM adds redundancy to storage
either by duplicating the data (mirroring) or by adding parity (RAID-5). Performance
characteristics of storage in VxVM can be changed by changing the striping
parameters, which are the number of columns and the stripe width.

See “Performing online relayout” on page 654.

How online relayout works

Online relayout allows you to change the storage layouts that you have already
created in place without disturbing data access. You can change the performance
characteristics of a particular layout to suit your changed requirements. You can
transform one layout to another by invoking a single command.

For example, if a striped layout with a 128KB stripe unit size is not providing optimal
performance, you can use relayout to change the stripe unit size.

File systems mounted on the volumes do not need to be unmounted to achieve this
transformation provided that the file system (such as Veritas File System) supports
online shrink and grow operations.

Online relayout reuses the existing storage space and has space allocation policies
to address the needs of the new layout. The layout transformation process converts

How Veritas Volume Manager works | 72
Online relayout

a given volume to the destination layout by using minimal temporary space that is
available in the disk group.

The transformation is done by moving one portion of data at a time in the source
layout to the destination layout. Data is copied from the source volume to the
temporary area, and data is removed from the source volume storage area in
portions. The source volume storage area is then transformed to the new layout,
and the data saved in the temporary area is written back to the new layout. This
operation is repeated until all the storage and data in the source volume has been
transformed to the new layout.

The default size of the temporary area used during the relayout depends on the
size of the volume and the type of relayout. For volumes larger than 50MB, the
amount of temporary space that is required is usually 10% of the size of the volume,
from a minimum of 50MB up to a maximum of 1GB. For volumes smaller than 50MB,
the temporary space required is the same as the size of the volume.

The following error message displays the number of blocks required if there is
insufficient free space available in the disk group for the temporary area:

tmpsize too small to perform this relayout (nblks minimum required)

You can override the default size used for the temporary area by using the tmpsize
attribute to vxassist.

See the vxassist(1M) manual page.

As well as the temporary area, space is required for a temporary intermediate
volume when increasing the column length of a striped volume. The amount of
space required is the difference between the column lengths of the target and source
volumes. For example, 20GB of temporary additional space is required to relayout
a 150GB striped volume with 5 columns of length 30GB as 3 columns of length
50GB. In some cases, the amount of temporary space that is required is relatively
large. For example, a relayout of a 150GB striped volume with 5 columns as a
concatenated volume (with effectively one column) requires 120GB of space for
the intermediate volume.

Additional permanent disk space may be required for the destination volumes,
depending on the type of relayout that you are performing. This may happen, for
example, if you change the number of columns in a striped volume.

Figure 3-19 shows how decreasing the number of columns can require disks to be
added to a volume.

How Veritas Volume Manager works
Online relayout

Figure 3-19 Example of decreasing the number of columns in a volume

s
L] e

Five columns of length L Three columns of length 5L/3

Note that the size of the volume remains the same but an extra disk is needed to
extend one of the columns.

The following are examples of operations that you can perform using online relayout:

= Remove parity from a RAID-5 volume to change it to a concatenated, striped,
or layered volume.
Figure 3-20 shows an example of applying relayout a RAID-5 volume.

Figure 3-20 Example of relayout of a RAID-5 volume to a striped volume

__— s

RAID-5 volume Striped volume

Note that removing parity decreases the overall storage space that the volume
requires.

= Add parity to a volume to change it to a RAID-5 volume.
Figure 3-21 shows an example.

Figure 3-21 Example of relayout of a concatenated volume to a RAID-5
volume
Concatenate:
volume _—
RAID-5 volume

Note that adding parity increases the overall storage space that the volume requires.

73

How Veritas Volume Manager works | 74
Online relayout

= Change the number of columns in a volume.
Figure 3-22 shows an example of changing the number of columns.

Figure 3-22 Example of increasing the number of columns in a volume

B www

Two columns Three columns

Note that the length of the columns is reduced to conserve the size of the volume.
= Change the column stripe width in a volume.

Figure 3-23 shows an example of changing the column stripe width.

Figure 3-23 Example of increasing the stripe width for the columns in a volume

ve s

See “Performing online relayout” on page 654.

See “Permitted relayout transformations” on page 655.

Limitations of online relayout
Note the following limitations of online relayout:
s Log plexes cannot be transformed.

= Volume snapshots cannot be taken when there is an online relayout operation
running on the volume.

= Online relayout cannot create a non-layered mirrored volume in a single step.
It always creates a layered mirrored volume even if you specify a non-layered
mirrored layout, such as mirror-stripe Or mirror-concat. Use the vxassist
convert command to turn the layered mirrored volume that results from a
relayout into a non-layered volume.

How Veritas Volume Manager works | 75
Online relayout

= The usual restrictions apply for the minimum number of physical disks that are
required to create the destination layout. For example, mirrored volumes require
at least as many disks as mirrors, striped and RAID-5 volumes require at least
as many disks as columns, and striped-mirror volumes require at least as many
disks as columns multiplied by mirrors.

= To be eligible for layout transformation, the plexes in a mirrored volume must
have identical stripe widths and numbers of columns. Relayout is not possible
unless you make the layouts of the individual plexes identical.

= Online relayout cannot transform sparse plexes, nor can it make any plex sparse.
(A sparse plex is a plex that is not the same size as the volume, or that has
regions that are not mapped to any subdisk.)

= The number of mirrors in a mirrored volume cannot be changed using relayout.
Instead, use alternative commands, such as the vxassist mirror command.

= Only one relayout may be applied to a volume at a time.

Transformation characteristics

Transformation of data from one layout to another involves rearrangement of data
in the existing layout to the new layout. During the transformation, online relayout
retains data redundancy by mirroring any temporary space used. Read and write

access to data is not interrupted during the transformation.

Data is not corrupted if the system fails during a transformation. The transformation
continues after the system is restored and both read and write access are
maintained.

You can reverse the layout transformation process at any time, but the data may
not be returned to the exact previous storage location. Before you reverse a
transformation that is in process, you must stop it.

You can determine the transformation direction by using the vxrelayout status
volume command.

These transformations are protected against I/O failures if there is sufficient
redundancy and space to move the data.

Transformations and volume length

Some layout transformations can cause the volume length to increase or decrease.
If either of these conditions occurs, online relayout uses the vxresize command
to shrink or grow a file system.

See the vxresize(1M) manual page.

How Veritas Volume Manager works | 76
Volume resynchronization

Volume resynchronization

When storing data redundantly and using mirrored or RAID-5 volumes, VxVM
ensures that all copies of the data match exactly. However, under certain conditions
(usually due to complete system failures), some redundant data on a volume can
become inconsistent or unsynchronized. The mirrored data is not exactly the same
as the original data. Except for normal configuration changes (such as detaching
and reattaching a plex), this can only occur when a system crashes while data is
being written to a volume.

Data is written to the mirrors of a volume in parallel, as is the data and parity in a
RAID-5 volume. If a system crash occurs before all the individual writes complete,
it is possible for some writes to complete while others do not. This can result in the
data becoming unsynchronized. For mirrored volumes, it can cause two reads from
the same region of the volume to return different results, if different mirrors are used
to satisfy the read request. In the case of RAID-5 volumes, it can lead to parity
corruption and incorrect data reconstruction.

VxVM ensures that all mirrors contain exactly the same data and that the data and
parity in RAID-5 volumes agree. This process is called volume resynchronization.
For volumes that are part of the disk group that is automatically imported at boot
time (usually aliased as the reserved system-wide disk group, bootdg),
resynchronization takes place when the system reboots.

Not all volumes require resynchronization after a system failure. Volumes that were
never written or that were quiescent (that is, had no active 1/0) when the system
failure occurred could not have had outstanding writes and do not require
resynchronization.

Dirty flags

VxVM records when a volume is first written to and marks it as dirty. When a volume
is closed by all processes or stopped cleanly by the administrator, and all writes
have been completed, VxVM removes the dirty flag for the volume. Only volumes
that are marked dirty require resynchronization.

Resynchronization process

The process of resynchronization depends on the type of volume. For mirrored
volumes, resynchronization is done by placing the volume in recovery mode (also
called read-writeback recovery mode). Resynchronization of data in the volume is
done in the background. This allows the volume to be available for use while
recovery is taking place. RAID-5 volumes that contain RAID-5 logs can “replay”
those logs. If no logs are available, the volume is placed in reconstruct-recovery
mode and all parity is regenerated.

How Veritas Volume Manager works | 77
Hot-relocation

Resynchronization can impact system performance. The recovery process reduces
some of this impact by spreading the recoveries to avoid stressing a specific disk
or controller.

For large volumes or for a large number of volumes, the resynchronization process
can take time. These effects can be minimized by using dirty region logging (DRL)
and FastResync (fast mirror resynchronization) for mirrored volumes, or by using
RAID-5 logs for RAID-5 volumes.

See “Dirty region logging” on page 77.

For mirrored volumes used by Oracle, you can use the SmartSync feature, which
further improves performance.

Hot-relocation

Hot-relocation is a feature that allows a system to react automatically to 1/O failures
on redundant objects (mirrored or RAID-5 volumes) in VxVM and restore redundancy
and access to those objects. VxVM detects I/O failures on objects and relocates
the affected subdisks. The subdisks are relocated to disks designated as spare
disks or to free space within the disk group. VxVM then reconstructs the objects
that existed before the failure and makes them accessible again.

When a partial disk failure occurs (that is, a failure affecting only some subdisks on
a disk), redundant data on the failed portion of the disk is relocated. Existing volumes
on the unaffected portions of the disk remain accessible.

See “How hot-relocation works” on page 592.

Dirty region logging

Dirty region logging (DRL), if enabled, speeds recovery of mirrored volumes after
a system crash. DRL tracks the regions that have changed due to I/O writes to a
mirrored volume. DRL uses this information to recover only those portions of the
volume.

If DRL is not used and a system failure occurs, all mirrors of the volumes must be
restored to a consistent state. Restoration is done by copying the full contents of
the volume between its mirrors. This process can be lengthy and I/O intensive.

Note: DRL adds a small I/O overhead for most write access patterns. This overhead
is reduced by using SmartSync.

How Veritas Volume Manager works | 78
Volume snapshots

If an instant snap DCO volume is associated with a volume, a portion of the DCO
volume can be used to store the DRL log. There is no need to create a separate
DRL log for a volume which has an instant snap DCO volume.

Log subdisks and plexes

DRL log subdisks store the dirty region log of a mirrored volume that has DRL
enabled. A volume with DRL has at least one log subdisk; multiple log subdisks
can be used to mirror the dirty region log. Each log subdisk is associated with one
plex of the volume. Only one log subdisk can exist per plex. If the plex contains
only a log subdisk and no data subdisks, that plex is referred to as a log plex.

The log subdisk can also be associated with a regular plex that contains data
subdisks. In that case, the log subdisk risks becoming unavailable if the plex must
be detached due to the failure of one of its data subdisks.

If the vxassist command is used to create a dirty region log, it creates a log plex
containing a single log subdisk by default. A dirty region log can also be set up
manually by creating a log subdisk and associating it with a plex. The plex then
contains both a log and data subdisks.

Sequential DRL

Some volumes, such as those that are used for database replay logs, are written
sequentially and do not benefit from delayed cleaning of the DRL bits. For these
volumes, sequential DRL can be used to limit the number of dirty regions. This
allows for faster recovery. However, if applied to volumes that are written to
randomly, sequential DRL can be a performance bottleneck as it limits the number
of parallel writes that can be carried out.

The maximum number of dirty regions allowed for sequential DRL is controlled by
a tunable as detailed in the description of voldrl max seq dirty.

Volume snapshots

Veritas Volume Manager provides the capability for taking an image of a volume
at a given point in time. Such an image is referred to as a volume snapshot. Such
snapshots should not be confused with file system snapshots, which are point-in-time
images of a Veritas File System.

Figure 3-24 shows how a snapshot volume represents a copy of an original volume
at a given point in time.

How Veritas Volume Manager works | 79
Volume snapshots

Figure 3-24 Volume snapshot as a point-in-time image of a volume

T Original volume

T2 Original volume Snapshot volume Snapshot volume is created

attime T2

T3 Original volume Snapshot volume snapshot vqum.e retains
image taken at time T2

T4 Original volume Snapshot volume Snapshot volume is updated

attime T4

Time Resynchronize snapshot volume

from the original volume

Even though the contents of the original volume can change, the snapshot volume
preserves the contents of the original volume as they existed at an earlier time.

The snapshot volume provides a stable and independent base for making backups
of the contents of the original volume, or for other applications such as decision
support. In the figure, the contents of the snapshot volume are eventually
resynchronized with the original volume at a later point in time.

Another possibility is to use the snapshot volume to restore the contents of the
original volume. This may be useful if the contents of the original volume have
become corrupted in some way.

Warning: If you write to the snapshot volume, it may no longer be suitable for use
in restoring the contents of the original volume.

One type of volume snapshot in VxVM is the third-mirror break-off type. This name
comes from its implementation where a snapshot plex (or third mirror) is added to
a mirrored volume. The contents of the snapshot plex are then synchronized from
the original plexes of the volume. When this synchronization is complete, the
snapshot plex can be detached as a snapshot volume for use in backup or decision
support applications. At a later time, the snapshot plex can be reattached to the
original volume, requiring a full resynchronization of the snapshot plex’s contents.

The FastResync feature was introduced to track writes to the original volume. This
tracking means that only a partial, and therefore much faster, resynchronization is
required on reattaching the snapshot plex. In later releases, the snapshot model

How Veritas Volume Manager works | 80
Volume snapshots

was enhanced to allow snapshot volumes to contain more than a single plex,
reattachment of a subset of a snapshot volume’s plexes, and persistence of
FastResync across system reboots or cluster restarts.

Release 4.0 of VxVM introduced full-sized instant snapshots and space-optimized
instant snapshots, which offer advantages over traditional third-mirror snapshots
such as immediate availability and easier configuration and administration. You
can also use the third-mirror break-off usage model with full-sized snapshots, where
this is necessary for write-intensive applications.

For information about how and when to use volume snapshots, see the Veritas
InfoScale Solutions Guide.

See the vxassist(1M) manual page.

See the vxsnap(1M) manual page.

Comparison of snapshot features

Table 3-2 compares the features of the various types of snapshots that are supported

in VxXVM.
Table 3-2 Comparison of snapshot features for supported snapshot types
Snapshot feature Full-sized Space-optimized | Break-off
instant (vxsnap) | instant (vxsnap) | (vxassist or
vxsnap)

Immediately available for use | Yes Yes No

on creation

Requires less storage space | No Yes No

than original volume

Can be reattached to original | Yes No Yes

volume

Can be used to restore Yes Yes Yes

contents of original volume

Can quickly be refreshed Yes Yes No

without being reattached

Snapshot hierarchy can be | Yes No No

split

Can be moved into separate | Yes No Yes

disk group from original

volume

How Veritas Volume Manager works | 81
Support for atomic writes

Table 3-2 Comparison of snapshot features for supported snapshot types
(continued)

Snapshot feature Full-sized Space-optimized | Break-off
instant (vxsnap) | instant (vxsnap) | (vxassist or
vxshap)

Can be turned into an Yes No Yes
independent volume

FastResync ability persists | Yes Yes Yes
across system reboots or
cluster restarts

Synchronization can be Yes No No
controlled
Can be moved off-host Yes No Yes

Full-sized instant snapshots are easier to configure and offer more flexibility of use
than do traditional third-mirror break-off snapshots. For preference, new volumes
should be configured to use snapshots that have been created using the vxsnap
command rather than using the vxassist command. Legacy volumes can also be
reconfigured to use vxsnap snapshots, but this requires rewriting of administration
scripts that assume the vxassist snapshot model.

Support for atomic writes

Veritas InfoScale supports atomic write operations on RHEL6 on Fusion-io devices.
Atomic write capable devices ensure that all blocks in write /0 operation (which
may span multiple sectors) either pass or fail. If a write fails in-between, the storage
reverts back to old data.

Atomic write resolves a problem of indeterminate status of failed writes that often
requires two-part write — one write to an update log buffer and the other write on
actual data volumes. Enabling atomic write eliminates the writes on log buffer, which
in turn results in a better performance.

Storage Foundation lets you configure the atomic write support when you create a
Veritas Volume Manager (VxVM) volume on a device that has atomic write capability.
The atomic write 1/O size of an atomic write capable volume is 16KB.

While creating an atomic write capable volume, VxXVM ensures that all underlying
subdisks are aligned to the 16KB boundary. Atomic write capable volumes can
span multiple atomic write enabled devices, but I/O crossing atomic write boundary
is not supported.

How Veritas Volume Manager works | 82
FastResync

Atomic write is supported on raw VxVM volumes as well as on VxFS configured on
VxVM volumes.

For information about using the Storage Foundation atomic write 1/0O feature with
MySQL, see the Storage Foundation and High Availability Solutions Solutions
Guide.

FastResync

Note: You need to have Veritas InfoScale Enterprise product license to use this
feature.

The FastResync feature (previously called Fast Mirror Resynchronization or FMR)
performs quick and efficient resynchronization of stale mirrors (a mirror that is not
synchronized). This feature increases the efficiency of the Veritas Volume Manager
(VxVM) snapshot mechanism, and improves the performance of operations such
as backup and decision support applications. Typically, these operations require
that the volume is quiescent, and that they are not impeded by updates to the
volume by other activities on the system. To achieve these goals, the snapshot
mechanism in VxVM creates an exact copy of a primary volume at an instant in
time. After a snapshot is taken, it can be accessed independently of the volume
from which it was taken.

In a Cluster Volume Manager (CVM) environment with shared access to storage,
it is possible to eliminate the resource contention and performance overhead of
using a snapshot simply by accessing it from a different node.

How FastResync works

FastResync provides the following enhancements to VxVM:

How Veritas Volume Manager works | 83
FastResync

Faster mirror resynchronization FastResync optimizes mirror resynchronization by keeping
track of updates to stored data that have been missed by
a mirror. (A mirror may be unavailable because it has been
detached from its volume, either automatically by VxVM
as the result of an error, or directly by an administrator
using a utility such as vxplex or vxassist. A returning
mirror is a mirror that was previously detached and is in
the process of being re-attached to its original volume as
the result of the vxrecover or vkplex att operation.)
When a mirror returns to service, only the updates that it
has missed need to be re-applied to resynchronize it. This
requires much less effort than the traditional method of
copying all the stored data to the returning mirror.

Once FastResync has been enabled on a volume, it does
not alter how you administer mirrors. The only visible effect
is that repair operations conclude more quickly.

See the vxplex(1M), vxassist(1M), and
vxrecover(1M) manual pages.

Re-use of snapshots FastResync allows you to refresh and re-use snapshots
rather than discard them. You can quickly re-associate
(snap back) snapshot plexes with their original volumes.
This reduces the system overhead required to perform
cyclical operations such as backups that rely on the volume
snapshots.

FastResync can be implemented in one of two ways:

Non-persistent FastResync Non-persistent FastResync allocates its change maps in
memory. The maps do not reside on disk nor in persistent
store.

See “How non-persistent FastResync works with
snapshots” on page 83.

Persistent FastResync Persistent FastResync keeps the FastResync maps on
disk so that they can survive system reboots, system
crashes and cluster crashes.

See “How persistent FastResync works with snapshots”
on page 84.

How non-persistent FastResync works with snapshots

If FastResync is enabled on a volume before a snapshot is taken, the snapshot
feature of VxVM uses FastResync change tracking to record updates to the original

How Veritas Volume Manager works | 84
FastResync

volume after a snapshot plex is created. When the snapback option is used to
reattach the snapshot plex, the changes that FastResync recorded are used to
resynchronize the volume during the snapback. This behavior considerably reduces
the time needed to resynchronize the volume.

Non-persistent FastResync uses a map in memory to implement change tracking.
The map does not exist on disk or in persistent store. The advantage of
non-persistent FastResync is that updates to the FastResync map have little impact
on I/O performance, because no disk updates are performed. However, FastResync
must remain enabled until the snapshot is reattached, and the system cannot be
rebooted. If FastResync is disabled or the system is rebooted, the information in
the map is lost and a full resynchronization is required on snapback.

This limitation can be overcome for volumes in cluster-shareable disk groups,
provided that at least one of the nodes in the cluster remained running to preserve
the FastResync map in its memory. However, a node crash in a High Availability
(HA) environment requires the full resynchronization of a mirror when it is reattached
to its parent volume.

Each bit in the FastResync map represents a contiguous number of blocks in a
volume’s address space. The default size of the map is 4 blocks. The kernel tunable
vol fmr logsz can be used to limit the maximum size in blocks of the map

For information about tuning VxVM, see the Storage Foundation and High Availability
Solutions Tuning Guide.

How persistent FastResync works with snapshots

Persistent FastResync keeps the FastResync maps on disk so that they can survive
system reboots, system crashes, and cluster crashes. Persistent FastResync uses
a map in a data change object (DCO) volume on disk to implement change tracking.
Each bit in the map represents a contiguous number of blocks in a volume’s address
space.

Persistent FastResync can also track the association between volumes and their

snapshot volumes after they are moved into different disk groups. When the disk

groups are rejoined, this allows the snapshot plexes to be quickly resynchronized.
This ability is not supported by non-persistent FastResync.

See “Reorganizing the contents of disk groups” on page 637.

When persistent FastResync is enabled on a volume or on a snapshot volume, a
data change object (DCO) and a DCO volume are associated with the volume.

See “DCO volume versioning ” on page 87.

Figure 3-25 shows an example of a mirrored volume with two plexes on which
persistent FastResync is enabled.

How Veritas Volume Manager works
FastResync

Figure 3-25 Mirrored volume with persistent FastResync enabled
Mirrored volume

Data plex Dataplex = ——— Data change object

DCO volume

DCO plex DCO plex

Associated with the volume are a DCO object and a DCO volume with two plexes.

Create an instant snapshot by using the vxsnap make command, or create a
traditional third-mirror snapshot by using the vxassist snapstart command.

Figure 3-26 shows how a snapshot plex is set up in the volume, and how a disabled
DCO plex is associated with it.

Figure 3-26 Mirrored volume after completion of a snapstart operation

Mirrored volume

Dataplex Dataplex Dataplex @~ Datachange object
DCO volume
Disabled
D | D |
DCO plex CO plex DCO plex

Multiple snapshot plexes and associated DCO plexes may be created in the volume
by re-running the vxassist snapstart command for traditional snapshots, or the
vxsnap make command for space-optimized snapshots. You can create up to a
total of 32 plexes (data and log) in a volume.

A traditional snapshot volume is created from a snapshot plex by running the
vxassist snapshot operation on the volume. For instant snapshots, however, the
vxsnap make command makes an instant snapshot volume immediately available
for use. There is no need to run an additional command.

Figure 3-27 shows how the creation of the snapshot volume also sets up a DCO
object and a DCO volume for the snapshot volume.

85

How Veritas Volume Manager works
FastResync
Figure 3-27 Mirrored volume and snapshot volume after completion of a
snapshot operation
Mirrored volume
Dataplex Dataplex — Data change object ———— Snap object
I
! ' ’
\ DCO volume /I
/
N DCO DCO y
\ I /
N og plex log plex ,
~ s/
N - - P /
~ ~ 7
~—— -
—_—— - - o= = ~ N
Snapshot volume < —— —~ "~ N
Data plex —— Data change object ———— Snap object
DCO volume
DCO
log plex

The DCO volume contains the single DCO plex that was associated with the
snapshot plex. If two snapshot plexes were taken to form the snapshot volume, the
DCO volume would contain two plexes. For space-optimized instant snapshots,
the DCO object and DCO volume are associated with a snapshot volume that is
created on a cache object and not on a VxVM disk.

Associated with both the original volume and the snapshot volume are snap objects.
The snap object for the original volume points to the snapshot volume, and the
snap object for the snapshot volume points to the original volume. This allows VxVM
to track the relationship between volumes and their snapshots even if they are
moved into different disk groups.

The snap objects in the original volume and snapshot volume are automatically
deleted in the following circumstances:

= Fortraditional snapshots, the vxassist snapback operation is run to return all
of the plexes of the snapshot volume to the original volume.

» Fortraditional snapshots, the vxassist snapclear operation is run onavolume
to break the association between the original volume and the snapshot volume.

86

How Veritas Volume Manager works
FastResync

If the volumes are in different disk groups, the command must be run separately
on each volume.

» Forfull-sized instant snapshots, the vxsnap reattach operation is run to return
all of the plexes of the snapshot volume to the original volume.

n For full-sized instant snapshots, the vxsnap dis or vxsnap split operations
are run on a volume to break the association between the original volume and
the snapshot volume. If the volumes are in different disk groups, the command
must be run separately on each volume.

Note: The vxsnap reattach, dis and split operations are not supported for
space-optimized instant snapshots.

See the vxassist(1M) manual page.

See the vxsnap(1M) manual page.

DCO volume versioning

Persistent FastResync uses a data change object (DCO) and a DCO volume to
hold the FastResync maps.

This release of Veritas Volume Manager (VxVM) supports the following DCO volume

versions:

Instant snap DCO Previously known as Version 20 DCO volume layout, this version of

volume layout

Version 0 DCO
volume layout

the DCO layout supports instant snapshots of volumes.

This type of DCO manages the FastResync maps, and also manages
DRL recovery maps and special maps called copymaps that allow
instant snapshot operations to resume correctly following a system
crash.

This version of the DCO volume layout only supports legacy snapshots
(vxassist snapshots). The DCO object manages information about the
FastResync maps. These maps track writes to the original volume and
to each of up to 32 snapshot volumes since the last snapshot
operation. Each plex of the DCO volume on disk holds 33 maps, each
of which is 4 blocks in size by default.

VxVM software continues to support the version 0 (zero) layout for
legacy volumes.

87

How Veritas Volume Manager works
FastResync

Instant snap (version 20) DCO volume layout

The instant snap data change object (DCO) supports full-sized and space-optimized
instant snapshots. Traditional third-mirror volume snapshots that are administered
using the vxassist command are not supported with this DCO layout.

Introduced in Veritas Volume Manager (VxVM) 4.0, the instant snap DCO volume
layout is also known as a version 20 DCO volume layout. This type of DCO is used
not only to manage the FastResync maps, but also to manage DRL recovery maps
and special maps called copymaps that allow instant snapshot operations to resume
correctly following a system crash.

See “Dirty region logging” on page 77.

Each bit in a map represents a region (a contiguous number of blocks) in a volume’s
address space. A region represents the smallest portion of a volume for which
changes are recorded in a map. A write to a single byte of storage anywhere within
aregion is treated in the same way as a write to the entire region.

In Storage Foundation 6.0, the volume layout of an instant snap DCO has been
changed to improve the I/O performance and scalability of instant snapshots. The
change in layout does not alter how you administer instant snapshots. The only
visible affect is in improved 1/O performance and in some cases, increased size of
a DCO volume.

The layout of an instant snap DCO volume uses dynamic creation of maps on the
preallocated storage. The size of the DRL (Dirty region logging) map does not

depend on volume size. You can configure the size of the DRL by using the option
drlmapsz While creating the DCO volume. By default, the size of the DRL is 1MB.

For CVM configurations, each node has a dedicated DRL map that gets allocated
during the first write on that node. By default, the size of the DCO volume
accommodates 32 DRL maps, an accumulator, and 16 per-volume maps (including
a DRL recovery map, a detach map to track detached plexes, and the remaining
14 maps for tracking snapshots).

The size of the DCO plex can be estimated using the following formula:

DCO volume size = (32*drlmapsize + acmsize + l6*per-volume map size)
where:

acmsize = (volume size / (region size*4))

per-volume map size = (volume size/region size*8)

drlmapsize = 1M, by default

88

How Veritas Volume Manager works | 89
FastResync

For a 100GB volume, the size of the DCO volume with the default regionsize of
64KB is approximately 36 MB.

Create the DCOs for instant snapshots by using the vxsnap prepare command or
by specifying the options 1ogtype=dco dcoversion=20 while creating a volume
with the vxassist make command.

Version 0 DCO volume layout

The version 0 DCO volume layout supports only traditional (third-mirror) volume
snapshots that are administered using the vxassist command. Full-sized and
space-optimized instant snapshots are not supported with this DCO layout.

The size of each map can be changed by specifying the dcolen attribute to the
vxassist command when the volume is created. The default value of dcolen is
132 blocks (the plex contains 33 maps, each of length 4 blocks). To use a larger
map size, multiply the desired map size by 33 to calculate the value of dcolen. For
example, to use an 8-block map, specify dcolen=264. The maximum possible map
size is 64 blocks, which corresponds to a dcolen value of 2112 blocks.

The size of a DCO plex is rounded up to the nearest integer multiple of the disk
group alignment value. The alignment value is 8KB for disk groups that support the
Cross-platform Data Sharing (CDS) feature. Otherwise, the alignment value is 1
block.

Effect of growing a volume on the FastResync map

It is possible to grow the replica volume, or the original volume, and still use
FastResync. According to the DCO volume layout, growing the volume has the
following different effects on the map that FastResync uses to track changes to the
original volume:

» For an instant snap DCO volume, the size of the map is increased and the size
of the region that is tracked by each bit in the map stays the same.

n For a version 0 DCO volume, the size of the map remains the same and the
region size is increased.

In either case, the part of the map that corresponds to the grown area of the volume
is marked as “dirty” so that this area is resynchronized. The snapback operation
fails if it attempts to create an incomplete snapshot plex. In such cases, you must
grow the replica volume, or the original volume, before invoking any of the
commands vxsnap reattach, vxsnap restore, Of vxassist snapback. Growing
the two volumes separately can lead to a snapshot that shares physical disks with
another mirror in the volume. To prevent this, grow the volume after the snapback
command is complete.

How Veritas Volume Manager works
FastResync

See the vxsnap(1M) and the vxassist(1M) manual pages.

FastResync limitations

The following limitations apply to FastResync:

Persistent FastResync is supported for RAID-5 volumes, but this prevents the
use of the relayout or resize operations on the volume while a DCO is associated
with it.

Neither non-persistent nor persistent FastResync can be used to resynchronize
mirrors after a system crash. Dirty region logging (DRL), which can coexist with
FastResync, should be used for this purpose. In VxXVM 4.0 and later releases,
DRL logs may be stored in an instant snap DCO volume.

When a subdisk is relocated, the entire plex is marked “dirty” and a full
resynchronization becomes necessary.

If a snapshot volume is split off into another disk group, non-persistent
FastResync cannot be used to resynchronize the snapshot plexes with the
original volume when the disk group is rejoined with the original volume’s disk
group. Persistent FastResync must be used for this purpose.

If you move or split an original volume (on which persistent FastResync is
enabled) into another disk group, and then move or join it to a snapshot volume’s
disk group, you cannot use vxassist snapback to resynchronize traditional
snapshot plexes with the original volume. This restriction arises because a
snapshot volume references the original volume by its record ID at the time that
the snapshot volume was created. Moving the original volume to a different disk
group changes the volume’s record ID, and so breaks the association. However,
in such a case, you can use the vxplex snapback command with the -£ (force)
option to perform the snapback.

Note: This restriction only applies to traditional snapshots. It does not apply to
instant snapshots.

Any operation that changes the layout of a replica volume can mark the
FastResync change map for that snapshot “dirty” and require a full
resynchronization during snapback. Operations that cause this include subdisk
split, subdisk move, and online relayout of the replica. It is safe to perform these
operations after the snapshot is completed.

See the vxassist (1M) manual page.

See the vxplex (1M) manual page.

See the vxvol (1M) manual page.

90

How Veritas Volume Manager works | 91
Volume sets

Volume sets

Volume sets are an enhancement to Veritas Volume Manager (VxVM) that allow
several volumes to be represented by a single logical object. All I/O from and to
the underlying volumes is directed by way of the 1/O interfaces of the volume set.
Veritas File System (VxFS) uses volume sets to manage multi-volume file systems
and the SmartTier feature. This feature allows VxFS to make best use of the different
performance and availability characteristics of the underlying volumes. For example,
file system metadata can be stored on volumes with higher redundancy, and user
data on volumes with better performance.

See “Creating a volume set” on page 500.

How VxVM handles hardware clones or snapshots

Advanced disk arrays provide methods to create copies of physical volumes (disks
or LUNs) from the hardware side.

You can create a hardware snapshot (such as an EMC BCV™ or Hitachi
Shadowlmage™), a hardware mirror, or a hardware clone. You can also use dd or
a similar command to clone the disk content.

If the physical volumes are VxVM disks, using a hardware copy method also copies
the configuration data stored in the private region of the VxVM managed disk. The
hardware disk copy becomes a duplicate of the original VxVM disk. For VxVM to
handle the duplicated disk images correctly, VxXVM must distinguish between the
original and duplicate disk images.

VxVM detects that a disk is a hardware copy, to ensure that the duplicate disks are
not confused with the original disks. This functionality enables the server to import
a consistent set of disks. By default, VXVM imports the original physical volume but
VxVM also enables you to work with the hardware copies on the same server. VxXVM
provides special options to import a disk group with the cloned images and make
a cloned disk group with a unique identity. With care, you can manage multiple sets
of hardware copies, even from the same server.

See “Importing a disk group containing hardware cloned disks ” on page 687.

VxVM provides the following functionality to handle hardware copies:

How Veritas Volume Manager works | 92
How VxVM handles hardware clones or shapshots

Functionality Description

Distinguishes between the hardware copy = VxVM discovers a unique disk identifier

and the original data disk. (UDID) for each disk from the attributes of the
hardware disk and stores this value. VxVM
compares the discovered UDID to the stored
value to detect if a disk is a hardware copy.

Prevents inadvertent sharing over the SAN By default, when you import a VxVM disk

of an original LUN and one or more of its group, VxVM prevents disks that are identified

point-in time copies, mirrors, or replicated as clones or copies from being imported. This

copies. behavior prevents mistakenly importing a mix
of original disks and hardware copies.

Imports the hardware copies as a clone disk [If you choose to import the hardware copies

group or as a new standard disk group. of the disks of a VxVM disk group, VxVM
identifies the disks as clone disks. You can
choose whether to maintain the clone disk
status or create a new standard disk group.

Detects the LUN class of the array. VxVM detects the extended attributes of the
array, including the LUN class. The LUN class
can help to identify which disks are hardware
copies of the VxVM disks.

Provides disk tagging to label and manage If you create multiple copies of the same set

sets of disks. of volumes, you as administrator need to
identify which disk copies make up a
consistent set of disks. You can use VxVM
disk tags to label the sets of disks. For
example, if you have multiple point in time
snapshots of the same LUN, you can label
each with a separate disk tag. Specify the tag
to the import operation to import the tagged
shapshot LUN.

How VxVM uses the unique disk identifier (UDID)

Veritas Volume Manager (VxVM) uses a unique disk identifier (UDID) to detect
hardware copies of the VxVM disks. Before using a physical volume, VxVM always
verifies whether the disk already has a UDID and whether that UDID matches the
expected value.

When you initialize a VxXVM disk, the Device Discovery Layer (DDL) of VxVM
determines the UDID from hardware attributes such as the vendor ID (vid), the
product ID (pid), the cabinet serial number, and the LUN serial number. VxVM
stores the UDID in the private region of the disk when VxVM first sees a disk that

How Veritas Volume Manager works | 93
Volume encryption

does not have a UDID, or when VxVM initializes the disk. The exact make-up of
the UDID depends on the array storage library (ASL). Future versions of VxVM may
use different formats for new arrays.

When VxVM discovers a disk with a UDID, VxVM compares the current UDID value
(the value determined from the hardware attributes) to the UDID that is already
stored on the disk. If the UDID values do not match between the UDID value
determined by the DDL and the on-disk UDID, VxVM sets the udid mismatch flag
for the disk.

The udid _mismatch flag generally indicates that the disk is a hardware copy of a
VxVM disk. The hardware copy has a copy of the VxVM private region of the original
disk, including the UDID. The UDID already stored in the VxVM private region
matches the attributes of the original hardware disk, but does not match the value
on the hardware disk that is the copy.

With the UDID matching feature, VXVM can prevent the situation where the
inconsistent set of disks is presented to the host. This functionality enables you to
import a disk group composed of LUN snapshots on the same host as the original
LUNs. When you import the disks identified with the udid mismatch flag, VXVM
sets the clone_disk flag on the disk. With care, multiple hardware images of the
original LUN can be simultaneously managed and imported on the same host as
the original LUN.

See “Importing a disk group containing hardware cloned disks ” on page 687.

If a system only sees the copy (or clone) devices, you can remove the clone disk
flags. Only remove the clone disk flags if you are sure there is no risk. For example,
you must make sure that there are not two physical volumes that are copies of the
same base physical volume at different times.

If the udid mismatch flag is set incorrectly on a disk that is not a clone disk, you
can remove the udid mismatch flag and treat the disk as a standard disk.

See the Veritas InfoScale Troubleshooting Guide.

Volume encryption

VxVM provides advanced security for data at rest through encryption of VxVM data
volumes. Encryption is a technology that converts data or information into code that
can be decrypted only by authorized users.

You can encrypt VxVM data volumes to:

s Protect sensitive data from unauthorized access

» Retire disks from use or ship them for replacement without the overhead of
secure wiping of content

How Veritas Volume Manager works
Volume encryption

The implementation uses the Advanced Encryption Standard (AES) cryptographic
algorithm with 256-bit key size validated by the Federal Information Processing
Standard (FIPS) Publication 140-2, (FIPS PUB 140-2) security standard.

You can encrypt volumes or disk groups in your storage environment. VxVM
generates a volume encryption key at the time of volume creation. The volume
encryption key is secured (wrapped) using a key wrap. The wrapped key is stored
with the volume record. The volume encryption key is not stored on disk.

You can secure the volume encryption key using one of the following methods:

Using Passphrases (PBE) See “Using passphrases for encryption” on page 98.

Using Key Management See “Using Key Management Server for encryption”
Server (KMS) on page 98.

Figure 3-28 describes the encryption process.

94

Figure 3-28 Encryption

Set the encryption attribute
when you create the volume.

Encrypted volume
encrypted=on

VxVM secures the encryption key using
one of two mechanisms: Passphrase or

Key Management Server.

Passphrase Key Management
Server

*kkkkkx

Option 1 Option 2

Kéy \Jvrab
$id
XTXX|XXT
$id

110010
101010
D100101

Wrapped key

How Veritas Volume Manager works | 95
Volume encryption

VxVM generates an
encryption key.

Volume
encryption key

VxVM stores the wrapped
key in the volume record.

110010
$/101010
D100101

How Veritas Volume Manager works
Volume encryption

If you encrypt a disk group, all volumes in the disk group are encrypted. Any volume
created later on the disk group will also be encrypted by default.

Only new volumes that are created using disk group version 220 or later can be
encrypted by VxVM.

When you start an encrypted volume, VxVM uses the key wrap to retrieve the
volume encryption key and enable access to the volume.

Figure 3-29 illustrates the decryption process.

96

How Veritas Volume Manager works | 97
Volume encryption

Figure 3-29 Decryption

VxVM retrieves the volume encryption key
Start the volume. using one of two mechanisms: Passphrase
vxvol -g dg start volume or KMS

Key Management

o £ € »
NN = Y

XXXXXXX XXXXXXX Volume
encryption key

‘ User accesses the encrypted volume.

“Hello World” Encrypted
volumes

I

2e33a2v522j 32f34dfaStvqg
(Encrypted text) il (Encrypted text)

The following capabilities are not supported by VxVM encryption:
= Encryption of root and swap volumes
= Encryption of volumes that use RAID-5 layout

= Replication of encrypted volumes

How Veritas Volume Manager works | 98
Volume encryption

= Encryption of existing volumes

= Linked break-off snapshots

Using passphrases for encryption

When you encrypt a volume, VxVM generates a volume encryption key. The volume
encryption key needs to be secured using a key wrap. If you choose to use the
passphrase mechanism, VxVM prompts for a passphrase, then uses a hash
algorithm to derive the key wrap from the specified passphrase. No additional
hardware or software is required to use this mechanism. The passphrase must be
randomly generated and must have high entropy.

Volumes that are encrypted using passphrases must be manually started whenever
the system boots up or is restarted. This is because the volume prompts for
authentication when the system starts. However, you can enable automated startup
for encrypted volumes by providing the required passphrases in a file.

Passphrase-based encryption is suitable for environments that do not depend
heavily on automated configurations.

Using Key Management Server for encryption

VxVM supports the use of a Key Management Server (KMS) that conforms to the
OASIS Key Management Interoperability Protocol (KMIP) specification.

During creation of encrypted volumes:

= VXVM sends a key generation request to the configured KMS using the KMIP
protocol.

= KMS responds with a unique identifier. VxXVM sends the identifier to KMS to
obtain the key generated by KMS.

= KMS responds with the key; VxVM generates the random volume encryption
key, and encrypts it using the key provided by KMS.

= VXVM stores the encrypted key and the KMS identifier in the volume record.
During startup of encrypted volumes:

= VxVM retrieves the encrypted key and the KMS identifier from the volume record.
= VXVM sends the identifier to KMS to obtain the key.

= KMS responds with the key; VxVM decrypts the encrypted key (stored in the
volume record) with the key provided by KMS.

KMS-based encryption is suitable for environments that support high availability
and automated configurations.

How Veritas Volume Manager works | 99
Volume encryption

With a Key Management Server, you can:
= Eliminate the need to remember complex passphrases
= Back up or replicate keys for disaster recovery

VxVM supports Key Management Servers that conform to the OASIS KMIP
specification.

VxVM configures the server using the configuration information in the file
/etc/vx/enc-kms-kmip.conf located on the KMIP client.

See “Configuring a Key Management Server” on page 154.

Recommendations for encryption

Itis recommended to use CPUs designed to support Advanced Encryption Standard
Instruction Set (or the Intel Advanced Encryption Standard New Instructions (AES-NI)
to improve performance.

You can use the following command to verify whether or not the processor supports
encryption acceleration:

$ grep -o aes /proc/cpuinfo
aes
aes
aes

aes

If the command does not produce any output, the processor does not support
encryption acceleration.

How Veritas File System
works

This chapter includes the following topics:
= Veritas File System features
= Veritas File System performance enhancements

= Using Veritas File System

Veritas File System features

Table 4-1 lists the Veritas File System (VxFS) features.

Table 4-1 Veritas File System features
Feature Description
Access Control Lists An Access Control List (ACL) stores a series of entries that

identify specific users or groups and their access privileges for
a directory or file. A file may have its own ACL or may share an
ACL with other files. ACLs have the advantage of specifying
detailed access permissions for multiple users and groups.

On Linux, ACLs are supported on cluster file systems.

See the getfacl(1) and setfacl(1) manual pages.

How Veritas File System works
Veritas File System features

Table 4-1 Veritas File System features (continued)

Feature

Description

Cluster file systems

Storage Foundation Cluster File System High Availability
(SFCFSHA) allows clustered servers to mount and use a file
system simultaneously as if all applications using the file system
were running on the same server. The Veritas Volume Manager
cluster functionality (CVM) makes logical volumes and raw
device applications accessible through a cluster.

SFCFSHA uses a symmetric architecture in which all nodes in
the cluster can simultaneously function as metadata servers.
SFCFSHA still has some remnants of the old master/slave or
primary/secondary concept. The first server to mount each
cluster file system becomes its primary; all other nodes in the
cluster become secondaries. Applications access the user data
in files directly from the server on which they are running. Each
SFCFSHA node has its own intent log. File system operations,
such as allocating or deleting files, can originate from any node
in the cluster.

In some environments that use shared disk groups with Flexible
Storage Sharing feature turned on, the data may be fetched
from other nodes using CVM 1/O Shipping.

Installing VxFS and enabling the cluster feature does not create
a cluster file system configuration. File system clustering
requires other Veritas products to enable communication
services and provide storage resources. These products are
packaged with VxFS in SFCFSHA to provide a complete
clustering environment.

See the Storage Foundation Cluster File System High Availability
Administrator's Guide.

To be a cluster mount, a file system must be mounted using
themount -o cluster option. File systems mounted without
the -o cluster option are termed local mounts.

See the mount_vxfs(1M) manual page.

SFCFSHA functionality is available with both Veritas InfoScale
Storage and Veritas InfoScale Enterprise licenses.

101

How Veritas File System works | 102
Veritas File System features

Table 4-1 Veritas File System features (continued)

Feature

Description

Cross-platform data
sharing

Cross-platform data sharing (CDS) allows data to be serially
shared among heterogeneous systems where each system has
direct access to the physical devices that hold the data. This
feature can be used only in conjunction with Veritas Volume
Manager (VxVM).

See the Veritas InfoScale Solutions Guide.

Data deduplication

You can perform post-process periodic deduplication in a file
system to eliminate duplicate data without any continuous cost.
You can verify whether data is duplicated on demand, and then
efficiently and securely eliminate the duplicates. This feature is
available with both Veritas InfoScale Storage and Veritas
InfoScale Enterprise licenses.

See “About deduplicating data” on page 608.

Defragmentation

You can perform defragmentation to remove unused space from
directories, make all small files contiguous, and consolidate free
blocks for file system use.

See “About defragmentation” on page 113.

Enhanced data integrity
modes

VXFS has the following mount command options to enable the
enhanced data integrity modes:

m Dblkclear

See “blkclear mount option” on page 169.
m closesync

See “mincache mount option” on page 169.
n log

See “log mount option” on page 166.

Enhanced performance
mode

The default VxFS logging mode, mount -o delaylog,
increases performance by delaying the logging of some
structural changes. However, delaylog does not provide the
equivalent data integrity as the enhanced data integrity modes
because recent changes may be lost during a system failure.
This option provides at least the same level of data accuracy
that traditional UNIX file systems provide for system failures,
along with fast file system recovery.

See the mount_vxfs(1M) manual page.

See “delaylog mount option” on page 166.

How Veritas File System works
Veritas File System features

Table 4-1 Veritas File System features (continued)

Feature

Description

Extent attributes

VxFS allocates disk space to files in groups of one or more
adjacent blocks called extents. VxFS defines an application
interface that allows programs to control various aspects of the
extent allocation for a given file. The extent allocation policies
associated with a file are referred to as extent attributes.

See “About extent attributes” on page 184.

Extent-based allocation

An extent is a contiguous area of storage in a computer file
system, reserved for a file. When starting to write to a file, a
whole extent is allocated. When writing to the file again, the
data continues where the previous write left off. This reduces
or eliminates file fragmentation. An extent is presented as an
address-length pair, which identifies the starting block address
and the length of the extent (in file system or logical blocks).
Since VxFS is an extent-based file system, addressing is done
through extents (which can consist of multiple blocks) rather
than in single-block segments. Extents can therefore enhance
file system throughput.

See “About extents” on page 28.

Extended mount options

The VxFS file system provides the following enhancements to
the mount command:

= Enhanced data integrity modes
» Enhanced performance mode
s Temporary file system mode

= Improved synchronous writes
» Support for large file sizes

See “Mounting a VxFS file system” on page 164.

Fast file system recovery

Most file systems rely on full structural verification by the £sck
utility as the only means to recover from a system failure. For

large disk configurations, this involves a time-consuming process
of checking the entire structure, verifying that the file system is
intact, and correcting any inconsistencies. VxFS provides fast
recovery with the VxFS intent log and VxFS intent log resizing
features.

See “About the Veritas File System intent log” on page 27.

103

Table 4-1

How Veritas File System works
Veritas File System features

Veritas File System features (continued)

Feature

Description

File Change Log

The VxFS File Change Log (FCL) tracks changes to files and
directories in a file system. The File Change Log can be used
by applications such as backup products, webcrawlers, search
and indexing engines, and replication software that typically
scan an entire file system searching for modifications since a
previous scan. FCL functionality is available on all the four
Veritas InfoScale licenses: Veritas InfoScale™ Storage, Veritas
InfoScale™ Availability, Veritas InfoScale™ Foundation, and
Veritas InfoScale™ Enterprise .

See “About Veritas File System File Change Log” on page 759.

File compression

Compressing files reduces the space used by files, while
retaining the accessibility of the files and being transparent to
applications. Compressed files look and behave almost exactly
like uncompressed files: the compressed files have the same
name, and can be read and written as with uncompressed files.
Reads cause data to be uncompressed in memory, only; the
on-disk copy of the file remains compressed. In contrast, after
a write, the new data is uncompressed on disk.

See “About compressing files” on page 620.

File replication

You can perform cost-effective periodic replication of data over
IP networks, giving organizations an extremely flexibile storage
independent data availability solution for disaster recovery and
off-host processing.

See the Veritas InfoScale Replication Administrator's Guide..

104

How Veritas File System works | 105
Veritas File System features

Table 4-1 Veritas File System features (continued)

Feature

Description

File system snapshots

VxFS provides online data backup using the snapshot feature.
An image of a mounted file system instantly becomes an exact
read-only copy of the file system at a specific point in time. The
original file system is called the snapped file system, while the
copy is called the snapshot.

When changes are made to the snapped file system, the old
data is copied to the snapshot. When the snapshot is read, data
that has not changed is read from the snapped file system,
changed data is read from the snapshot.

Backups require one of the following methods:

= Copying selected files from the snapshot file system (using
find and cpio)

= Backing up the entire file system (using fscat)

= Initiating a full or incremental backup (using vxdump)

See “About snapshot file systems” on page 374.

FileSnaps

A FileSnap is a space-optimized copy of a file in the same name
space, stored in the same file system. VxFS supports FileSnaps
on file systems with disk layout Version 8 or later.

See “About FileSnaps” on page 371.

Freezing and thawing file
systems

Freezing a file system is a necessary step for obtaining a stable
and consistent image of the file system at the volume level.
Consistent volume-level file system images can be obtained
and used with a file system snapshot tool.

See “Freezing and thawing a file system” on page 334.

Improved synchronous
writes

VxFS provides superior performance for synchronous write
applications. The mount -o datainlog option greatly
improves the performance of small synchronous writes.

The mount -o convosync=dsync option improves the
performance of applications that require synchronous data writes
but not synchronous inode time updates.

See the mount_vxfs(1M) manual page.

Warning: The use of the -0 convosync=dsync option
violates POSIX semantics.

See “convosync mount option” on page 170.

How Veritas File System works | 106
Veritas File System features

Table 4-1 Veritas File System features (continued)

Feature

Description

maxlink support

Added support for more than 64K sub-directories. If max1ink
is disabled on a file system, the sub-directory limit will be 32K
by default. If max1ink is enabled on a file system, this allows
you to create up to 4294967295(2"32 — 1) sub-directories.

By default max1ink is enabled.

To enable the max1ink option at mkfs time. For example:

mkfs -t vxfs -o maxlink /dev/vx/rdsk/testdg/voll
To disable the max1ink option at mkfs time. For example:

mkfs -t vxfs -o nomaxlink /dev/vx/rdsk/testdg/voll

To enable the max1ink option through the £sadm command
on a mounted files system. For example:

fsadm -t vxfs -o maxlink /mntl

To disable the max1ink option through the fsadm command
on a mounted file system. For example:

fsadm -t vxfs -o nomaxlink /mntl

Seethemkfs vxfs(1M)and fsadm vxfs(1M)manual pages.

Multi-volume file systems

The multi-volume file system (MVFS) feature allows several
volumes to be represented by a single logical object. All I/0 to
and from an underlying logical volume is directed by way of
volume sets. You can create a single VxFS file system on this
multi-volume set. This feature can be used only in conjunction
with VxVM. MVFS functionality is available on all the four Veritas
InfoScale licenses: Veritas InfoScale™ Storage, Veritas
InfoScale™ Availability, Veritas InfoScale™ Foundation, and
Veritas InfoScale™ Enterprise.

See “About multi-volume file systems” on page 507.

How Veritas File System works
Veritas File System features

Table 4-1 Veritas File System features (continued)

Feature

Description

Partitioned directories

Parallel threads that access a large volume and perform access
and updates on a directory that commonly exist in a file system,
suffer from an exponentially longer wait time for the threads.

This feature creates partitioned directories to improve the
directory performance of file systems. When any directory
crosses the tunable threshold, this feature takes an exclusive
lock on the directory inode and redistributes the entries into
various respective hash directories. These hash directories are
not visible in the name-space view of the user or operating
system. For every new create, delete, or lookup thread, this
feature performs a lookup for the respective hashed directory
(depending on the target name) and performs the operation in
that directory. This leaves the parent directory inode and its
other hash directories unobstructed for access, which vastly
improves file system performance.

This feature operates only on disk layout Version 8 or later file
systems.

See “Partitioned directories” on page 772.

See the vxtunefs(1M)and £sadm vx£fs(1M) manual pages.

Quotas

VxFS supports quotas, which allocate per-user and per-group
guotas and limit the use of two principal resources: files and
data blocks. You can assign quotas for each of these resources.
Each quota consists of two limits for each resource: hard limit
and soft limit.

The hard limit represents an absolute limit on data blocks or
files. A user can never exceed the hard limit under any
circumstances.

The soft limit is lower than the hard limit and can be exceeded
for a limited amount of time. This allows users to exceed limits
temporarily as long as they fall under those limits before the
allotted time expires.

See “About Veritas File System quota limits” on page 751.

107

How Veritas File System works
Veritas File System features

Table 4-1 Veritas File System features (continued)

Feature

Description

Reverse path name lookup

The reverse path name lookup feature obtains the full path
name of a file or directory from the inode number of that file or
directory. The reverse path name lookup feature can be useful
for a variety of applications, such as for clients of the VxFS File
Change Log feature, in backup and restore utilities, and for
replication products. Typically, these applications store
information by inode numbers because a path name for a file
or directory can be very long, thus the need for an easy method
of obtaining a path name.

See “About reverse path name lookup” on page 768.

SmartlO

The SmartlO feature of Storage Foundation and High Availability
Solutions (SFHA Solutions) enables data efficiency on SSDs
or other supported devices through I/O caching. Using SmartlO
to improve efficiency, you can optimize the cost per IOPS.
SmartlO uses advanced, customizable heuristics to determine
what data to cache and how that data gets removed from the
cache. The heuristics take advantage of SFHA Solutions'
knowledge of the characteristics of the workload.

SmartlO uses a cache area on the target device or devices.
The cache area is the storage space that SmartlO uses to store
the cached data and the metadata about the cached data. The
type of the cache area determines whether it supports VxFS
caching or VxVM caching.

See the Veritas InfoScale SmartlO for Solid State Drives
Solutions Guide.

SmartTier

The SmartTier option is built on a multi-volume file system.
Using SmartTier, you can map more than one volume to a single
file system. You can then configure policies that automatically
relocate files from one volume to another, or relocate files by
running file relocation commands. Having multiple volumes lets
you determine where files are located, which can improve
performance for applications that access specific types of files.
SmartTier functionality is available with both Veritas InfoScale
Storage and Veritas InfoScale Enterprise licenses.

Note: In the previous VxFS 5.x releases, SmartTier was known
as Dynamic Storage Tiering.

See “About SmartTier” on page 522.

108

How Veritas File System works
Veritas File System features

Table 4-1 Veritas File System features (continued)

Feature

Description

Storage Checkpoints

To increase availability, recoverability, and performance, VxFS
offers on-disk and online backup and restore capabilities that
facilitate frequent and efficient backup strategies. Backup and
restore applications can leverage a Storage Checkpoint, a disk-
and I/O-efficient copying technology for creating periodic frozen
images of a file system. Storage Checkpoints present a view
of a file system at a point in time, and subsequently identifies
and maintains copies of the original file system blocks. Instead
of using a disk-based mirroring method, Storage Checkpoints
save disk space and significantly reduce 1/O overhead by using
the free space pool available to a file system.

Storage Checkpoint functionality is available with both Veritas
InfoScale Storage and Veritas InfoScale Enterprise licenses.

See “About Storage Checkpoints” on page 433.

Support for large files and
large file systems

VXFS supports files larger than two gigabytes and large file
systems up to 256 terabytes.

Warning: Some applications and utilities might not work on
large files.

See “largefiles and nolargefiles mount options” on page 172.

Temporary file system
mode

On most UNIX systems, temporary file system directories, such
as /tmp and /usr/tmp, often hold files that do not need to be
retained when the system reboots. The underlying file system
does not need to maintain a high degree of structural integrity
for these temporary directories. VxFS provides the mount -o
tmplog option, which allows the user to achieve higher
performance on temporary file systems by delaying the logging
of most operations.

See the mount_vxfs(1M) manual page.

See “tmplog mount option” on page 167.

Thin Reclamation

The Thin Reclamation feature allows you to release free data
blocks of a VxFS file system to the free storage pool of a Thin
Storage LUN. This feature is only supported on file systems
created on a VxVM volume.

See “About Thin Reclamation of a file system” on page 479.

109

Veritas File System performance enhancements

Traditional file systems employ block-based allocation schemes that provide
adequate random access and latency for small files, but limit throughput for larger
files. As a result, they are less than optimal for commercial environments.

Veritas File System (VxFS) addresses this file system performance issue through
an alternative allocation method and increased user control over allocation, 1/O,

How Veritas File System works
Veritas File System performance enhancements

and caching policies.

See “Using Veritas File System” on page 112.

VxFS provides the following performance enhancements:

Data synchronous 1/0
See “Data synchronous 1/0” on page 332.

Direct I/O and discovered direct I/0
See “Direct I/0” on page 331.
See “Discovered Direct I/O” on page 332.

Delayed allocation for extending writes
See “Delayed allocation for extending writes” on page 112.

Enhanced 1/O performance
See “Enhanced I/O performance” on page 111.

Caching advisories
See “Cache advisories” on page 334.

Enhanced directory features

Explicit file alignment, extent size, and preallocation controls
See “Extent attribute alignment” on page 187.

See “Fixed extent size” on page 185.

See “Reservation: preallocating space to a file” on page 185.

Tunable I/O parameters
See “Tuning the VxFS file system” on page 770.

Integration with Veritas Volume Manager (VxVM)
See “About Veritas Volume Manager” on page 26.

Support for large directories

Note: VxFS reduces the file lookup time in directories with an extremely large

number of files.

Partitioned directories

110

How Veritas File System works | 111
Veritas File System performance enhancements

See the vxtunefs(1M) and fsadm vxfs(1M) manual pages.

Enhanced I/O performance

Veritas File System (VxFS) provides enhanced I/O performance by applying an
aggressive I/O clustering policy, integrating with Veritas Volume Manager (VxVM),
and allowing application-specific parameters to be set on a per-file system basis.

See “Enhanced I/O clustering” on page 111.

See “Veritas Volume Manager integration with Veritas File System for enhanced
I/O performance” on page 111.

See “Application-specific parameters for enhanced I/O performance” on page 111.

Enhanced /O clustering

I/0 clustering is a technique of grouping multiple 1/O operations together forimproved
performance. Veritas File System (VxFS) I/O policies provide more aggressive
clustering processes than other file systems and offer higher I/O throughput when
using large files. The resulting performance is comparable to that provided by raw
disk.

Veritas Volume Manager integration with Veritas File
System for enhanced 1/O performance

Veritas File System (VxFS) interfaces with Veritas Volume Manager (VxVM) to
determine the 1/0 characteristics of the underlying volume and perform 1/0
accordingly. VxFS also uses this information when using mkfs to perform proper
allocation unit alignments for efficient I/O operations from the kernel.

As part of VXFS/VxVM integration, VxXVM exports a set of I/O parameters to achieve
better I/0 performance. This interface can enhance performance for different volume
configurations such as RAID-5, striped, and mirrored volumes. Full stripe writes
are important in a RAID-5 volume for strong I/O performance. VXFS uses these
parameters to issue appropriate 1/0 requests to VxVM.

Application-specific parameters for enhanced 1/0
performance

You can set application specific parameters on a per-file system basis to improve
I/O performance.

= Discovered Direct I/O
All sizes above this value would be performed as direct 1/0.

= Maximum Direct I/O Size

How Veritas File System works | 112
Using Veritas File System

This value defines the maximum size of a single direct 1/O.

See the vxtunefs(1M) and tunefstab(4) manual pages.

Delayed allocation for extending writes

Delayed allocation skips the allocations for extending writes and completes the
allocations in a background thread. With this approach, Veritas File System (VxFS)
performs a smaller number of large allocations instead of performing a large number
of small allocations, which reduces the file system’s fragmentation. Fast-moving
temporary files do not have blocks allocated and thus do not add to the file system’s
fragmentation.

When a file is appended, the allocation to the file is skipped and the file is added
to the delayed allocation list. The range for which the allocation is skipped is recorded
in the inode. The write() system call returns immediately after the user pages are
copied to the page cache. The actual allocations to the file occur when the scheduler
thread picks the file for allocation. If the file is truncated or removed, allocations are
not required.

Delayed allocation is turned on by default for extending writes. Delayed allocation
is not dependent on the file system disk layout version. This feature does not require
any mount options. You can turn off and turn on this feature by using the vxtunefs
command. You can display the delayed allocation range in the file by using the
fsmap command.

See the vxtunefs(1M) and £smap(1M) manual pages.

For instances where the file data must be written to the disk immediately, delayed
allocation is disabled on the file. The following are the examples of such instances:
direct I/O, concurrent /0, FDD/ODM access, and synchronous I/O. Delayed
allocation is not supported on memory-mapped files, BSD quotas, and shared mount
points in a Cluster File System (CFS). When BSD quotas are enabled on a file
system, delayed allocation is turned off automatically for that file system.

Using Veritas File System

The following list contains the main methods to use, manage, modify, and tune
VXFS:

= Online system administration

= Application program interface

How Veritas File System works | 113
Using Veritas File System

Online system administration

Veritas File System (VxFS) provides command line interface (CLI) operations that
are described throughout this guide and in manual pages.

VxFS allows you to run a number of administration tasks while the file system is
online. Two of the more important tasks include:

= About defragmentation

= About file system resizing

About defragmentation

Free resources are initially aligned and allocated to files in an order that provides
optimal performance. On an active file system, the original order of free resources
is lost over time as files are created, removed, and resized. The file system is spread
farther along the disk, leaving unused gaps or fragments between areas that are
in use. This process is known as fragmentation and leads to degraded performance
because the file system has fewer options when assigning a free extent to a file (a
group of contiguous data blocks).

VxFS provides the online administration utility £sadm to resolve the problem of
fragmentation.

The fsadm utility defragments a mounted file system by performing the following
actions:

= Removing unused space from directories

= Making all small files contiguous

= Consolidating free blocks for file system use

This utility can run on demand and should be scheduled regularly as a cron job.

See the fsadm vxfs (1M) manual page.

About file system resizing

A file system is assigned a specific size as soon as it is created; the file system
may become too small or too large as changes in file system usage take place over
time.

VxFS is capable of increasing or decreasing the file system size while in use. Many
competing file systems can not do this. The VxFS utility £sadm can expand or shrink
a file system without unmounting the file system or interrupting user productivity.
However, to expand a file system, the underlying device on which it is mounted
must be expandable.

How Veritas File System works | 114
Using Veritas File System

VxVM facilitates expansion using virtual disks that can be increased in size while
in use. The VxFS and VxVM components complement each other to provide online
expansion capability. Use the vxresize command when resizing both the volume
and the file system. The vxresize command guarantees that the file system shrinks
or grows along with the volume. You can also use the the vxassist command
combined with the £sadm command for this purpose; however, Veritas recommends
that you use the vxresize command instead.

See the vxresize(1M) manual page.

See “Growing the existing storage by adding a new LUN” on page 117.

Application program interface

Veritas File System Developer's Kit (SDK) provides developers with the information
necessary to use the application programming interfaces (APIls) to modify and tune
various features and components of Veritas File System (VxFS).

See the Veritas File System Programmer's Reference Guide.

VxFS conforms to the System V Interface Definition (SVID) requirements and
supports user access through the Network File System (NFS). Applications that
require performance features not available with other file systems can take
advantage of VxFS enhancements.

Expanded application facilities

Veritas File System (VxFS) provides API functions frequently associated with
commercial applications that make it possible to perform the following actions:

» Preallocate space for a file

» Specify a fixed extent size for a file

» Bypass the system buffer cache for file /0

» Specify the expected access pattern for a file

Because these functions are provided using VxFS-specific IOCTL system calls,
most existing UNIX system applications do not use them. For portability reasons,
these applications must check which file system type they are using before using
these functions.

Provisioning storage

= Chapter 5. Provisioning new storage
= Chapter 6. Advanced allocation methods for configuring storage
= Chapter 7. Creating and mounting VxFS file systems

= Chapter 8. Extent attributes

Provisioning new storage

This chapter includes the following topics:

= Provisioning new storage

= Growing the existing storage by adding a new LUN
» Growing the existing storage by growing the LUN

= Displaying SF information with vxlist

Provisioning new storage

The following procedure describes how to provision new storage. If you are
provisioning Storage Foundation on thin storage, you should understand how
Storage Foundation works with thin storage.

See “About thin optimization solutions in Storage Foundation ” on page 467.

The procedure assumes a basic configuration for volumes and file systems. More
options are available to customize your configuration.

See “Customizing allocation behavior” on page 120.
See “Creating a VxFS file system” on page 161.
To provision new storage

1 Setup the LUN. See the documentation for your storage array for information
about how to create, mask, and bind the LUN.

2 Initialize the LUNs that you want to use with Veritas Volume Manager (VxVM),
using one of the following commands.

The recommended method is to use the vxdisksetup command.

vxdisksetup -i 3PARDATAQO_1
vxdisk init 3PARDATAO_1

Provisioning new storage
Growing the existing storage by adding a new LUN

Add the LUN to a disk group.

= If you do not have a disk group for your LUN, create the disk group:
vxdg init dgl dev1=3PARDATAO 1

= If you already have a disk group for your LUN, add the LUN to the disk
group:

vxdg -g dgl adddisk 3PARDATAQO_1

Create the volume on the LUN:

vxassist -b -g dgl make voll 100g 3PARDATAQO_ 1

Create a Veritas File System (VxFS) file system on the volume:

mkfs -t vxfs /dev/vx/rdsk/dgl/voll

Create a mount point on the file system:

mkdir /mountl

Mount the file system:

mount -t vxfs /dev/vx/dsk/dgl/voll /mountl

Growing the existing storage by adding a new

LUN

The following procedure describes how to grow the existing storage by adding a
new LUN.

To grow the existing storage by adding a new LUN

1
2

Create and set up the LUN.
Add the LUN to the disk group.

vxdg -g dgl adddisk 3PARDATAQ_2

Grow the volume and the file system to the desired size. For example:

vxresize -b -F vxfs -g dgl voll 200g

17

Provisioning new storage | 118

Growing the existing storage by growing the LUN

Growing the existing storage by growing the LUN

The following procedure describes how to grow the existing storage by growing a
LUN.

To grow the existing storage by growing a LUN

1 Grow the existing LUN. See the documentation for your storage array for
information about how to create, mask, and bind the LUN.

2 Make Veritas Volume Manager (VxVM) aware of the new LUN size.
vxdisk -g dgl resize 3PARDATAQO_1

See “Dynamic LUN expansion” on page 267.

3 Calculate the new maximum volume size:

vxassist -g dgl -b maxgrow voll

4 Grow the volume and the file system to the desired size:

vxresize -b -F vxfs -g dgl voll 200g

Displaying SF information with vxlist

The vx1ist command is a display command that provides a consolidated view of
the SF configuration. The vx1ist command consolidates information from Veritas
Volume Manager (VxVM) and Veritas File System (VxFS). The vx1ist command
provides various options to display information. For example, use the following form
of the command to display file system information including information about the
volume, disk group, and so on. In previous releases, you needed to run at least two
commands to retrieve the following information.

/opt/VRTSsfmh/bin/vxlist fs

TY FS FSTYPE SIZE FREE $USED DEVICE PATH MOUNT POINT
fs / ext3 65.20g 51.70g 17% /dev/sdal /
fs mnt vxfs 19.84g 9.96g 49% /dev/vx/dsk/bardg/voll /mnt

For help on the vx1ist command, enter the following command:
vxlist -H

See the vx1list (1m) manual page.

Advanced allocation
methods for configuring
storage

This chapter includes the following topics:

= Customizing allocation behavior

= Creating volumes of a specific layout

= Creating a volume on specific disks

= Creating volumes on specific media types
= Creating encrypted volumes

= Changing the encryption password

= Viewing encrypted volumes

= Automating startup for encrypted volumes
= Configuring a Key Management Server

= Specifying ordered allocation of storage to volumes
» Site-based allocation

= Changing the read policy for mirrored volumes

Advanced allocation methods for configuring storage | 120
Customizing allocation behavior

Customizing allocation behavior

By default, the vxassist command creates volumes on any available storage that
meets basic requirements. The vxassist command seeks out available disk space
and allocates it in the configuration that conforms to the layout specifications and

that offers the best use of free space. The vxassist command creates the required
plexes and subdisks using only the basic attributes of the desired volume as input.

If you are provisioning Storage Foundation on thin storage, you should understand
how Storage Foundation works with thin storage.

See “About thin optimization solutions in Storage Foundation ” on page 467.

Additionally, when you modify existing volumes using the vxassist command, the
vxassist command automatically modifies underlying or associated objects. The
vxassist command uses default values for many volume attributes, unless you
provide specific values to the command line. You can customize the default behavior
of the vxassist command by customizing the default values.

See “Setting default values for vxassist” on page 121.

The vxassist command creates volumes in a default disk group according to the
default rules. To use a different disk group, specify the -g diskgroup option to the
vxassist command.

See “Rules for determining the default disk group” on page 633.

If you want to assign particular characteristics for a certain volume, you can specify
additional attributes on the vxassist command line. These can be storage
specifications to select certain types of disks for allocation, or other attributes such
as the stripe unit width, number of columns in a RAID-5 or stripe volume, number
of mirrors, number of logs, and log type.

For details of available vxassist keywords and attributes, refer to the vxassist(1M)
manual page.

You can use allocation attributes to specify the types of allocation behavior shown

in Table 6-1
Table 6-1 Types of allocation behavior
Allocation behavior Procedures
Layouts for the volumes See “Creating volumes of a specific layout”
on page 142.
Media types See “Creating volumes on specific media
types” on page 151.

Advanced allocation methods for configuring storage | 121
Customizing allocation behavior

Table 6-1 Types of allocation behavior (continued)

Allocation behavior Procedures

Specific disks, subdisks, plexes locations See “Creating a volume on specific disks”
on page 150.

Ordered allocation See “Specifying ordered allocation of storage
to volumes” on page 154.

Site-based allocation See “Site-based allocation” on page 157.

Setting the read policy See “Changing the read policy for mirrored
volumes” on page 158.

The vxassist utility also provides various constructs to help define and manage
volume allocations, with efficiency and flexibility.

See “Setting default values for vxassist” on page 121.

See “Using rules to make volume allocation more efficient” on page 123.
See “Understanding persistent attributes” on page 126.

See “Customizing disk classes for allocation” on page 128.

See “Specifying allocation constraints for vxassist operations with the use clause
and the require clause” on page 131.

See “Management of the use and require type of persistent attributes ” on page 139.

Setting default values for vxassist

The default values that the vxassist command uses may be specified in the file
/etc/default/vxassist. The defaults listed in this file take effect if you do not
override them on the command line, or in an alternate defaults file that you specify
using the -d option. A default value specified on the command line always takes
precedence. vxassist also has a set of built-in defaults that it uses if it cannot find
a value defined elsewhere.

You must create the /etc/default directory and the vxassist default file if these
do not already exist on your system.

The format of entries in a defaults file is a list of attribute-value pairs separated by
new lines. These attribute-value pairs are the same as those specified as options
on the vxassist command line.

See the vxassist(1M) manual page.

Advanced allocation methods for configuring storage
Customizing allocation behavior

To display the default attributes held in the file /etc/default/vxassist, use the
following form of the vxassist command:

vxassist help showattrs

The following is a sample vxassist defaults file:

H o W H

By default:

create unmirrored, unstriped volumes

allow allocations to span drives

with RAID-5 create a log, with mirroring don’t create a log

align allocations on cylinder boundaries
layout=nomirror,nostripe, span,nocontig, raid5log,noregionlog,

diskalign

use the fsgen usage type, except when creating RAID-5 volumes
usetype=fsgen
allow only root access to a volume

mode=u=rw, g=, 0=

user=root

group=root

when mirroring, create two mirrors

nmirror=2
for regular striping, by default create between 2 and 8 stripe
columns

max nstripe=8

min nstripe=2

for RAID-5, by default create between 3 and 8 stripe columns
max nraidSstripe=8

min nraidSstripe=3

122

by default, create 1 log copy for both mirroring and RAID-5 volumes

nregionlog=1

nraid5log=1

by default, limit mirroring log lengths to 32Kbytes

max_regionloglen=32k

use 64K as the default stripe unit size for regular volumes

stripe stwid=64k

Advanced allocation methods for configuring storage | 123
Customizing allocation behavior

wuse 16K as the default stripe unit size for RAID-5 volumes
raid5 stwid=16k

Using rules to make volume allocation more efficient

The vxassist command lets you create a set of volume allocation rules and define
it with a single name. When you specify this name in your volume allocation request,
all the attributes that are defined in this rule are honored when vxassist creates
the volume.

Creating volume allocation rules has the following benefits:

= Rules streamline your typing and reduce errors. You can define relatively complex
allocation rules once in a single location and reuse them.

= Rules let you standardize behaviors in your environment, including across a set
of servers.

For example, you can create allocation rules so that a set of servers can standardize
their storage tiering. Suppose you had the following requirements:

Tier 1 Enclosure mirroring between a specific set of array types
Tier 2 Non-mirrored striping between a specific set of array types
Tier 0 Select solid-state drive (SSD) storage

You can create rules for each volume allocation requirement and name the rules
tier1, tier2, and tierO.

You can also define rules so that each time you create a volume for a particular
purpose, the volume is created with the same attributes. For example, to create
the volume for a production database, you can create a rule called productiondb.
To create standardized volumes for home directories, you can create a rule called
homedir. To standardize your high performance index volumes, you can create a
rule called dbindex.

Rule file format

When you create rules, you do not define themin the /etc/default/vxassist file.
You create the rules in another file and add the path information to
/etc/default/vxassist. By default, a rule file is loaded from
/etc/default/vxsf rules. You can override this location in
/etc/default/vxassist With the attribute rulefile=/path/rule file name.You
can also specify additional rule files on the command line.

A rule file uses the following conventions:

Advanced allocation methods for configuring storage | 124
Customizing allocation behavior

Blank lines are ignored.
Use the pound sign, #, to begin a comment.

Use C language style quoting for the strings that may include embedded spaces,
new lines, or tabs. For example, use quotes around the text for the description
attribute.

Separate tokens with a space.

Use braces for a rule that is longer than one line.

Within the rule file, a volume allocation rule has the following format:

volume rule rulename vxassist attributes

This syntax defines a rule named rulename which is a short-hand for the listed
vxassist attributes. Rules can reference other rules using an attribute of
rule=rulename[, rulename, . ..], Which adds all the attributes from that rule into
the rule currently being defined. The attributes you specify in a rule definition override
any conflicting attributes that are in a rule that you specify by reference. You can
add a description to a rule with the attribute description=description text.

The following is a basic rule file. The first rule in the file, base, defines the 10gtype
and persist attributes. The remaining rules in the file — tier0, tier1, and tier2 —
reference this rule and also define their own tier-specific attributes. Referencing a
rule lets you define attributes in one place and reuse them in other rules.

Create tier 1 volumes mirrored between disk arrays, tier 0 on SSD,

and tier 2 as unmirrored. Always use FMR DCO objects.

volume rule base { logtype=dco persist=yes }

volume rule tierO { rule=base mediatype:ssd tier=tier0 }

volume rule tierl { rule=base mirror=enclosure tier=tierl }

volume rule tier2 { rule=base tier=tier2 }

The following rule file contains a more complex definition that runs across several
lines.

volume rule appXdb storage {

description="Create storage for the database of Application X"
rule=base
siteconsistent=yes

mirror=enclosure

vxprint -g dg3

TY
dg

pl
sd
pl
sd

pl
sd
pl
sd

NAME
dg3

Advanced allocation methods for configuring storage
Customizing allocation behavior

Using rules to create a volume

When you use the vxassist command to create a volume, you can include the
rule name on the command line. For example, the content of the vxsf rules file
is as follows:

volume rule basic { logtype=dco }
volume rule tierl {

rule=basic

layout=mirror

tier=tierl

In the following example, when you create the volume vo11 in disk group dg3, you
can specify the tier1 rule on the command line. In addition to the attributes you
enter on the command line, vol1 is given the attributes that you defined in tier1.

vxassist -g dg3 make voll 200m rule=tierl

The following vxprint command displays the attributes of disk group dg3. The
output includes the new volume, voll.

ASSOC KSTATE LENGTH PLOFF'S STATE TUTILO PUTILO
dg3 - - - - - -

ibm ds8x000 0266 ibm ds8x000 0266 - 2027264 - - - -

ibm ds8x000_ 0267 ibm ds8x000_ 0267 - 2027264

ibm ds8x000 0268 ibm ds8x000 0268 - 2027264 - - - -

voll fsgen ENABLED 409600 - ACTIVE - -
voll-01 voll ENABLED 409600 - ACTIVE - -
ibm ds8x000_0266-01 voll-01 ENABLED 409600 O - - -
voll-02 voll ENABLED 409600 - ACTIVE - -
ibm ds8x000_0267-01 voll-02 ENABLED 409600 O - - -
voll dco voll - - - - - -
voll dcl gen ENABLED 144 - ACTIVE - -
voll dcl-01 wvoll dcl ENABLED 144 - ACTIVE - -
ibm ds8x000_0266-02 voll dcl-01 ENABLED 144 0 - - -
voll dcl-02 wvoll dcl ENABLED 144 - ACTIVE - -

ibm ds8x000 0267-02 voll dcl-02 ENABLED 144 0 - - -

The following vxassist command confirms that vo11 is in the tier tier1. The
application of rule tier1 was successful.

125

Advanced allocation methods for configuring storage | 126
Customizing allocation behavior

vxassist -g dg3 listtag
TY NAME DISKGROUP TAG

v voll dg3 vxfs.placement class.tierl

Understanding persistent attributes

The vxassist command lets you record certain volume allocation attributes for a
volume. These attributes are called persistent attributes. You can record the
attributes which would be useful in later allocation operations on the volume, such
as volume grow and enclosure mirroring. You can also restrict allocation to storage
that has a particular property (such as the enclosure type, disk tag, or media type).
On the other hand, volume length is not useful, and generally neither is a specific
list of disks.

The persistent attributes can be retrieved and applied to the allocation requests
(with possible modifications) for the following operations:

= volume grow or shrink

= move
= relayout
= mirror

= addalog

Persistent attributes let you record carefully-described allocation attributes at the
time of volume creation and retain them for future allocation operations on the
volume. Also, you can modify, enhance, or discard the persistent attributes. For
example, you can add and retain a separation rule for a volume that is originally
not mirrored. Alternatively, you can temporarily suspend a volume allocation rule
which has proven too restrictive or discard it to allow a needed allocation to succeed.

You can use the persist attribute to record allocation attributes on the command
line orin a rule file.

See “Using persistent attributes” on page 126.

You can manage the use and require type of persistent attributes with the intent
management operations: setrule, changerule, clearrule, and listrule.

See “Management of the use and require type of persistent attributes ” on page 139.

Using persistent attributes

You can define volume allocation attributes so they can be reused in subsequent
operations. These attributes are called persistent attributes, and they are stored in

Advanced allocation methods for configuring storage
Customizing allocation behavior

a set of hidden volume tags. The persist attribute determines whether an attribute
persists, and how the current command might use or modify preexisting persisted
attributes. You can specify persistence rules in defaults files, in rules, or on the
command line. For more information, see the vxassist manual page.

To illustrate how persistent attributes work, we will use the following vxsf rules
file. It contains a rule, rule1, which defines the mediatype attribute. This rule also
uses the persist attribute to make the mediatype attribute persistent.

cat /etc/default/vxsf rules

volume rule rulel { mediatype:ssd persist=extended }

The following command confirms that LUNS ibm ds8x000 0266 and
ibm_ ds8x000_ 0268 are Solid-State Drive (SSD) devices.

vxdisk listtag

DEVICE NAME VALUE
ibm ds8x000 0266 vxmediatype ssd
ibm ds8x000_ 0268 vxmediatype ssd

The following command creates a volume, vol1, in the disk group dg3. rule1 is
specified on the command line, so those attributes are also applied to vo11.

vxassist -g dg3 make voll 100m rule=rulel

The following command shows that the volume vo11 is created off the SSD device
ibm ds8x000_ 0266 as specified in rule1.

vxprint -g dg3
TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
dg dg3 dg3 - - - - - -

dm ibm ds8x000_0266 ibm ds8x000_0266 - 2027264 - - - -
dm ibm ds8x000 0267 ibm ds8x000 0267 - 2027264
dm ibm ds8x000_0268 ibm ds8x000_0268 - 2027264 - - - -

v voll fsgen ENABLED 204800 ACTIVE - -
pl voll-01 voll ENABLED 204800 ACTIVE - -
sd ibm ds8x000_0266-01 voll-01 ENABLED 204800 O - - -

The following command displays the attributes that are defined in rule1.

vxassist -g dg3 help showattrs rule=rulel
alloc=mediatype:ssd

persist=extended

127

vxprint -g dg3

TY
dg

pl
sd
sd

NAME
dg3

Advanced allocation methods for configuring storage
Customizing allocation behavior

If no persistent attributes are defined, the following command grows vo11 on Hard
Disk Drive (HDD) devices. However, at the beginning of this section, mediatype:ssd
was defined as a persistent attribute. Therefore, the following command honors
this original intent and grows the volume on SSD devices.

vxassist -g dg3 growby voll 1lg

The following vxprint command confirms that the volume was grown on SSD
devices.

ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
dg3 - - - - - -

ibm_ds8x000 0266 ibm ds8x000 0266 - 2027264 - - - -

ibm ds8x000 0267 ibm ds8x000 0267 - 2027264

ibm ds8x000 0268 ibm ds8x000 0268 - 2027264 - - - -

voll
voll-01

fsgen ENABLED 2301952
voll ENABLED 2301952

ACTIVE - -
ACTIVE - -

ibm ds8x000 0266-01 voll-01 ENABLED 2027264 0 - - -
ibm ds8x000 0268-01 voll-01 ENABLED 274688 2027264 - - -

Customizing disk classes for allocation

The vxassist command accepts disk classes to indicate storage specifications for
allocation. The disk classes are internally-discovered attributes that are automatically
associated with the disks. You can specify disk classes to an allocation request
with vxassist to indicate the type of storage to allocate.

For more information about the disk classes, see the Storage Specifications section
of the vxassist(1M) manual page.

You can customize the disk classes in the following ways:

» Create a customized alias name.
See “User-defined alias names for disk classes” on page 129.

» Customize the priority order for the disk classes.
See “User-defined precedence order for disk classes” on page 129.

You can also create customized, user-defined disk classes.

See “User-defined disk classes” on page 130.

128

Advanced allocation methods for configuring storage | 129
Customizing allocation behavior

User-defined alias names for disk classes

For convenience, you can define alias names for existing storage-specification disk
classes. Typically, an alias is a shorter or more user-friendly name. You can use
the alias instead of its corresponding disk class, to specify vxassist allocation
constraints. Define the alias names in rule files.

For example, to define “atyp” as an alias for the base disk class “arraytype”, include
the following statement in a rule file.

class alias atyp=arraytype

When the above rule file is used, you can specify the alias “atyp” for allocation. For
example, the following constraint specification allocates storage from A/A arrays
for the volume creation.

vxassist -g dgname make volname volsize use=atyp:A/A

User-defined precedence order for disk classes

The vxassist command applies a default priority order for the disk classes that
are specified in the mirror confinement (mirrorconfine, wantmirrorconfine),
mirror separation (mirror, wantmirror), and stripe separation (stripe, wantstripe)
constraints. The higher priority class is honored for allocation when mirroring or
striping. If a different priority order is required, you can change the default order for
these disk classes.

Note: The “site” class always has the highest precedence, and its order cannot be
overridden.

Define the customized precedence order in a rule file. The higher the order number,
the higher is the class precedence.

The following shows the default precedence order, for the class names supported
with mirror and stripe separation or confinement constraints.

site order=1000
vendor order=900
arrayproduct order=800
array order=700
arrayport order=600

hostport order=400

Advanced allocation methods for configuring storage
Customizing allocation behavior

The acceptable range for the precedence order is between 0 and 1000.

For example, the array class has a higher priority than the hostport class by default.
To make the hostport class have a higher priority, assign the hostport class a higher
order number. To define the order for the classes, include the following statement
in a rule file:

class define array order=400

class define hostport order=700

When the above rule is used, the following command mirrors across hostport class
rather than the array class.

vxassist -g dgname make volname volsize mirror=array,hostport

User-defined disk classes

You can define customized disk classes to use in storage specifications for the
vxassist command. Customized disk classes allow for user-defined device
classification and grouping. You can use these disk classes to control allocations.
A customized disk class is a user-defined property that is associated with a set of
disks. The property is attached as a disk class to the disks that satisfy a particular
constraint.

You can use the custom disk classes like other storage-specification disk classes,
to specify vxassist allocation constraints. Define the custom disk classes in a rule
file.

Example

With the following definition in the rule file, the user-defined property “poolname”
is associated to the referenced disks. All devices that have the array vendor property
defined as HITACHI or IBM, are marked as poolname “finance”. All devices that
have the array vendor property defined as DGC or EMC, are marked as poolname
“admin”.

disk properties vendor:HITACHI {

poolname: finance

disk properties vendor:IBM ({

poolname: finance

disk properties vendor:DGC {

poolname:admin

disk properties vendor:EMC ({

130

Advanced allocation methods for configuring storage | 131
Customizing allocation behavior

poolname:admin

}

You can now use the user-defined disk class “poolname’for allocation. For example,
the following constraint specification allocates disks from the poolname “admin” for
the volume creation.

vxassist -g dgname make volname volsize poolname:admin

Specifying allocation constraints for vxassist operations with the use
clause and the require clause

The vxassist command accepts a variety of storage specifications for allocations.
The require constraint and the use constraint are methods to specify detailed storage
specifications for allocations. These constraints enable you to select disks from an
intersection set or a union set of intended properties. You can specify the set of
disks for allocations with more precision than the existing methods a110c and
logdisk clauses. The use and require constraints can apply to data, log, or both
data and log.

The constraints can be one of the following types:

= The require constraints
All of the specifications in the constraint must be satisfied, or the allocation fails.
A require constraint behaves as an intersection set. For example, allocate disks
from a particular array vendor AND with a particular array type.

= The use constraints
At least one of the specifications in the constraint must be satisfied, or the
allocation fails. A use constraint behaves as a union set. For example, allocate
disks from any of the specified enclosures: enclrA or enclrB.

For disk group version of 180 or above, the use and require type of constraints are
persistent for the volume by default. The default preservation of these clauses
enables further allocation operations like grow, without breaking the specified intents.

You can specify multiple storage specifications, separated by commas, in a use or
require clause on the vxassist command line. You can also specify multiple use
or require clauses on the vxassistcommand line.

See “Interaction of multiple require and use constraints” on page 133.

Use the vxassist intent management operations (setrule, changerule, clearrule,
listrule) to manage persistent require and use constraints.

See “Management of the use and require type of persistent attributes ” on page 139.

Advanced allocation methods for configuring storage
Customizing allocation behavior

About require constraints

The “require” type of constraints specify that the allocation must select storage that
matches all the storage specifications in the constraint. Therefore, the require
constraint acts like an intersection set, or a logical AND operation. If any of the
specifications cannot be met, the operation fails. The attribute names to specify
require constraints are:

m require

The constraint applies to both data and log allocation.
m logrequire

The constraint applies to log allocations only.

m datarequire

The constraint applies to data allocations only.

If any storage-specification is negated with !, the allocation excludes the storage
that matches that storage specification

Note: If the require type of constraint is provided with the same class but different
instances, then these instances are unionized rather than intersected. That is, the
allocation selects storage that satisfies any of these storage specifications (similar
to use type of constraint).

See “Interaction of multiple require and use constraints” on page 133.

About use constraints

The “use” type of constraints specify that the allocation must select storage that
matches at least one of the storage specifications in the constraint. Therefore, the
use constraint acts like a union set, or a logical OR operation. If none of the
specifications can be met, the operation fails. The attribute names to specify use
constraints are:

n use

The constraint applies to both data and log allocation.

m loguse

The constraint applies to log allocations only.

m datause

The constraint applies to data allocations only.
See “Interaction of multiple require and use constraints” on page 133.

If the storage specification is negated with !, then the allocation excludes the storage
that matches that storage specification.

132

Advanced allocation methods for configuring storage
Customizing allocation behavior

Interaction of multiple require and use constraints

You can specify multiple use or require clauses on the vxassist command line.
Not all combinations are supported. However, all possible constraint specifications
can be achieved with the supported combinations.

The scope for a constraint can be data-specific (datause or datarequire), log-specific
(loguse or logrequire) or general, which applies to both data and log (use or require).

Note: Veritas recommends that you do not combine use or require constraints with
direct storage-specifications or other clauses like a11oc or 1ogdisk.

The following rules apply when multiple use or require clauses are specified:

= Multiple use constraints of the same scope are unionized, so that at least one
of the storage specifications is satisfied. That is, multiple use clauses; multiple
datause clauses; or multiple 1oguse clauses.

= Multiple require constraints of the same scope are intersected, so that all the
storage specifications are satisfied. That is, multiple require clauses; multiple
datarequire clauses; or multiple 1ogrequire clauses.

= Require and use constraints of the same scope are mutually intersected. That
is, require clauses and use clauses; datarequire clauses and datause clauses;
or logrequire clauses and loguse clauses. At least one of the use storage
specifications must be satisfied and all of the require storage specifications are
satisfied. For example, if a datause clause and a datarequire clause are used
together, the allocation for the data must meet at least one of the datause
specifications and all of the datarequire specifications.

» Data-specific constraints and log-specific constraints can be used together.
They are applied independently to data and logs respectively. That is, datause
clause with 1oguse clause or logrequire clause; datarequire clause with
loguse clause or logrequire clause . For example, a datarequire clause can
be used to control data allocation along with a 1ogrequire clause to control log
allocation.

s The vxassist command does not support a mix of general scope constraints
with data-specific or log-specific constraints. For example, a require clause
cannot be used along with the 1ogrequire clause or a datarequire clause.
However, all possible constraint specifications can be achieved with the
supported combinations.

Table 6-2 summarizes these rules for the interaction of each type of constraint if
multiple constraints are specified.

133

Table 6-2

Advanced allocation methods for configuring storage
Customizing allocation behavior

Combinations of require and use constraints

Scope

Mutually unionized

Mutually
intersected

Applied
independently

Data

datause - datause

datarequire - datause

datarequire -
datarequire

datause - loguse
datause - logrequire
datarequire - loguse

datarequire -
logrequire

Log

loguse - loguse

logrequire - loguse

logrequire - logrequire

loguse - datause
loguse - datarequire
logrequire -datause

logrequire -
datarequire

General - log and

data

use - use

use - require

require - require

N/A

Examples of use and require constraints

The following examples show use and require constraints for storage allocation.

Example 1 - require constraint

This example shows the require constraint in a disk group that has disks from two
arrays: emc_clariion0and ams wms0. Both arrays are connected through the same
HBA hostportid (06-08-02), but the arrays have different arraytype (A/A and A/A-A

respectively).

The following output shows the disk group information:

vxprint -g testdg

TY
dg

dm
dm
dm
dm
dm
dm

NAME ASSOC
testdg testdg
ams_wmsO_359 ams_wmsO0_359

ams_wmsO0_ 360 ams_wms0_360

ams_wmsO_ 361 ams_wmsO_361

ams_wms0_ 362 ams_wms0_362

emc_clariion0 0 emc clariion0O 0 -

emc_clariion0 1 emc clariion0O 1 -

KSTATE

LENGTH

2027264 -
2027264 -
2027264 -
2027264 -
4120320 -
4120320 -

PLOFFS

STATE

TUTILO

PUTILO

134

Advanced allocation methods for configuring storage | 135
Customizing allocation behavior

dm emc_clariion0O 2 emc clariion0 2 - 4120320 - - - -

dm emc_clariion0O 3 emc clariion0 3 - 4120320 - - - -

To allocate both the data and the log on the disks that are attached to the particular
HBA and that have the array type A/A:

vxassist -g testdg make vl 1G logtype=dco dcoversion=20 \
require=hostportid:06-08-02,arraytype:A/A

The following output shows the results of the above command. The command
allocated disk space for the data and the log on emc_clariion0 array disks, which
satisfy all the storage specifications in the require constraint:

vxprint -g testdg

TY
dg

NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
testdg testdg - - - - - -
ams _wmsO_ 359 ams wmsO 359 - 2027264 - - - -
ams _wmsO 360 ams wmsO 360 - 2027264 - - - -
ams wmsO 361 ams wmsO 361 - 2027264 - - - -
ams wmsO 362 ams wmsO 362 - 2027264 - - - -
emc_clariion0 0 emc clariion0 0 - 4120320 - - - -
emc_clariion0 1 emc clariion0 1 - 4120320 - - - -
emc_clariion0 2 emc clariion0 2 - 4120320 - - - -
emc_clariion0 3 emc clariion0 3 - 4120320 - - - -
vl fsgen ENABLED 2097152 - ACTIVE - -
v1-01 vl ENABLED 2097152 - ACTIVE - -
emc_clariion0 0-01 v1-01 ENABLED 2097152 0 - - -
vl dco vl - - - - - -
vl dcl gen ENABLED 67840 - ACTIVE - -
vl dcl-01 vl dcl ENABLED 67840 - ACTIVE - -
emc_clariion0 0-02 vl dcl-01 ENABLED 67840 O - - -

Example 2 - use constraint

This example shows the use constraint in a disk group that has disks from three
arrays: ams_wms0, emc_clariion0, and hitachi vspO.

The following output shows the disk group information:

vxprint -g testdg
NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
testdg testdg - - - - - -

TY
dg

dm ams_wmsO_ 359 ams wmsO_359 - 2027264 - - - -

dm
dm
dm
dm
dm

ams_wmsO_360 ams_wmsO_ 360 -
ams_wmsO_361 ams_wmsO_ 361 -
ams_wmsO_362 ams_wmsO_ 362 -
emc_clariion0 0 emc clariion0O 0 -

hitachi vspO 3 hitachi vspO 3 -

To allocate both the data and the log on the disks that belong to the array ams_wms0

2027264
2027264
2027264
4120320
4120320

or the array emc_clariionO:

Advanced allocation methods for configuring storage
Customizing allocation behavior

vxassist -g testdg make vl 3G logtype=dco dcoversion=20 \

use=array:ams_wms0,array:emc_clariion0

The following output shows the results of the above command. The command
allocated disk space for the data and the log on disks that satisfy the arrays specified

in the use constraint.

vxprint -g testdg

TY
dg

dm
dm
dm
dm
dm
dm

pl
sd
sd
sd

pl
sd

NAME ASSOC KSTATE
testdg testdg -
ams_wmsO_ 359 ams wmsO_ 359 -

ams_wmsO_ 360 ams wmsO 360 -
ams_wmsO_ 361 ams wmsO 361 -
ams_wmsO_ 362 ams wmsO_ 362 -
emc_clariion0 0 emc clariion0 0 -

hitachi vsp0O 3 hitachi vsp0O 3 -

vl fsgen ENABLED
v1-01 vl ENABLED
ams_wmsO 359-01 v1-01 ENABLED
ams_wmsO 360-01 v1-01 ENABLED
emc_clariion0 0-01 v1-01 ENABLED
vl dco vl -

vl dcl gen ENABLED
vl _dcl-01 vl _dcl ENABLED

ams_wmsO_ 360-02 vl dcl-01 ENABLED

LENGTH

2027264
2027264
2027264
2027264
4120320
4120320

6291456
6291456
2027264
143872
4120320
67840
67840
67840

PLOFFS

0
2027264
2171136

0

STATE

ACTIVE
ACTIVE

ACTIVE
ACTIVE

Example 3: datause and logrequire combination

This example shows the combination of a datause constraint and a logrequire
constraint. The disk group has disks from three arrays: ams_wms0, emc_clariiono,
and hitachi_vsp0, which have different array types.

The following output shows the disk group information:

TUTILO

PUTILO

136

vxprint -g testdg

TY NAME ASSOC KSTATE
dg testdg testdg -
dm ams_wms0_359 ams_wms0_359 -

dm
dm
dm
dm
dm
dm
dm
dm

ams_wms0_360 ams_wms0_360 -
ams_wms0_361 ams_wms0_361 -
ams_wms0_362 ams_wms0_362 -

emc_clariion0_0 emc_clariionO_0

emc_clariion0_1 emc_clariionO_1

emc_clariion0_2 emc_clariionO_2

emc_clariion0_3 emc_clariionO_3

hitachi_vspO_3 hitachi vspO_3 -

To allocate data on disks from ams_wms0 Or emc_clariion0 array, and to allocate

LENGTH
2027264
2027264
2027264
2027264
4120320
4120320
4120320
4120320
4120320

Advanced allocation methods for configuring storage
Customizing allocation behavior

PLOFFS

log on disks from arraytype A/A-A:

STATE

TUTILO

PUTILO

vxassist -g testdg make vl 1G logtype=dco dcoversion=20 \

137

datause=array:ams_wms0,array:emc_clariion0 logrequire=arraytype:A/A-A

The following output shows the results of the above command. The command
allocated disk space for the data and the log independently. The data space is
allocated on emc_clariiono0 disks that satisfy the datause constraint. The log space
is allocated on ams_wms0 disks that are A/A-A arraytype and that satisfy the
logrequire constraint:

vxprint -g testdg

TY
dg
dm
dm
dm
dm
dm
dm
dm
dm
dm

pl
sd

NAME ASSOC KSTATE
testdg testdg -
ams_wmsO_ 359 ams wmsO_ 359 -

ams_wmsO_ 360 ams wmsO 360 -
ams_wmsO_ 361 ams wmsO 361 -

ams_wmsO_ 362 ams wmsO_ 362 -

emc_clariion0 0 emc clariion0O 0

emc_clariion0 1 emc clariionO_ 1

emc_clariion0 2 emc clariion0 2

emc_clariion0 3 emc clariion0O_ 3

hitachi vsp0O 3 hitachi vsp0O 3 -

vl fsgen ENABLED
v1-01 vl ENABLED
emc_clariion0 0-01 v1-01 ENABLED
vl dco vl -

vl dcl gen ENABLED

LENGTH

2027264
2027264
2027264
2027264
4120320
4120320
4120320
4120320
4120320

2097152
2097152
2097152

67840

PLOFFS

STATE

ACTIVE
ACTIVE

ACTIVE

TUTILO

PUTILO

pl
sd

Advanced allocation methods for configuring storage
Customizing allocation behavior

vl decl-01 vl dcl ENABLED 67840 - ACTIVE - -
ams_wmsO_359-01 vl dcl-01 ENABLED 67840 0 - - -
Example 4 - use and require combination

This example shows the combination of a use constraint and a require constraint.
The disk group has disks from three arrays: ams_wms0, emc_clariion0, and
hitachi vsp0. Only the disks from ams_wms0 array are multi-pathed.

The following output shows the disk group information:

vxprint -g testdg

TY

NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
testdg testdg - - - - - -
ams wmsO 359 ams wmsO 359 - 2027264 - - - -
ams wmsO 360 ams wmsO 360 - 2027264 - - - -
ams wmsO 361 ams wmsO 361 - 2027264 - - - -
ams wmsO 362 ams wmsO 362 - 2027264 - - - -
emc _clariion0 0 emc clariion0 0 - 4120320 - - - -
emc _clariion0 1 emc clariion0 1 - 4120320 - - - -
emc _clariion0 2 emc clariion0 2 - 4120320 - - - -
emc _clariion0 3 emc clariion0 3 - 4120320 - - - -
hitachi vsp0O 3 hitachi vsp0O 3 - 4120320 - - - -

To allocate data and log space on disks from emc_clariion0 Or ams_wmsO array,
and disks that are multi-pathed:

vxassist -g testdg make vl 1G logtype=dco dcoversion=20 \

use=array:emc_clariion0,array:ams_wms0 require=multipathed:yes

The following output shows the results of the allocation. The data and log space is
on ams_wnms0 disks, which satisfy the use as well as the require constraints:

vxprint -g testdg

TY
dg
dm
dm
dm
dm
dm
dm
dm
dm
dm

v

NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
testdg testdg - - - - - -
ams_wmsO_ 359 ams wmsO_ 359 - 2027264 - - - -
ams_wmsO_ 360 ams wmsO_ 360 - 2027264 - - - -
ams_wmsO_ 361 ams wmsO 361 - 2027264 - - - -
ams_wmsO_ 362 ams wmsO_ 362 - 2027264 - - - -
emc_clariion0 0 emc clariion0 0 - 4120320 - - - -
emc_clariion0 1 emc clariion0 1 - 4120320 - - - -
emc_clariion0 2 emc clariion0 2 - 4120320 - - - -
emc_clariion0 3 emc clariion0 3 - 4120320 - - - -

hitachi vsp0O 3 hitachi vsp0O 3 - 4120320 - - - -
vl fsgen ENABLED 2097152 - ACTIVE - -

138

pl
sd
sd

pl
sd

Advanced allocation methods for configuring storage | 139
Customizing allocation behavior

v1-01 vl ENABLED 2097152 - ACTIVE - -
ams_wmsO_359-01 v1-01 ENABLED 2027264 0 - - -
ams_wms0_360-01 v1-01 ENABLED 69888 2027264 - - -
vl dco vl - - - - - -
vl_dcl gen ENABLED 67840 - ACTIVE - -
vl_dcl-01 vl_dcl ENABLED 67840 - ACTIVE - -
ams_wmsO_360-02 vl dcl-01 ENABLED 67840 0 - - -

Management of the use and require type of persistent attributes

Persistent attributes are the saved volume intents that should be honored for
subsequent allocation operations for that volume. The intent management operations
enable you to manage the use and require type of persistent intents for volumes.
These operations allow you to independently manage the intents after the volume
creation. When you change the persistent intents for a volume, the changed intents
are not checked for validity or enforced for the current allocation of the volume.

You can set, change, clear, or list the persistent intents for the volume with the
following vxassist operations:

setrule

Replaces any existing saved intents with the specified intents for the specified
volume.

changerule

Appends the specified intents to the existing saved intents for the specified
volume.

clearrule

Removes any existing saved intents for the specified volume.

listrule

Lists any saved intents for the specified volume. If no volume name is specified,
the command shows the intents for all of the volumes.

The intent management operations only apply to the use or require type of persistent
constraints. The other type of persistent constraints are managed with the persist
attribute.

See “Using persistent attributes” on page 126.

Advanced allocation methods for configuring storage | 140
Customizing allocation behavior

To display the intents that are currently associated to a volume

L

To display the intents that are currently associated to a volume, use the
following command:

vxassist [options] listrule [volume]
For example, to display the existing saved intents for the volume v1:

vxassist -g testdg listrule vl
volume rule vl {

require=array:ams_wms0

To replace the intents that are currently associated to a volume

1

Display the intents that are currently associated to the volume:
vxassist [options] listrule [volume]

In this example, the volume v1 has an existing saved intent that requires the
array to be ams_wmsQ0. For example, to display the existing saved intents for
the volume v1:

vxassist -g testdg listrule vl
volume rule vl {

require=array:ams_wms0

Specify the new intent with the following command:
vxassist [options] setrule volume attributes...

For example, to replace the array with the ds4100-0 array, specify the new
intent with the following command:

vxassist -g testdg setrule vl require=array:ds4100-0

Verify the new intent with the display command.
For example, the following command shows that the intent has changed:
vxassist -g testdg listrule vl

volume rule vl {

require=array:ds4100-0

Advanced allocation methods for configuring storage
Customizing allocation behavior

To add to the intents that are currently associated to a volume

1

Display the intents that are currently associated to the volume:
vxassist [options] listrule [volume]

In this example, the volume v1 has an existing saved intent that requires the
array to be ds4100-0. For example, to display the existing saved intents for
the volume v1:

vxassist -g testdg listrule vl
volume rule vl {

use=array:ds4100-0

Add the new intent with the following command:
vxassist [options] changerule volume attributes...

For example, to add the ams_wms0 array in the use constraint, specify the
new intent with the following command:

vxassist -g testdg changerule vl use=array:ams_wms0

Verify the new intent with the display command.
For example, the following command shows that the intent has changed:
vxassist -g testdg listrule vl

volume rule vl {

use=array:ds4100-0,array:ams_wms0

141

Advanced allocation methods for configuring storage
Creating volumes of a specific layout

To clear the intents that are currently associated to a volume

1 Display the intents that are currently associated to the volume:
vxassist [options] listrule [volume]
For example, to display the existing saved intents for the volume v1:

vxassist -g testdg listrule vl
volume rule vl {
require=multipathed:yes

use=array:emc_clariion0,array:ams wmsO

2 Clear the existing intents with the following command:
vxassist [options] clearrule volume
For example, to clear the intents for the volume v1:

vxassist -g testdg clearrule vl

3 Verify that the volume has no saved intents.
For example, the following command shows that the volume v1 has no saved
intents:

vxassist -g testdg listrule vl

volume rule vl {}

Creating volumes of a specific layout

Veritas Volume Manager (VxVM) enables you to create volumes of various layouts.
You can specify an attribute to indicate the type of layout you want to create. The
following sections include details for each of the following types:

= mirrored volumes
See “Creating a mirrored volume” on page 144.

= striped volumes
See “Creating a striped volume” on page 146.

= RAID-5 volumes
See “Creating a RAID-5 volume” on page 148.

142

Advanced allocation methods for configuring storage | 143
Creating volumes of a specific layout

Types of volume layouts

Veritas Volume Manager (VxVM) allows you to create volumes with several layout
types. Table 6-3 describes the layout types for VxVM volumes.

Table 6-3 Types of volume layout
Layout type Description
Concatenated A volume whose subdisks are arranged both sequentially and

contiguously within a plex. Concatenation allows a volume to be
created from multiple regions of one or more disks if there is not
enough space for an entire volume on a single region of a disk. If
a single LUN or disk is split into multiple subdisks, and each subdisk
belongs to a unique volume, this is called carving.

See “Concatenation, spanning, and carving” on page 56.

Striped A volume with data spread evenly across multiple disks. Stripes
are equal-sized fragments that are allocated alternately and evenly
to the subdisks of a single plex. There must be at least two subdisks
in a striped plex, each of which must exist on a different disk.
Throughput increases with the number of disks across which a plex
is striped. Striping helps to balance 1/O load in cases where high
traffic areas exist on certain subdisks.

See “Striping (RAID-0)" on page 58.

Mirrored A volume with multiple data plexes that duplicate the information
contained in a volume. Although a volume can have a single data
plex, at least two are required for true mirroring to provide
redundancy of data. For the redundancy to be useful, each of these
data plexes should contain disk space from different disks.

See “Mirroring (RAID-1)" on page 61.

RAID-5 A volume that uses striping to spread data and parity evenly across
multiple disks in an array. Each stripe contains a parity stripe unit
and data stripe units. Parity can be used to reconstruct data if one
of the disks fails. In comparison to the performance of striped
volumes, write throughput of RAID-5 volumes decreases since
parity information needs to be updated each time data is modified.
However, in comparison to mirroring, the use of parity to implement
data redundancy reduces the amount of space required.

See “RAID-5 (striping with parity)” on page 64.

Advanced allocation methods for configuring storage
Creating volumes of a specific layout

Table 6-3 Types of volume layout (continued)
Layout type Description
Mirrored-stripe A volume that is configured as a striped plex and another plex that

mirrors the striped one. This requires at least two disks for striping
and one or more other disks for mirroring (depending on whether
the plex is simple or striped). The advantages of this layout are
increased performance by spreading data across multiple disks
and redundancy of data.

See “Striping plus mirroring (mirrored-stripe or RAID-0+1)”
on page 62.

Layered Volume A volume constructed from other volumes. Non-layered volumes
are constructed by mapping their subdisks to VxVM disks. Layered
volumes are constructed by mapping their subdisks to underlying
volumes (known as storage volumes), and allow the creation of
more complex forms of logical layout.

See “About layered volumes” on page 69.
The following layouts are examples of layered volumes:

n Striped-mirror
A striped-mirror volume is created by configuring several
mirrored volumes as the columns of a striped volume. This
layout offers the same benefits as a non-layered mirrored-stripe
volume. In addition, it provides faster recovery as the failure of
single disk does not force an entire striped plex offline.
See “Mirroring plus striping (striped-mirror, RAID-1+0, or
RAID-10)" on page 63.

s Concatenated-mirror
A concatenated-mirror volume is created by concatenating
several mirrored volumes. This provides faster recovery as the
failure of a single disk does not force the entire mirror offline.

Creating a mirrored volume

A mirrored volume provides data redundancy by containing more than one copy of
its data. Each copy (or mirror) is stored on different disks from the original copy of
the volume and from other mirrors. Mirroring a volume ensures that its data is not
lost if a disk in one of its component mirrors fails.

A mirrored volume requires space to be available on at least as many disks in the
disk group as the number of mirrors in the volume.

If you specify 1ayout=mirror, vxassist determines the best layout for the mirrored
volume. Because the advantages of the layouts are related to the size of the volume,

144

Advanced allocation methods for configuring storage
Creating volumes of a specific layout

vxassist selects the layout based on the size of the volume. For smaller volumes,
vxassist uses the simpler mirrored concatenated (mirror-concat) layout. For larger
volumes, vxassist uses the more complex concatenated mirror (concat-mirror)
layout. The attribute stripe-mirror-col-split-trigger-pt controls the selection. Volumes
that are smaller than stripe-mirror-col-split-trigger-pt are created as mirror-concat,
and volumes that are larger are created as concat-mirror. By default, the attribute
stripe-mirror-col-split-trigger-pt is set to one gigabyte. The value can be set in
/etc/default/vxassist. If there is a reason to implement a particular layout, you
can specify layout=mirror-concat or layout=concat-mirror to implement the desired
layout.

To create a new mirrored volume

¢ Create a new mirrored volume, using the following command:

vxassist [-b] [-g diskgroup] make volume length \

layout=mirror [nmirror=number] [init=active]
Specify the -b option if you want to make the volume immediately available
for use.

For example, to create the mirrored volume, volmir, in the disk group, mydg,
use the following command:

vxassist -b -g mydg make volmir 5g layout=mirror

The following example shows how to create a volume with 3 mirrors instead
of the default of 2 mirrors:

vxassist -b -g mydg make volmir 5g layout=mirror nmirror=3

Creating a mirrored-concatenated volume
A mirrored-concatenated volume mirrors several concatenated plexes.
To create a mirrored-concatenated volume

& Create the volume as a mirrored-concatenated volume, using the following
command:

vxassist [-b] [-g diskgroup] make volume length \

layout=mirror-concat [nmirror=number]

Specify the -b option if you want to make the volume immediately available
for use.

Alternatively, first create a concatenated volume, and then mirror it.

145

Advanced allocation methods for configuring storage | 146
Creating volumes of a specific layout

See “Adding a mirror to a volume ” on page 661.

Creating a concatenated-mirror volume

A concatenated-mirror volume is an example of a layered volume which
concatenates several underlying mirror volumes.

To create a concatenated-mirror volume

¢ Create a concatenated-mirror volume, using the following command:

vxassist [-b] [-g diskgroup] make volume length \

layout=concat-mirror [nmirror=number]

Specify the -b option if you want to make the volume immediately available
for use.

Creating a striped volume

A striped volume contains at least one plex that consists of two or more subdisks
located on two or more physical disks. A striped volume requires space to be
available on at least as many disks in the disk group as the number of columns in
the volume.

See “Striping (RAID-0)" on page 58.
To create a striped volume, use the following command:

vxassist [-b] [-g diskgroup] make volume length layout=stripe

Specify the -b option if you want to make the volume immediately available for use.

For example, to create the 10-gigabyte striped volume volzebra, in the disk group,
mydg, use the following command:

vxassist -b -g mydg make volzebra 10g layout=stripe

This creates a striped volume with the default stripe unit size (64 kilobytes) and the
default number of stripes (2).

You can specify the disks on which the volumes are to be created by including the
disk names on the command line. For example, to create a 30-gigabyte striped
volume on three specific disks, mydg03, mydg04, and mydg05, use the following
command:

vxassist -b -g mydg make stripevol 30g layout=stripe \
mydg03 mydg04 mydg05

Advanced allocation methods for configuring storage | 147
Creating volumes of a specific layout

To change the number of columns or the stripe width, use the ncolumn and
stripeunit modifiers with vxassist. For example, the following command creates
a striped volume with 5 columns and a 32-kilobyte stripe size:

vxassist -b -g mydg make stripevol 30g layout=stripe \

stripeunit=32k ncol=5

Creating a mirrored-stripe volume

A mirrored-stripe volume mirrors several striped data plexes. A mirrored-stripe
volume requires space to be available on at least as many disks in the disk group
as the number of mirrors multiplied by the number of columns in the volume.

To create a mirrored-stripe volume, use the following command:

vxassist [-b] [-g diskgroup] make volume length \
layout=mirror-stripe [nmirror=number of mirrors] \

[ncol=number of columns] [stripewidth=size]

Specify the -b option if you want to make the volume immediately available for use.

Alternatively, first create a striped volume, and then mirror it. In this case, the
additional data plexes may be either striped or concatenated.

See “Adding a mirror to a volume ” on page 661.

Creating a striped-mirror volume

A striped-mirror volume is an example of a layered volume that stripes several
underlying mirror volumes. A striped-mirror volume requires space to be available
on at least as many disks in the disk group as the number of columns multiplied by
the number of mirrors in the volume.

To create a striped-mirror volume, use the following command:

vxassist [-b] [-g diskgroup] make volume length \
layout=stripe-mirror [nmirror=number of mirrors] \

[ncol=number of columns] [stripewidth=size]

Specify the -b option if you want to make the volume immediately available for use.

By default, Veritas Volume Manager (VxVM) attempts to create the underlying
volumes by mirroring subdisks rather than columns if the size of each column is
greater than the value for the attribute stripe-mirror-col-split-trigger-pt
that is defined in the vxassist defaults file.

If there are multiple subdisks per column, you can choose to mirror each subdisk
individually instead of each column. To mirror at the subdisk level, specify the layout

Advanced allocation methods for configuring storage | 148
Creating volumes of a specific layout

as stripe-mirror-sd rather than stripe-mirror. To mirror at the column level,
specify the layout as stripe-mirror-col rather than stripe-mirror

Creating a RAID-5 volume

A RAID-5 volume requires space to be available on at least as many disks in the
disk group as the number of columns in the volume. Additional disks may be required
for any RAID-5 logs that are created.

Note: Veritas Volume Manager (VxVM) supports the creation of RAID-5 volumes
in private disk groups, but not in shareable disk groups in a cluster environment.

You can create RAID-5 volumes by using either the vxassist command
(recommended) or the vxmake command. This section describes using the preferred
method, the vxassist command.

For information about using the vxmake command, see the vxmake(1M) manual
page.

A RAID-5 volume contains a RAID-5 data plex that consists of three or more

subdisks located on three or more physical disks. Only one RAID-5 data plex can
exist per volume. A RAID-5 volume can also contain one or more RAID-5 log plexes,
which are used to log information about data and parity being written to the volume.

See “RAID-5 (striping with parity)” on page 64.

Warning: Do not create a RAID-5 volume with more than 8 columns because the
volume will be unrecoverable in the event of the failure of more than one disk.

To create a RAID-5 volume, use the following command:

vxassist [-b] [-g diskgroup] make volume length layout=raid5 \
[ncol=number of columns] [stripewidth=size] [nlog=number] \

[loglen=1log length]

Specify the -b option if you want to make the volume immediately available for use.

For example, to create the RAID-5 volume volraid together with 2 RAID-5 logs in
the disk group, mydg, use the following command:

vxassist -b -g mydg make volraid 10g layout=raid5 nlog=2

This creates a RAID-5 volume with the default stripe unit size on the default number
of disks. It also creates two RAID-5 logs rather than the default of one log.

Advanced allocation methods for configuring storage
Creating volumes of a specific layout

If you require RAID-5 logs, you must use the 10gdisk attribute to specify the disks
to be used for the log plexes.

RAID-5 logs can be concatenated or striped plexes, and each RAID-5 log associated
with a RAID-5 volume has a complete copy of the logging information for the volume.
To support concurrent access to the RAID-5 array, the log should be several times
the stripe size of the RAID-5 plex.

It is suggested that you configure a minimum of two RAID-5 log plexes for each
RAID-5 volume. These log plexes should be located on different disks. Having two
RAID-5 log plexes for each RAID-5 volume protects against the loss of logging
information due to the failure of a single disk.

If you use ordered allocation when creating a RAID-5 volume on specified storage,
you must use the 1o0gdisk attribute to specify on which disks the RAID-5 log plexes
should be created. Use the following form of the vxassist command to specify the
disks from which space for the logs is to be allocated:

vxassist [-b] [-g diskgroup] -o ordered make volume length \
layout=raid5 [ncol=number columns] [nlog=number] \
[loglen=log length] logdisk=disk[,disk,...] \

storage attributes

For example, the following command creates a 3-column RAID-5 volume with the
default stripe unit size on disks mydg04, mydg05 and mydg06. It also creates two
RAID-5 logs on disks mydg07 and mydg08.

vxassist -b -g mydg -o ordered make volraid 10g layout=raid5 \
ncol=3 nlog=2 logdisk=mydg07,mydg08 mydg04 mydg05 mydg06

The number of logs must equal the number of disks that is specified to 10gdisk.

See “Specifying ordered allocation of storage to volumes” on page 154.

See the vxassist(1M) manual page.

You can add more logs to a RAID-5 volume at a later time.

To add a RAID-5 log to an existing volume, use the following command:
vxassist [-b] [-g diskgroup] addlog volume [loglen=length]

If you specify the -b option, adding the new log is a background task.

When you add the first log to a volume, you can specify the log length. Any logs
that you add subsequently are configured with the same length as the existing log.

For example, to create a log for the RAID-5 volume volraid, in the disk group mydg,
use the following command:

149

Advanced allocation methods for configuring storage | 150
Creating a volume on specific disks

vxassist -g mydg addlog volraid

Creating a volume on specific disks

Veritas Volume Manager (VxVM) automatically selects the disks on which each
volume resides, unless you specify otherwise. If you want to select a particular type
of disks for a certain volume, you can provide the storage specifications to vxassist
for storage allocation.

For more infornation, see the Storage Specifications section of the vxassist(1M)
manual page.

See “Customizing disk classes for allocation” on page 128.

See “Specifying allocation constraints for vxassist operations with the use clause
and the require clause” on page 131.

If you want a volume to be created on specific disks, you must designate those
disks to VxVM. More than one disk can be specified.

To create a volume on a specific disk or disks, use the following command:

vxassist [-b] [-g diskgroup] make volume length \
[layout=layout] diskname ...

Specify the -p option if you want to make the volume immediately available for use.

For example, to create the volume volspec with length 5 gigabytes on disks mydg03
and mydg04, use the following command:

vxassist -b -g mydg make volspec 5g mydg03 mydg04

The vxassist command allows you to specify storage attributes. These give you
control over the devices, including disks and controllers, which vxassist uses to
configure a volume.

For example, you can specifically exclude the disk mydg05.

Note: The ! character is a special character in some shells. The following examples
show how to escape it in a bash shell.

vxassist -b -g mydg make volspec 5g \!mydg05
The following example excludes all disks that are on controller c2:

vxassist -b -g mydg make volspec 5g \'!ctlr:c2

Advanced allocation methods for configuring storage | 151
Creating volumes on specific media types

If you want a volume to be created using only disks from a specific disk group, use
the -g option to vxassist, for example:

vxassist -g bigone -b make volmega 20g bigonelO bigonell
or alternatively, use the diskgroup attribute:

vxassist -b make volmega 20g diskgroup=bigone bigonel0 \
bigonell

Any storage attributes that you specify for use must belong to the disk group.

Otherwise, vxassist will not use them to create a volume.

You can also use storage attributes to control how vxassist uses available storage,
for example, when calculating the maximum size of a volume, when growing a
volume or when removing mirrors or logs from a volume. The following example
excludes disks mydg07 and mydg08 when calculating the maximum size of a RAID-5
volume that vxassist can create using the disks in the disk group mydg:

vxassist -b -g mydg maxsize layout=raid5 nlog=2 \'!'mydg07 \'mydg08
It is also possible to control how volumes are laid out on the specified storage.

See “Specifying ordered allocation of storage to volumes” on page 154.

vxassist also lets you select disks based on disk tags. The following command
only includes disks that have a tier1 disktag.

vxassist -g mydg make vol3 1lg disktag:tierl

See the vxassist(1M) manual page.

Creating volumes on specific media types

When you create a volume, you can specify the media type for the volume. The
supported media types are Hard Disk Drives (HDD) or Solid State Devices (SSD).
The SSD media type requires disk group 150 or greater. The default is HDD.

To specify a media type, specify the vxassist command with the mediatype
attribute. If no mediatype is specified, the volume allocates storage only from the
HDD devices.

Creating encrypted volumes

Set the attribute encrypted to on with the vxassist command to create encrypted
volumes.

Advanced allocation methods for configuring storage
Changing the encryption password

If you encrypt the volume with a password or passphrase, VxVM displays the volume
status "encrypted with password" for the volume. If you encrypt the volume using
a Key Management Server, VxVM displays the volume status "encrypted" for the
volume.

The following example encrypts a volume using a Key Management Server:

vxassist -g mydg make vol0l 1lg encrypted=on
vxassist -g mydg make vol02 1g

vxencrypt list

Disk group: mydg

VOLUME STATUS
volOl encrypted
vol02 not encrypted

Changing the encryption password

Use the vxencrypt command to change the encryption password at any time.

vxencrypt -g mydg passwd volOl
Enter current password: xxxx
Enter new password: XXXX

Confirm new password: XxXXxX

Viewing encrypted volumes
Use the vxencrypt command to view the list of encrypted volumes.

vxencrypt list
Disk group: mydg

VOLUME STATUS
volOl encrypted
vol02 encrypted

Disk group: mydgl

VOLUME STATUS
vol03 encrypted
vol04 not encrypted

vxencrypt -g mydgl list
VOLUME STATUS

152

Advanced allocation methods for configuring storage | 153
Automating startup for encrypted volumes

vol03 encrypted
vol04 not encrypted

Automating startup for encrypted volumes

By default, encrypted volumes can not start automatically when the system boots
up because it requires the user to provide an access passphrase. However, you
can automate the startup of encrypted volumes by storing the required passphrases
inthe /etc/vx/encryption/password file file.

Caution: The password file is stored on the disk. Set secure file permissions to
prevent unauthorized users from reading the file. You must also secure physical
access to the hosts and storage on which the file is located.

The passphrase file must contain one line for each encrypted volume; each line
contains the following information in three columns of text:

First column Name of the disk group or disk group ID

Use the * wildcard character to indicate any disk group.

Second column Name of the encrypted volume

Use the * wildcard character to indicate any volume.

Third column Passphrase

The passphrase must be specified as plain text in the
password file file.

VxVM does not impose any limitation on the size of the passphrase
or the characters in the passphrase; however, new line or NULL
character must not be specified in the passphrase.

At the time of system startup, VxXVM queries the passphrase file for encrypted
volumes. If the volume is listed in the file, it uses the corresponding passphrase for
the volume instead of prompting the user for a manual entry.

A sample passphrase file is as follows:

datadgl datavoll mypassphrasel
datadgl datavol2 mypassphrase?2

Advanced allocation methods for configuring storage
Configuring a Key Management Server

Configuring a Key Management Server

You can configure a Key Management Server for volume encryption by creating
the configuration file /etc/vx/enc-kms-kmip.conf on the KMIP client.

The configuration file must have the following information:

host The hostname or IP address of the Key Management Server

port The port number at which the Key Management Server accepts Key
Management Interoperability Protocol (KMIP) clients

keyfile The location of the private key to be used by the KMIP client, in Privacy
Enhanced Mail (PEM) format

certfile The location of the certificate to be used by the KMIP client, in PEM
format
cacerts The location of the root certificate to be used for mutual authentication,

in PEM format

A sample configuration file is as follows:

[client]

host = kms-enterprise.example.com

port = 5696

keyfile = /var/kmip/certs/client-key.pem
certfile = /var/kmip/certs/client-crt.pem
cacerts = /var/kmip/certs/cacert.pem

Specifying ordered allocation of storage to

volumes

Ordered allocation gives you complete control of space allocation. It requires that
the number of disks that you specify to the vxassist command must match the
number of disks that are required to create a volume. The order in which you specify
the disks to vxassist is also significant.

If you specify the -0 ordered option to vxassist when creating a volume, any
storage that you also specify is allocated in the following order:

» Concatenate disks
s Form columns

s Form mirrors

154

Advanced allocation methods for configuring storage
Specifying ordered allocation of storage to volumes

For example, the following command creates a mirrored-stripe volume with 3
columns and 2 mirrors on 6 disks in the disk group, mydg:

vxassist -b -g mydg -o ordered make mirstrvol 10g \
layout=mirror-stripe ncol=3 mydg0l mydg02 mydg03 \
mydg04 mydg05 mydg06

This command places columns 1, 2, and 3 of the first mirror on disks mydg01, mydg02,
and mydg03 respectively, and columns 1, 2, and 3 of the second mirror on disks
mydg04, mydg05, and mydg06 respectively.

Figure 6-1 shows an example of using ordered allocation to create a mirrored-stripe
volume.

Figure 6-1 Example of using ordered allocation to create a mirrored-stripe
volume

Mirrored-stripe

. volume
tri
column 1 column 2 column 3 S p|2()j(
mydg01-01 mydg02-01 mydg03-01 P
Mirror

column 1 column 2 column 3 X
mydg04-01 mydg05-01 mydg06-01 Stri pled
plex

For layered volumes, vxassist applies the same rules to allocate storage as for
non-layered volumes. For example, the following command creates a striped-mirror
volume with 2 columns:

vxassist -b -g mydg -o ordered make strmirvol 10g \

layout=stripe-mirror ncol=2 mydg0l mydg02 mydg03 mydg04
This command mirrors column 1 across disks mydg01 and mydg03, and column 2
across disks mydg02 and mydg04.

Figure 6-2 shows an example of using ordered allocation to create a striped-mirror
volume.

155

Advanced allocation methods for configuring storage
Specifying ordered allocation of storage to volumes

Figure 6-2 Example of using ordered allocation to create a striped-mirror
volume

Underlying mirrored volumes

column 1
mydg01-01
column 1
mydg03-01

Striped-mirror
volume

Mirror
column 2

mydg04-01

Striped plex

Additionally, you can use the col switch attribute to specify how to concatenate
space on the disks into columns. For example, the following command creates a
mirrored-stripe volume with 2 columns:

vxassist -b -g mydg -o ordered make strmir2vol 10g \
layout=mirror-stripe ncol=2 col_switch=3g,2g \
mydg0l mydg02 mydg03 mydg04 mydg05 mydg06 mydg07 mydg08

This command allocates 3 gigabytes from mydg01 and 2 gigabytes from mydg02 to
column 1, and 3 gigabytes from mydg03 and 2 gigabytes from mydg04 to column 2.
The mirrors of these columns are then similarly formed from disks mydg05 through
mydg08.

Figure 6-3 shows an example of using concatenated disk space to create a
mirrored-stripe volume.

Figure 6-3 Example of using concatenated disk space to create a
mirrored-stripe volume

Mirrored-stripe

S Column 13 “coumn2y Striped Vvolume

mydg01-01 mydg03-01 lex

Tydgotol (mydgo3.oy P

mydg02-01 mydg04-01

~ ~ .
:> Mirror

column 1) (column 1)

mydg05-01 mydg07-01 X

N M~———| Striped

orists0) (@8O " piex

156

Advanced allocation methods for configuring storage | 157
Site-based allocation

Other storage specification classes for controllers, enclosures, targets and trays
can be used with ordered allocation. For example, the following command creates
a 3-column mirrored-stripe volume between specified controllers:

vxassist -b -g mydg -o ordered make mirstr2vol 80g \
layout=mirror-stripe ncol=3 \
ctlr:cl ctlr:c2 ctlr:c3 ctlr:c4 ctlr:c5 ctlr:cé

This command allocates space for column 1 from disks on controllers c1, for column
2 from disks on controller c2, and so on.

Figure 6-4 shows an example of using storage allocation to create a mirrored-stripe
volume across controllers.

Figure 6-4 Example of storage allocation used to create a mirrored-stripe
volume across controllers

cl c2 ¢3 Controllers

Striped plex

column 1 ‘cdumnil Icmumnil
:> Mirror

(_column 23 fcolumn 33
Striped plex

c4 c5 c6 Controllers

Mirrored-stripe volume

é

There are other ways in which you can control how vxassist lays out mirrored
volumes across controllers.

Site-based allocation

In a Remote Mirror configuration (also known as a campus cluster or stretch cluster),
the hosts and storage of a cluster are divided between two or more sites. These
sites are typically connected through a redundant high-capacity network that provides
access to storage and private link communication between the cluster nodes.

Configure the disk group in a Remote Mirror site to be site-consistent. When you
create volumes in such a disk group, the volumes are mirrored across all sites by
default.

Advanced allocation methods for configuring storage
Changing the read policy for mirrored volumes

See “About sites and remote mirrors” on page 311.

Changing the read policy for mirrored volumes

For a mirrored volume, Veritas Volume Manager (VxVM) uses the read policy to
determine which data plex in the volume to use for reads. By default, VxXVM chooses
a plex using the following criteria, in order:

Site
Plexes on the same site are chosen over plexes on another site.
Connectivity

Locally connected plexes are chosen over remotely connected plexes. This
criterion applies for shared disk groups.

Media type
SSD devices are chosen over HDDs.

Layout
Striped plexes are chosen over other layouts

To customize the read policy, you can choose one of the following VxVM read

policies:

prefer Uses a particular named plex to satisfy read requests. Specify
one preferred plex when you set the prefer policy.
If a read request cannot be satisfied by the preferred plex,
VxVM applies the plex order in the select policy.

round Distributes the non-sequential read operations in “round-robin”

fashion across all of the available plexes. For example, given
three plexes, VxXVM switches between each of the three
plexes, so that each plex receives one third of the read
requests. Sequential read operations access only one plex.
This approach takes advantage of the drive or controller
read-ahead caching policies.

158

select

siteread

split

Advanced allocation methods for configuring storage
Changing the read policy for mirrored volumes

Chooses a plex based on the characteristics of the plex. The
select policy is the default read policy, unless site
consistency is enabled. If sites are configured, VxXVM
internally switches to the siteread policy.

The select policy chooses a plex in the following order:

s Locally connected striped SSD plexes

m Locally connected SSD plexes

= Locally connected striped plexes

= Locally connected plexes

= Remotely connected striped SSD plexes
= Remotely connected SSD plexes

If VxXVM cannot find a plex with the above characteristics,
VxVM uses the round policy.

Reads preferentially from plexes at the locally defined site.
This method is the default policy for volumes in disk groups
where site consistency is enabled.

The siteread policy chooses a plex in the following order:

= Local site, locally connected striped SSD plexes

» Local site, locally connected SSD plexes

= Local site, locally connected striped plexes

= Local site, locally connected plexes

s Local site, remotely connected striped SSD plexes
= Local site, remotely connected SSD plexes

= Local site, remotely connected striped plexes

= Local site, remotely connected plexes

If VXVM cannot find a plex with the above characteristics,
VxVM refers to the plex order in the select policy.

Divides the read requests and distributes them across all the
available plexes.

Note: You cannot set the read policy on a RAID-5 volume.

To set the read policy to round, use the following command:

vxvol [-g diskgroup] rdpol round volume

For example, to set the read policy for the volume vo101 in disk group mydg to
round-robin, use the following command:

vxvol -g mydg rdpol round volOl

159

Advanced allocation methods for configuring storage | 160
Changing the read policy for mirrored volumes

To set the read policy to prefer, use the following command:
vxvol [-g diskgroup] rdpol prefer volume preferred plex

For example, to set the policy for vo101 to read preferentially from the plex vo101-02,
use the following command:

vxvol -g mydg rdpol prefer volO0l vol01-02
To set the read policy to select, use the following command:

vxvol [-g diskgroup] rdpol select volume

Creating and mounting
VXFS file systems

This chapter includes the following topics:

Creating a VxFS file system

Converting a file system to VxFS

Mounting a VxFS file system

Unmounting a file system

Resizing a file system

Displaying information on mounted file systems
Identifying file system types

Monitoring free space

Creating a VxFS file system

The mkfs command creates a VxFS file system by writing to a special character
device file. The special character device must be a Veritas Volume Manager (VxVM)
volume. The mkfs command builds a file system with a root directory and a
lost+found directory.

Before running mk fs, you must create the target device.

See to your operating system documentation.

If you are using a logical device (such as a VxVM volume), see the VxVM
documentation.

Creating and mounting VxFS file systems
Creating a VxFS file system

Note: Creating a VxFS file system on a Logical Volume Manager (LVM) or Multiple
Device (MD) driver volume is not supported in this release. You also must convert
an underlying LVM to a VxVM volume before converting an ext2 or ext 3 file system
to a VxFS file system. See the vxvmconvert(1M) manual page.

See the mk£s(1M) and mk£s_vx£s(1M) manual pages.

When you create a file system with the mk fs command, you can select the following
characteristics:

= File system block size
= Intent log size
To create a file system

¢ Use the mkfs command to create a file system:
mkfs [-t vxfs] [generic options]
[-o specific options] -m special [size]
-t vxfs Specifies the VxFS file system type.

-m Displays the command line that was used to create the file
system. The file system must already exist. This option enables
you to determine the parameters used to construct the file
system.

generic_options Options common to most other file system types.
-o specific_options Options specific to VxFS.

-0 N Displays the geometry of the file system and does not write
to the device.

-o largefiles Allows users to create files larger than two gigabytes. The
default option is largefiles.

-0 nomaxlink Support is added for more than 64 K sub-directory. If maxlink
is disabled on the file system, the sub-directory limit is 32 K
by default.

special Specifies the special device file location or character device

node of a particular storage device. The device must be a
Veritas Volume Manager volume.

size Specifies the number of 512-byte sectors in the file system.
If size is not specified, mk £ s determines the size of the special
device.

162

Creating and mounting VxFS file systems | 163
Creating a VxFS file system

The following example creates a VxFS file system of 12288 sectors in size on a
VxVM volume.

To create a VxFS file system

1 Create the file system:

/opt/VRTS/bin/mkfs /dev/vx/rdsk/diskgroup/volume 12288
version 11 layout

12288 sectors, 6144 blocks of size 1024, log size 256 blocks
rcqg size 1024 blocks

largefiles supported

maxlink supported

2 Mount the newly created file system:

mount -t vxfs /dev/vx/dsk/diskgroup/volume /mntl

File system block size

The unit of allocation in VxFS is an extent. Unlike some other UNIX file systems,
VxFS does not make use of block fragments for allocation because storage is
allocated in extents that consist of one or more blocks. You specify the block size
when creating a file system by using the mkfs -o bsize option. The block size
cannot be altered after the file system is created. The smallest available block size
for VxFS is 1 KB.

The default block size is 1024 bytes for file systems smaller than 1 TB, and 8192
bytes for file systems 1 TB or larger.

Choose a block size based on the type of application being run. For example, if
there are many small files, a 1 KB block size may save space. For large file systems,
with relatively few files, a larger block size is more appropriate. Larger block sizes
use less disk space in file system overhead, but consume more space for files that
are not a multiple of the block size. The easiest way to judge which block sizes
provide the greatest system efficiency is to try representative system loads against
various sizes and pick the fastest.

Intent log size

You specify the intent log size when creating a file system by using the mkfs -o
logsize option.You can dynamically increase or decrease the intent log size using
the 1ogsize option of the fsadm command. The mkfs utility uses a default intent
log size of 64 megabytes. The default size is sufficient for most workloads. If the

Creating and mounting VxFS file systems | 164
Converting a file system to VxFS

system is used as an NFS server or for intensive synchronous write workloads,
performance may be improved using a larger log size.

See the fsadm vxfs(1M) and mkfs_vxfs(1M) manual pages.

With larger intent log sizes, recovery time is proportionately longer and the file
system may consume more system resources (such as memory) during normal
operation.

There are several system performance benchmark suites for which VxFS performs
better with larger log sizes. As with block sizes, the best way to pick the log size is
to try representative system loads against various sizes and pick the fastest.

Converting a file system to VxFS

The vxconvert command is used to convert IBM Logical Volume Manager (LVM)
and Journal File System (JFS) or Enhanced Journal File System (JFS2) configuration
to a Veritas Volume Manager (VxVM) and Veritas File System (VxFS) configuration.
The vxconvert command is a menu-driven command. See the Veritas InfoScale
Solutions Guide for more info with respect to the the conversion procedure.

See the vxconvert(1M) manual page.

Mounting a VxFS file system

You can mount a VxFS file system by using the mount command. When you enter
the mount command, the generic mount command parses the arguments and the
-t FSType option executes the mount command specific to that file system type.
If the -t option is not supplied, the command searches the file /etc/fstab for a
file system and an FSType matching the special file or mount point provided. If no
file system type is specified, mount uses the default file system.

The mount command automatically runs the VXFS fsck command to clean up the
intent log if the mount command detects a dirty log in the file system. This
functionality is only supported on file systems mounted on a Veritas Volume Manager
(VxVM) volume.

In addition to the standard mount mode (delaylog mode), Veritas File System
(VXFS) provides the following mount options for you to specify other modes of
operation:

= log mount option
= delaylog mount option

= tmplog mount option

Creating and mounting VxFS file systems | 165
Mounting a VxFS file system

= logiosize mount option

= nodatainlog mount option

= blkclear mount option

= mincache mount option

= convosync mount option

= ioerror mount option

» largefiles and nolargefiles mount options
= Cio mount option

= mntlock mount option

= ckptautomnt mount option

Caching behavior can be altered with the mincache option, and the behavior of
0_syNcC and D_syNc writes can be altered with the convosync option.

See the fcnt1(2) manual page.

The delaylog and tmplog modes can significantly improve performance. The
improvement over 1og mode is typically about 15 to 20 percent with de1aylog; with
tmplog, the improvement is even higher. Performance improvement varies,
depending on the operations being performed and the workload. Read/write intensive
loads should show less improvement, while file system structure intensive loads,
such as mkdir, create, and rename, may show over 100 percent improvement.
The best way to select a mode is to test representative system loads against the
logging modes and compare the performance results.

Most of the modes can be used in combination. For example, a desktop machine
might use both the b1kclear and mincache=closesync modes.

The mount command automatically runs the VXFS fsck command to clean up the
intent log if the mount command detects a dirty log in the file system. This
functionality is only supported on file systems mounted on a Veritas Volume Manager
(VxVM) volume.

See the mount_vx£s(1M) manual page.
To mount a file system

¢ Use the mount command to mount a file system:

mount [-t vxfs] [generic options] [-r] [-o specific options] \

special mount point

Creating and mounting VxFS file systems | 166
Mounting a VxFS file system

vxfs File system type.
generic_options Options common to most other file system types.
specific_options Options specific to VxFS.

-o ckpt=ckpt name Mounts a Storage Checkpoint.

-o cluster Mounts a file system in shared mode. Available only with the VxFS
cluster file system feature.

special A VXFS block special device.
mount_point Directory on which to mount the file system.
-r Mounts the file system as read-only.

The following example mounts the file system /dev/vx/dsk/fsvol/voll on the
/mnt1 directory with read/write access and delayed logging.

Example of mounting a file system

¢ Mount the file system /dev/vx/dsk/fsvol/voll on the /mnt1 directory with
read/write access and delayed logging:

mount -t vxfs -o delaylog /dev/vx/dsk/fsvol/voll /mntl

log mount option

File systems are typically asynchronous in that structural changes to the file system
are not immediately written to disk, which provides better performance. However,
recent changes made to a system can be lost if a system failure occurs. Specifically,
attribute changes to files and recently created files may disappear. In log mode, all
system calls other than write(2), writev(2), and pwrite(2) are guaranteed to be
persistent after the system call returns to the application.

The rename(2) system call flushes the source file to disk to guarantee the persistence
of the file data before renaming it. In both the 10g and delaylog modes, the rename
is also guaranteed to be persistent when the system call returns. This benefits shell
scripts and programs that try to update a file atomically by writing the new file
contents to a temporary file and then renaming it on top of the target file.

delaylog mount option

The default logging mode is delaylog, in which writing to a file is delayed, or
buffered, meaning that the data to be written is copied to the file system cache and
later flushed to disk. In delaylog mode, the effects of most system calls other than

Creating and mounting VxFS file systems | 167
Mounting a VxFS file system

write(2), writev(2), and pwrite(2) are guaranteed to be persistent approximately
three seconds after the system call returns to the application. Contrast this with the
behavior of most other file systems in which most system calls are not persistent
until approximately 30 seconds or more after the call has returned. Fast file system
recovery works with this mode.

A delayed write provides much better performance than synchronously writing the
data to disk. However, in the event of a system failure, data written shortly before
the failure may be lost since it was not flushed to disk. In addition, if space was
allocated to the file as part of the write request, and the corresponding data was
not flushed to disk before the system failure occurred, uninitialized data can appear
in the file.

For the most common type of write, delayed extending writes (a delayed write that
increases the file size), VxFS avoids the problem of uninitialized data appearing in
the file by waiting until the data has been flushed to disk before updating the new
file size to disk. If a system failure occurs before the data has been flushed to disk,
the file size has not yet been updated, thus no uninitialized data appears in the file.
The unused blocks that were allocated are reclaimed.

The rename(2) system call flushes the source file to disk to guarantee the persistence
of the file data before renaming it. In the 10g and delaylog modes, the rename is
also guaranteed to be persistent when the system call returns. This benefits shell
scripts and programs that try to update a file atomically by writing the new file
contents to a temporary file and then renaming it on top of the target file.

tmplog mount option

In tmplog mode, the effects of system calls have persistence guarantees that are
similar to those in de1ay1og mode. In addition, enhanced flushing of delayed
extending writes is disabled, which results in better performance but increases the
chances of data being lost or uninitialized data appearing in a file that was being
actively written at the time of a system failure. This mode is only recommended for
temporary file systems. Fast file system recovery works with this mode.

Note: The term "effects of system calls" refers to changes to file system data and
metadata caused by a system call, excluding changes to st_atime.

See the stat(2) manual page.

Logging mode persistence guarantees

In all logging modes, VxFS is fully POSIX compliant. The effects of the £sync(2)
and fdatasync(2) system calls are guaranteed to be persistent after the calls return.

Creating and mounting VxFS file systems | 168
Mounting a VxFS file system

The persistence guarantees for data or metadata modified by write(2), writev(2),
or pwrite(2) are not affected by the logging mount options. The effects of these
system calls are guaranteed to be persistent only if the 0_sync, 0_DsyNc, vx_DsYNC,
or vx_DIRECT flag, as modified by the convosync= mount option, has been specified
for the file descriptor.

The behavior of NFS servers on a VxFS file system is unaffected by the 104 and
tmplog mount options, but not delaylog. In all cases except for tmplog, VXFS
complies with the persistency requirements of the NFS v2 and NFS v3 standard.
Unless a UNIX application has been developed specifically for the VxFS file system
in 1og mode, it expects the persistence guarantees offered by most other file systems
and experiences improved robustness when used with a VxFS file system mounted
in delaylog mode. Applications that expect better persistence guarantees than
that offered by most other file systems can benefit from the 1o0g, mincache=, and
closesync mount options. However, most commercially available applications work
well with the default VXFS mount options, including the de1aylog mode.

See the mount_vx£s(1M) manual page.

logiosize mount option

The logiosize=size option enhances the performance of storage devices that
employ a read-modify-write feature. If you specify 1ogiosize when you mount a
file system, VxFS writes the intent log in the least size bytes or a multiple of size
bytes to obtain the maximum performance from such devices.

See the mount_vx£s(1M) manual page.

The values for size can be 512, 1024, 2048, 4096, or 8192.

nodatainlog mount option

Use the nodatainlog mode on systems with disks that do not support bad block
revectoring. Usually, a VxFS file system uses the intent log for synchronous writes.
The inode update and the data are both logged in the transaction, so a synchronous
write only requires one disk write instead of two. When the synchronous write returns
to the application, the file system has told the application that the data is already
written. If a disk error causes the metadata update to fail, then the file must be
marked bad and the entire file is lost.

If a disk supports bad block revectoring, then a failure on the data update is unlikely,
so logging synchronous writes should be allowed. If the disk does not support bad
block revectoring, then a failure is more likely, so the nodatainlog mode should
be used.

Creating and mounting VxFS file systems | 169
Mounting a VxFS file system

A nodatainlog mode file system is approximately 50 percent slower than a standard
mode VxFS file system for synchronous writes. Other operations are not affected.

blkclear mount option

The blkclear mode is used in increased data security environments. The blkclear
mode guarantees that uninitialized storage never appears in files. The increased
integrity is provided by clearing extents on disk when they are allocated within a
file. This mode does not affect extending writes. A bl1kclear mode file system is
approximately 10 percent slower than a standard mode VxFS file system, depending
on the workload.

mincache mount option
The mincache mode has the following suboptions:
m mincache=closesync
m mincache=direct
m mincache=dsync
m mincache=unbuffered
m mincache=tmpcache

The mincache=closesync mode is useful in desktop environments where users
are likely to shut off the power on the machine without halting it first. In this mode,
any changes to the file are flushed to disk when the file is closed.

To improve performance, most file systems do not synchronously update data and
inode changes to disk. If the system crashes, files that have been updated within
the past minute are in danger of losing data. With the mincache=closesync mode,
if the system crashes or is switched off, only open files can lose data. A
mincache=closesync mode file system could be approximately 15 percent slower
than a standard mode VxFS file system, depending on the workload.

The following describes where to use the mincache modes:

m The mincache=direct, mincache=unbuffered, and mincache=dsync modes
are used in environments where applications have reliability problems caused
by the kernel buffering of /0 and delayed flushing of non-synchronous 1/0.

s The mincache=direct and mincache=unbuffered modes guarantee that all
non-synchronous I/O requests to files are handled as if the vx_DIRECT or
VX_UNBUFFERED caching advisories had been specified.

s The mincache=dsync mode guarantees that all non-synchronous I/O requests
to files are handled as if the vx_Dsync caching advisory had been specified.

Creating and mounting VxFS file systems | 170
Mounting a VxFS file system

Refer to the vxfsio(7) manual page for explanations of vx_DIRECT,
VX_UNBUFFERED, and vx_DsYNC, as well as for the requirements for direct I/O.

s The mincache=direct, mincache=unbuffered, and mincache=dsync modes
also flush file data on close as mincache=closesync does.

Because the mincache=direct, mincache=unbuffered, and mincache=dsync
modes change non-synchronous I/O to synchronous I/O, throughput can substantially
degrade for small to medium size files with most applications. Since the vx_DIRECT
and vx_UNBUFFERED advisories do not allow any caching of data, applications that
normally benefit from caching for reads usually experience less degradation with
the mincache=dsync mode. mincache=direct and mincache=unbuffered require
significantly less CPU time than buffered /0.

If performance is more important than data integrity, you can use the
mincache=tmpcache mode. The mincache=tmpcache mode disables special delayed
extending write handling, trading off less integrity for better performance. Unlike
the other mincache modes, tmpcache does not flush the file to disk when the file is
closed. When the mincache=tmpcache option is used, bad data can appear in a
file that was being extended when a crash occurred.

See the mount_vx£s(1M) manual page.

convosync mount option

The convosync (convert osync) mode has the following suboptions:

m convosync=closesync

Note: The convosync=closesync mode converts synchronous and data
synchronous writes to non-synchronous writes and flushes the changes to the
file to disk when the file is closed.

m convosync=delay
m convosync=direct

m convosync=dsync

Note: The convosync=dsync option violates POSIX guarantees for synchronous
1/0.

m convosync=unbuffered

Creating and mounting VxFS file systems | 171
Mounting a VxFS file system

The convosync=delay mode causes synchronous and data synchronous writes to
be delayed rather than to take effect immediately. No special action is performed
when closing a file. This option effectively cancels any data integrity guarantees
normally provided by opening a file with 0_sync.

See the open(2), fcnt1(2), and vxfsio(7) manual pages.

Warning: Be very careful when using the convosync=closesync or
convosync=delay mode because they actually change synchronous I/O into
non-synchronous I/O. Applications that use synchronous I/O for data reliability may
fail if the system crashes and synchronously-written data is lost.

The convosync=dsync mode converts synchronous writes to data synchronous
writes.

As with closesync, the direct, unbuffered, and dsync modes flush changes to
the file to disk when it is closed. These modes can be used to speed up applications
that use synchronous I/0. Many applications that are concerned with data integrity
specify the o_sync fentl in order to write the file data synchronously. However, this
has the undesirable side effect of updating inode times and therefore slowing down
performance. The convosync=dsync, convosync=unbuffered, and
convosync=direct modes alleviate this problem by allowing applications to take
advantage of synchronous writes without modifying inode times as well.

Before using convosync=dsync, convosync=unbuffered, Of convosync=direct,
make sure that all applications that use the file system do not require synchronous
inode time updates for o_sync writes.

ioerror mount option

This mode sets the policy for handling I/O errors on a mounted file system. 1/O
errors can occur while reading or writing file data or metadata. The file system can
respond to these I/O errors either by halting or by gradually degrading. The icerror
option provides five policies that determine how the file system responds to the
various errors. All policies limit data corruption, either by stopping the file system
or by marking a corrupted inode as bad.

The policies are as follows:
= disable policy
= wdisable policy and mwdisable policy

= mdisable policy

Creating and mounting VxFS file systems | 172
Mounting a VxFS file system

disable policy

If disable is selected, VxFS disables the file system after detecting any 1/O error.
You must then unmount the file system and correct the condition causing the 1/0
error. After the problem is repaired, run £sck and mount the file system again. In
most cases, replay fsck to repair the file system. A full £sck is required only in
cases of structural damage to the file system's metadata. Select disable in
environments where the underlying storage is redundant, such as RAID-5 or mirrored
disks.

wdisable policy and mwdisable policy

If wdisable (write disable) or mwdisable (metadata-write disable) is selected, the
file system is disabled or degraded, depending on the type of error encountered.
Select wdisable or mwdisable for environments where read errors are more likely
to persist than write errors, such as when using non-redundant storage. mwdisable
is the default ioerror mount option for local mounts.

Note: The mirrored volume file system is not disabled when wdisable Ormwdisable
is selected, if the problem occurs when there is only one plex.

See the mount_vx£s(1M) manual page.

Note: If the nodisable option is selected, the behavior will be same as the
mwdisable ioerror policy. For more information see the mwdisable option.

mdisable policy

If mdisable (metadata disable) is selected, the file system is disabled if a metadata
read or write fails. However, the file system continues to operate if the failure is
confined to data extents. mdisable is the default ioerror mount option for cluster
mounts.

largefiles and nolargefiles mount options

Veritas File System (VxFS) supports sparse files up to 16 terabytes, and non-sparse
files up to 2 terabytes - 1 kilobyte.

Note: Applications and utilities such as backup may experience problems if they
are not aware of large files. In such a case, create your file system without large
file capability.

Creating and mounting VxFS file systems
Mounting a VxFS file system

See “Creating a file system with large files” on page 173.
See “Mounting a file system with large files” on page 173.

See “Managing a file system with large files” on page 173.

Creating a file system with large files
To create a file system with large file capability:
mkfs -t vxfs -o largefiles special device size
Specifying 1argefiles sets the 1argefiles flag. This enables the file system to
hold files that are two gigabytes or larger. This is the default option.

To clear the flag and prevent large files from being created:
mkfs -t vxfs -o nolargefiles special device size

The 1argefiles flag is persistent and stored on disk.

Mounting a file system with large files

If a mount succeeds and nolargefiles is specified, the file system cannot contain
or create any large files. If a mount succeeds and 1argefiles is specified, the file
system may contain and create large files.

The mount command fails if the specified 1argefiles|nolargefiles option does
not match the on-disk flag.

Because the mount command defaults to match the current setting of the on-disk

flag if specified without the 1argefiles Or nolargefiles option, the best practice
is not to specify either option. After a file system is mounted, you can use the fsadm
utility to change the large files option.

Managing a file system with large files

Managing a file system with large files includes the following tasks:
= Determining the current status of the large files flag

= Switching capabilities on a mounted file system

= Switching capabilities on an unmounted file system

To determine the current status of the 1argefiles flag, type either of the following
commands:

mkfs -t vxfs -m special device

/opt/VRTS/bin/fsadm mount point | special device

173

Creating and mounting VxFS file systems | 174
Mounting a VxFS file system

To switch capabilities on a mounted file system:
/opt/VRTS/bin/fsadm -o [no]largefiles mount point
To switch capabilities on an unmounted file system:
/opt/VRTS/bin/fsadm -o [no]largefiles special device

You cannot change a file system to nolargefiles if it contains large files.

See the mount_vx£fs(1M), £sadm_vxfs(1M), and mkfs_vx£fs(1M) manual pages.

cio mount option

The cio (Concurrent I/0) option specifies the file system to be mounted for
concurrent reads and writes. If cio is specified, but the license is not present, the
mount command prints an error message and terminates the operation without
mounting the file system. The cio option cannot be disabled through a remount.
To disable the cio option, the file system must be unmounted and mounted again
without the cio option.

mntlock mount option

The mnt1ock option prevents a file system from being unmounted by an application.
This option is useful for applications that do not want the file systems that the
applications are monitoring to be improperly unmounted by other applications or
administrators.

The mntunlock option of the vxumount command reverses the mnt1ock option if
you previously locked the file system.

ckptautomnt mount option

The ckptautomnt option enables the Storage Checkpoint visibility feature, which
makes Storage Checkpoints easier to access.

See “Storage Checkpoint visibility” on page 367.

Combining mount command options

Although mount options can be combined arbitrarily, some combinations do not
make sense. The following examples provide some common and reasonable mount
option combinations.

To mount a desktop file system using options:

Creating and mounting VxFS file systems | 175
Unmounting a file system

mount -t vxfs -o log,mincache=closesync \

/dev/vx/dsk/diskgroup/volume /mnt

This guarantees that when a file is closed, its data is synchronized to disk and
cannot be lost. Thus, after an application has exited and its files are closed, no data
is lost even if the system is immediately turned off.

To mount a temporary file system or to restore from backup:

mount -t vxfs -o tmplog,convosync=delay,mincache=tmpcache \

/dev/vx/dsk/diskgroup/volume /mnt

This combination might be used for a temporary file system where performance is
more important than absolute data integrity. Any o_sync writes are performed as
delayed writes and delayed extending writes are not handled. This could result in
a file that contains corrupted data if the system crashes. Any file written 30 seconds
or so before a crash may contain corrupted data or be missing if this mount
combination is in effect. However, such a file system does significantly less disk
writes than a log file system, and should have significantly better performance,
depending on the application.

To mount a file system for synchronous writes:

mount -t vxfs -o log,convosync=dsync \

/dev/vx/dsk/diskgroup/volume /mnt

This combination can be used to improve the performance of applications that
perform o_sync writes, but only require data synchronous write semantics.
Performance can be significantly improved if the file system is mounted using
convosync=dsync Without any loss of data integrity.

Unmounting a file system

Use the umount command to unmount a currently mounted file system.
See the vxumount(1M) manual page.

To unmount a file system

¢ Use the umount command to unmount a file system:

Specify the file system to be unmounted as a mount_point or special. special
is the VXFS block special device on which the file system resides.

The following is an example of unmounting a file system.

Creating and mounting VxFS file systems | 176
Resizing a file system

Example of unmounting a file system

¢ Unmount the file system /dev/vx/dsk/fsvol/voll:

umount /dev/vx/dsk/fsvol/voll

Resizing a file system

You can extend or shrink mounted VxFS file systems using the fsadm command.
The size to which a file system can be increased depends on the file system disk
layout version. A file system using the Version 7 or later disk layout can be up to
256 terabytes in size. The size to which a Version 7 or later disk layout file system
can be increased depends on the file system block size.

See the fsadm vxfs(1M) and £disk(8) manual pages.

Extending a file system using fsadm
You can resize a file system by using the £sadm command.
To resize a VxFS file system

¢ Use the £sadm command to extend a VxFS file system:

fsadm [-t vxfs] [-b newsize] [-r rawdev] \

mount point

vxfs The file system type.

newsize The size to which the file system will increase. The default units is
sectors, but you can specify k or K for kilobytes, m or M for megabytes,
or g or G for gigabytes.

mount_point The file system's mount point.

-r rawdev Specifies the path name of the raw device if there is no entry in
/etc/fstab and £sadm cannot determine the raw device.

The following example extends a file system mounted at /mnt1 by 22528 sectors.
Example of extending a file system to 22528 sectors

¢ Extend the VxFS file system mounted on /mnt1 to 22528 sectors:

fsadm -t vxfs -b 22528 /mntl

Creating and mounting VxFS file systems
Resizing a file system

The following example extends a file system mounted at /mnt1 to 500 gigabytes.
Example of extending a file system to 500 gigabytes
¢ Extend the VxFS file system mounted on /mnt1 to 500 gigabytes:

fsadm -t vxfs -b +500g /mntl

Shrinking a file system

You can decrease the size of the file system using £sadm, even while the file system
is mounted.

Warning: After this operation, there is unused space at the end of the device. You
can then resize the device, but be careful not to make the device smaller than the
new size of the file system.

To decrease the size of a VxFS file system

& Use the £sadm command to decrease the size of a VxFS file system:

fsadm [-t vxfs] [-b newsize] [-r rawdev] mount point
vxfs The file system type.
newsize The size to which the file system will shrink. The default units is

sectors, but you can specify k or X for kilobytes, m or M for
megabytes, or g or G for gigabytes.

mount_point The file system's mount point.

-r rawdev Specifies the path name of the raw device if there is no entry in
/etc/fstab and £sadm cannot determine the raw device.

The following example shrinks a VxFS file system mounted at /mnt1 to 20480
sectors.

Example of shrinking a file system to 20480 sectors

& Shrink a VxFS file system mounted at /mnt1 to 20480 sectors:

fsadm -t vxfs -b 20480 /mntl

The following example shrinks a file system mounted at /mnt1 to 450 gigabytes.

177

Creating and mounting VxFS file systems | 178
Resizing a file system

Example of shrinking a file system to 450 gigabytes
& Shrink the VxFS file system mounted on /mnt1 to 450 gigabytes:

fsadm -t vxfs -b 450g /mntl

Reorganizing a file system

You can reorganize or compact a fragmented file system using fsadm, even while
the file system is mounted. This may help shrink a file system that could not
previously be decreased.

To reorganize a VxFS file system

& Use the £sadm command to reorganize a VxFS file system:

fsadm [-t vxfs] [-e] [-d] [-E] [-D] [-H] [-r rawdev] mount point
vxfs The file system type.
-d Reorders directory entries to put subdirectory entries first, then all

other entries in decreasing order of time of last access. Also
compacts directories to remove free space.

-D Reports on directory fragmentation.

-e Minimizes file system fragmentation. Files are reorganized to have
the minimum number of extents.

-E Reports on extent fragmentation.

-H Displays the storage size in human-friendly units
(KB/MB/GB/TB/PB/EB), when used with the -E and -D options.

mount_point The file system's mount point.

-r rawdev Specifies the path name of the raw device if there is no entry in
/etc/fstab and £sadm cannot determine the raw device.

To perform free space defragmentation

& Use the fsadm command to perform free space defragmentation of a VxFS file
system:

fsadm [-t vxfs] [-C] mount point

vxfs The file system type.

Creating and mounting VxFS file systems | 179
Displaying information on mounted file systems

-C Minimizes file system free space fragmentation. This attempts to
generate bigger chunks of free space in the device.

mount_point The file system's mount point.

The following example reorganizes the file system mounted at /mnt1.
Example of reorganizing a VxFS file system

¢ Reorganize the VxFS file system mounted at /mnt1:

fsadm -t vxfs -EeDd /mntl

The following example minimizes the free space fragmentation of the file system
mounted at /mnt1.

Example of running free space defragmentation

¢ Minimize the free space of the the VxFS file system mounted at /mnt1:

fsadm -t vxfs -C /mntl

Displaying information on mounted file systems

Use the mount command to display a list of currently mounted file systems.
See the mount_vx£s(1M) and mount(8) manual pages.
To view the status of mounted file systems

¢ Use the mount command to view the status of mounted file systems:
mount

This shows the file system type and mount options for all mounted file systems.

The following example displays information on mounted file systems by invoking
the mount command without options.

To display information on mounted file systems

¢ Invoke the mount command without options:

mount

/dev/sda3 on / type ext3 (rw,acl,user xattr)

proc on /proc type proc (rw)

sysfs on /sys type sysfs (rw)
/dev/vx/dsk/testdg/vol0l on /vol0l testdg type vxfs

(rw,delaylog, largefiles, ioerror=mwdisable)

Creating and mounting VxFS file systems | 180
Identifying file system types

Identifying file system types

Use the £styp command to determine the file system type for a specified file system.
This is useful when a file system was created elsewhere and you want to know its
type.

See the fstyp vxfs(1M) manual page.
To determine a file system's type

& Use the £styp command to determine a file system's type:

fstyp -v special

special The block or character (raw) device.

-v Specifies the device that needs to be checked.

The following example uses the fstyp command to determine the file system type
of the /dev/vx/dsk/fsvol/voll device.

Creating and mounting VxFS file systems | 181
Monitoring free space

To determine the file system’s type

¢ Use the fstyp command to determine the file system type of the device
/dev/vx/dsk/fsvol/voll:

f£styp -v /dev/vx/dsk/fsvol/voll

The output indicates that the file system type is vxfs, and displays file system
information similar to the following:

vxfs

magic a501fcf5 version 7 ctime Tue Jun 23 18:29:39 2004
logstart 17 logend 1040

bsize 1024 size 1048576 dsize 1047255 ninode 0 nau 8
defiextsize 64 ilbsize 0 immedlen 96 ndaddr 10

aufirst 1049 emap 2 imap 0 iextop 0 istart O

bstart 34 femap 1051 fimap 0 fiextop 0 fistart 0 fbstart

1083

nindir 2048 aulen 131106 auimlen 0 auemlen 32

auilen 0 aupad 0 aublocks 131072 maxtier 17

inopb 4 inopau 0 ndiripau 0 iaddrlen 8 bshift 10
inoshift 2 bmask fffffc00 boffmask 3ff checksum d7938aal
oltextl 9 oltext2 1041 oltsize 8 checksum2 52a

free 382614 ifree O

efree 676 413 426 466 612 462 226 112 85 35 14 3 6 54 4 00

Monitoring free space

In general, Veritas File System (VxFS) works best if the percentage of free space
in the file system does not get below 10 percent. This is because file systems with
10 percent or more free space have less fragmentation and better extent allocation.
Regular use of the df command to monitor free space is desirable.

See the df_vxfs(1M) manual page.

Full file systems may have an adverse effect on file system performance. Full file
systems should therefore have some files removed, or should be expanded.

See the fsadm_vx£fs(1M) manual page.
VxFS supports reclamation of free storage on a Thin Storage LUN.

See “About Thin Reclamation of a file system” on page 479.

Creating and mounting VxFS file systems | 182
Monitoring free space

Monitoring fragmentation

Fragmentation reduces performance and availability. Veritas recommends regular
use of the fragmentation reporting and reorganization facilities of the fsadm
command.

The easiest way to ensure that fragmentation does not become a problem is to
schedule regular defragmentation runs using the cron command.

Defragmentation scheduling should range from weekly (for frequently used file
systems) to monthly (for infrequently used file systems). Extent fragmentation should
be monitored with the £sadm command.

To determine the degree of fragmentation, use the following factors:

= Percentage of free space in extents of less than 8 blocks in length

= Percentage of free space in extents of less than 64 blocks in length

= Percentage of free space in extents of length 64 blocks or greater

An unfragmented file system has the following characteristics:

= Less than 1 percent of free space in extents of less than 8 blocks in length
= Less than 5 percent of free space in extents of less than 64 blocks in length

= More than 5 percent of the total file system size available as free extents in
lengths of 64 or more blocks

A badly-fragmented file system has one or more of the following characteristics:
= Greater than 5 percent of free space in extents of less than 8 blocks in length
= More than 50 percent of free space in extents of less than 64 blocks in length

= Less than 5 percent of the total file system size available as free extents in
lengths of 64 or more blocks

Fragmentation can also be determined based on the fragmentation index. Two
types of indices are generated by the £sadm command: the file fragmentation index
and the free space fragmentation index. Both of these indices range between 0 and
100, and give an idea about the level of file fragmentation and free space
fragmentation, respectively. A value of 0 for the fragmentation index means that
the file system has no fragmentation, and a value of 100 means that the file system
has the highest level of fragmentation. Based on the index, you should use the
appropriate defragmentation option with the fsadm command. For example if the
file fragmentation index is high, the fsadm command should be run with the -e
option. If the free space fragmentation index is high, the fsadm command should
be run with -c option. When the £sadm command is run with the -e option, internally
it performs free space defragmentation before performing file defragmentaion.

Creating and mounting VxFS file systems
Monitoring free space

The optimal period for scheduling of extent reorganization runs can be determined
by choosing a reasonable interval, scheduling fsadm runs at the initial interval, and
running the extent fragmentation report feature of fsadm before and after the
reorganization.

The “before" result is the degree of fragmentation prior to the reorganization. If the
degree of fragmentation is approaching the figures for bad fragmentation, reduce
the interval between fsadm runs. If the degree of fragmentation is low, increase the
interval between fsadm runs.

The “after" result is an indication of how well the reorganizer has performed. The
degree of fragmentation should be close to the characteristics of an unfragmented
file system. If not, it may be a good idea to resize the file system; full file systems
tend to fragment and are difficult to defragment. It is also possible that the
reorganization is not being performed at a time during which the file system in
question is relatively idle.

Directory reorganization is not nearly as critical as extent reorganization, but regular
directory reorganization improves performance. It is advisable to schedule directory
reorganization for file systems when the extent reorganization is scheduled. The
following is a sample script that is run periodically at 3:00 A.M. from cron for a
number of file systems:

outfile=/var/spool/fsadm/out.‘/bin/date +'Sm%d'"
for i in /home /home2 /project /db
do
/bin/echo "Reorganizing $i"
/usr/bin/time /opt/VRTS/bin/fsadm -t vxfs -e -E -s $i
/usr/bin/time /opt/VRTS/bin/fsadm -t vxfs -s -d -D $i
done > $outfile 2>&1

183

Extent attributes

This chapter includes the following topics:
= About extent attributes

s Commands related to extent attributes

About extent attributes

Veritas File System (VxFS) allocates disk space to files in groups of one or more
adjacent blocks called extents. VxFS defines an application interface that allows
programs to control various aspects of the extent allocation for a given file. The
extent allocation policies associated with a file are referred to as extent attributes.

The VXFS getext and setext commands let you view or manipulate file extent
attributes.

See the setext(1) and getext(1) manual pages.

The two basic extent attributes associated with a file are its reservation and its fixed
extent size. You can preallocate space to the file by manipulating a file's reservation,
or override the default allocation policy of the file system by setting a fixed extent
size.

See “Reservation: preallocating space to a file” on page 185.
See “Fixed extent size” on page 185.

Other policies determine the way these attributes are expressed during the allocation
process.

You can specify the following criteria:
= The space reserved for a file must be contiguous
= No allocations will be made for a file beyond the current reservation

» An unused reservation will be released when the file is closed

Extent attributes | 185
About extent attributes

= Space will be allocated, but no reservation will be assigned
= The file size will be changed to incorporate the allocated space immediately

Some of the extent attributes are persistent and become part of the on-disk
information about the file, while other attributes are temporary and are lost after the
file is closed or the system is rebooted. The persistent attributes are similar to the
file's permissions and are written in the inode for the file. When a file is copied,
moved, or archived, only the persistent attributes of the source file are preserved
in the new file.

See “Other extent attribute controls” on page 186.

In general, the user will only set extent attributes for reservation. Many of the
attributes are designed for applications that are tuned to a particular pattern of 1/0
or disk alignment.

See “About Veritas File System I/0” on page 330.

Reservation: preallocating space to a file

Veritas File System (VxFS) makes it possible to preallocate space to a file at the
time of the request rather than when data is written into the file. This space cannot
be allocated to other files in the file system. VxFS prevents any unexpected
out-of-space condition on the file system by ensuring that a file's required space
will be associated with the file before it is required.

A persistent reservation is not released when a file is truncated. The reservation
must be cleared or the file must be removed to free the reserved space.

Fixed extent size

The Veritas File System (VxFS) default allocation policy uses a variety of methods
to determine how to make an allocation to a file when a write requires additional
space. The policy attempts to balance the two goals of optimum 1/O performance
through large allocations and minimal file system fragmentation. VxFS accomplishes
these goals by allocating from space available in the file system that best fits the
data.

Setting a fixed extent size overrides the default allocation policies for a file and
always serves as a persistent attribute. Be careful to choose an extent size
appropriate to the application when using fixed extents. An advantage of the VxFS
extent-based allocation policies is that they rarely use indirect blocks compared to
block-based file systems; VxFS eliminates many instances of disk access that stem
from indirect references. However, a small extent size can eliminate this advantage.

Files with large extents tend to be more contiguous and have better 1/0
characteristics. However, the overall performance of the file system degrades

Extent attributes
About extent attributes

because the unused space fragments free space by breaking large extents into
smaller pieces. By erring on the side of minimizing fragmentation for the file system,
files may become so non-contiguous that their I/O characteristics would degrade.

Fixed extent sizes are particularly appropriate in the following situations:

= If afile is large and sparse and its write size is fixed, a fixed extent size that is
a multiple of the write size can minimize space wasted by blocks that do not
contain user data as a result of misalignment of write and extent sizes. The
default extent size for a sparse file is 8K.

» Ifafileis large and contiguous, a large fixed extent size can minimize the number
of extents in the file.

Custom applications may also use fixed extent sizes for specific reasons, such as
the need to align extents to cylinder or striping boundaries on disk.

How the fixed extent size works with the shared extents

Veritas File System (VxFS) allows the user to set the fixed extent size option on a
file that controls the minimum allocation size of the file. If a file has shared extents
that must be unshared, the allocation that is done as a part of the unshare operation
ignores the fixed extent size option that is set on the file. The allocation size during
the unshare operation, is dependent on the size of the write operation on the shared
region.

Other extent attribute controls

The auxiliary controls on extent attributes determine the following conditions:

= Whether allocations are aligned
See “Extent attribute alignment” on page 187.

= Whether allocations are contiguous
See “Extent attribute contiguity” on page 187.

= Whether the file can be written beyond its reservation
See “Write operations beyond extent attribute reservation” on page 187.

= Whether an unused reservation is released when the file is closed
See “Extent attribute reservation trimming” on page 187.

= Whether the reservation is a persistent attribute of the file
See “Extent attribute reservation persistence” on page 187.

= When the space reserved for a file will actually become part of the file
See “Including an extent attribute reservation in the file” on page 187.

186

Extent attributes | 187
About extent attributes

Extent attribute alignment

Specific alignment restrictions coordinate a file's allocations with a particular 1/0
pattern or disk alignment. Alignment can only be specified if a fixed extent size has
also been set. Setting alignment restrictions on allocations is best left to
well-designed applications.

See the setext(1) manual page.

See “About Veritas File System 1/0” on page 330.

Extent attribute contiguity

A reservation request can specify that its allocation remain contiguous (all one
extent). Maximum contiguity of a file optimizes its /0 characteristics.

Note: Fixed extent sizes or alignment cause a file system to return an error message
reporting insufficient space if no suitably sized (or aligned) extent is available. This
can happen even if the file system has sufficient free space and the fixed extent
size is large.

Write operations beyond extent attribute reservation

A reservation request can specify that no allocations can take place after a write
operation fills the last available block in the reservation. This request can be used
a way similar to the function of the u1imit command to prevent a file's uncontrolled
growth.

Extent attribute reservation trimming

A reservation request can specify that any unused reservation be released when
the file is closed. The file is not completely closed until all processes open against
the file have closed it.

Extent attribute reservation persistence

A reservation request can ensure that the reservation does not become a persistent
attribute of the file. The unused reservation is discarded when the file is closed.

Including an extent attribute reservation in the file

A reservation request can make sure the size of the file is adjusted to include the
reservation. Normally, the space of the reservation is not included in the file until
an extending write operation requires it. A reservation that immediately changes
the file size can generate large temporary files. Unlike a ftruncate operation that

Extent attributes | 188
Commands related to extent attributes

increases the size of a file, this type of reservation does not perform zeroing of the
blocks included in the file and limits this facility to users with appropriate privileges.
The data that appears in the file may have been previously contained in another
file. For users who do not have the appropriate privileges, there is a variant request
that prevents such users from viewing uninitialized data.

Commands related to extent attributes

The Veritas File System (VxFS) commands for manipulating extent attributes are
setext and getext; they allow the user to set up files with a given set of extent
attributes or view any attributes that are already associated with a file.

See the setext(1) and getext(1) manual pages.

The VxFS-specific commands vxdump and vxrestore preserve extent attributes
when backing up, restoring, moving, or copying files.

Most of these commands include a command-line option (-e) for maintaining extent
attributes on files. You use this option with a VxFS file that has extent attribute
information including reserved space, a fixed extent size, and extent alignment.
The extent attribute information may be lost if the destination file system does not
support extent attributes, has a different block size than the source file system, or
lacks free extents appropriate to satisfy the extent attribute requirements.

The -e option takes any of the following keywords as an argument:

warn Issues a warning message if extent attribute information cannot be
maintained (the default)

force Fails the copy if extent attribute information cannot be maintained

ignore Ignores extent attribute information entirely

The following example creates a file named filel and preallocates 2 GB of disk
space for the file.

Extent attributes
Commands related to extent attributes

Example of setting an extent attribute

1

Create the file file1:

touch filel

Preallocate 2 GB of disk space for the file filei:
setext -t vxfs -r 2g -f chgsize filel

Since the example specifies the -f chgsize option, VXFS immediately
incorporates the reservation into the file and updates the file’s inode with size
and block count information that is increased to include the reserved space.
Only users with root privileges can use the -f chgsize option.

The following example gets the extent atribute information of a file named file1.

Example of getting an extent attribute’s information

& Get the extent attribute information for the file file1:

getext -t vxfs filel
filel: Bsize 1024 Reserve 2097152 Extent Size 0

Thefile fi1e1 has a block size of 1024 bytes, 36 blocks reserved, a fixed extent
size of 3 blocks, and all extents aligned to 3 block boundaries. The file size
cannot be increased after the current reservation is exhausted. Reservations
and fixed extent sizes are allocated in units of the file system block size.

About failing to preserve extent attributes

Whenever a file is copied, moved, or archived using commands that preserve extent
attributes, there is the possibility of losing the attributes.

Such a failure might occur for one of the following reasons:

The file system receiving a copied, moved, or restored file from an archive is
not a VxFS file system. Since other file system types do not support the extent
attributes of the VxFS file system, the attributes of the source file are lost during
the migration.

The file system receiving a copied, moved, or restored file is a VxFS type but
does not have enough free space to satisfy the extent attributes. For example,
consider a 50 KB file and a reservation of 1 MB. If the target file system has 500
KB free, it could easily hold the file but fail to satisfy the reservation.

The file system receiving a copied, moved, or restored file from an archive is a
VxFS type but the different block sizes of the source and target file system make
extent attributes impossible to maintain. For example, consider a source file

189

Extent attributes
Commands related to extent attributes

system of block size 1024, a target file system of block size 4096, and a file that
has a fixed extent size of 3 blocks (3072 bytes). This fixed extent size adapts
to the source file system but cannot translate onto the target file system.

The same source and target file systems in the preceding example with a file
carrying a fixed extent size of 4 could preserve the attribute; a 4 block (4096
byte) extent on the source file system would translate into a 1 block extent on
the target.

On a system with mixed block sizes, a copy, move, or restoration operation may
or may not succeed in preserving attributes. It is recommended that the same
block size be used for all file systems on a given system.

190

Administering multi-pathing
with DMP

= Chapter 9. Administering Dynamic Multi-Pathing
= Chapter 10. Dynamic Reconfiguration of devices
= Chapter 11. Managing devices

= Chapter 12. Event monitoring

Administering Dynamic
Multi-Pathing

This chapter includes the following topics:

Discovering and configuring newly added disk devices

Making devices invisible to VxVM

Making devices visible to VxVM

About enabling and disabling 1/O for controllers and storage processors
About displaying DMP database information

Displaying the paths to a disk

Administering DMP using the vxdmpadm utility

Discovering and configuring newly added disk

devices

When you physically connect new disks to a host or when you zone new Fibre
Channel devices to a host, you can use the vxdctl enable command to rebuild
the volume device node directories and to update the Dynamic Multi-Pathing (DMP)
internal database to reflect the new state of the system.

To reconfigure the DMP database, first make Linux recognize the new disks, and
then invoke the vxdctl enable command.

You can also use the vxdisk scandisks command to scan devices in the operating
system device tree, and to initiate dynamic reconfiguration of multipathed disks.

Administering Dynamic Multi-Pathing | 193
Discovering and configuring newly added disk devices

If you want SF to scan only for new devices that have been added to the system,
and not for devices that have been enabled or disabled, specify the - option to
either of the commands, as shown here:

vxdctl -f enable

vxdisk -f scandisks

However, a complete scan is initiated if the system configuration has been modified
by changes to:

= Installed array support libraries.

= The list of devices that are excluded from use by VxVM.
= DISKS (JBOD), SCSI3, or foreign device definitions.
See the vxdct1(1M) manual page.

See the vxdisk(1M) manual page.

Partial device discovery

Dynamic Multi-Pathing (DMP) supports partial device discovery where you can
include or exclude paths to a physical disk from the discovery process.

The vxdisk scandisks command rescans the devices in the OS device tree and
triggers a DMP reconfiguration. You can specify parameters to vxdisk scandisks
to implement partial device discovery. For example, this command makes SF
discover newly added devices that were unknown to it earlier:

vxdisk scandisks new

The next example discovers fabric devices:

vxdisk scandisks fabric

The following command scans for the devices sdm and sdn:
vxdisk scandisks device=sdm,sdn

Alternatively, you can specify a ! prefix character to indicate that you want to scan
for all devices except those that are listed.

Note: The ! character is a special character in some shells. The following examples
show how to escape it in a bash shell.

vxdisk scandisks \'!'device=sdm,sdn

Administering Dynamic Multi-Pathing | 194
Discovering and configuring newly added disk devices

You can also scan for devices that are connected (or not connected) to a list of
logical or physical controllers. For example, this command discovers and configures
all devices except those that are connected to the specified logical controllers:

vxdisk scandisks \'ctlr=cl,c2

The next command discovers only those devices that are connected to the specified
physical controller:

vxdisk scandisks pctlr=cl+c2

The items in a list of physical controllers are separated by + characters.

You can use the command vxdmpadm getctlr all to obtain a list of physical
controllers.

You should specify only one selection argument to the vxdisk scandisks command.
Specifying multiple options results in an error.

See the vxdisk(1M) manual page.

About discovering disks and dynamically adding disk arrays

Dynamic Multi-Pathing (DMP) uses array support libraries (ASLs) to provide
array-specific support for multi-pathing. An array support library (ASL) is a
dynamically loadable shared library (plug-in for DDL). The ASL implements
hardware-specific logic to discover device attributes during device discovery. DMP
provides the device discovery layer (DDL) to determine which ASLs should be
associated to each disk array.

In some cases, DMP can also provide basic multi-pathing and failover functionality
by treating LUNs as disks (JBODs).

How DMP claims devices

For fully optimized support of any array and for support of more complicated array
types, Dynamic Multi-Pathing (DMP) requires the use of array-specific array support
libraries (ASLs), possibly coupled with array policy modules (APMs). ASLs and
APMs effectively are array-specific plug-ins that allow close tie-in of DMP with any
specific array model.

See the Hardware Compatibility List for the complete list of supported arrays.
https://www.veritas.com/support/en_US/article.000107677

During device discovery, the DDL checks the installed ASL for each device to find
which ASL claims the device.

https://www.veritas.com/support/en_US/article.000107677

Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

If no ASL is found to claim the device, the DDL checks for a corresponding JBOD
definition. You can add JBOD definitions for unsupported arrays to enable DMP to
provide multi-pathing for the array. If a JBOD definition is found, the DDL claims
the devices in the DISKS category, which adds the LUNSs to the list of JBOD (physical
disk) devices used by DMP. If the JBOD definition includes a cabinet number, DDL
uses the cabinet number to group the LUNSs into enclosures.

See “Adding unsupported disk arrays to the DISKS category” on page 205.

DMP can provide basic multi-pathing to arrays that comply with the Asymmetric
Logical Unit Access (ALUA) standard, even if there is no ASL or JBOD definition.
DDL claims the LUNs as part of the aluadisk enclosure. The array type is shown
as ALUA. Adding a JBOD definition also enables you to group the LUNSs into
enclosures.

Disk categories

Disk arrays that have been certified for use with Dynamic Multi-Pathing (DMP) are
supported by an array support library (ASL), and are categorized by the vendor ID
string that is returned by the disks (for example, “61TACHT”).

Disks in JBODs that are capable of being multi-pathed by DMP, are placed in the
DISKS category. Disks in unsupported arrays can also be placed in the p1sks
category.

See “Adding unsupported disk arrays to the DISKS category” on page 205.

Disks in JBODs that do not fall into any supported category, and which are not
capable of being multi-pathed by DMP are placed in the oTHER DIsks category.

Adding DMP support for a new disk array

You can dynamically add support for a new type of disk array. The support comes
in the form of Array Support Libraries (ASLs) that are developed by Veritas. Veritas
provides support for new disk arrays through updates to the vRTsas1apm rpm. To
determine if an updated vRTSaslapm rpm is available for download, refer to the
hardware compatibility list tech note. The hardware compatibility list provides a link
to the latest rpm for download and instructions for installing the vRTSas1apm rpm.
You can upgrade the vRTsas1lapm rpm while the system is online; you do not need
to stop the applications.

To access the hardware compatibility list, go to the following URL:
https://www.veritas.com/support/en_US/article.000107677

Each VRTSaslapm rpm is specific for the Storage Foundation version. Be sure to
install the vRTsas1apm rpm that supports the installed version of Storage Foundation.

195

https://www.veritas.com/support/en_US/article.000107677

Administering Dynamic Multi-Pathing | 196
Discovering and configuring newly added disk devices

The new disk array does not need to be already connected to the system when the
VRTSaslapm rpm is installed.

See “Adding new LUNs dynamically to a target ID” on page 262.

If you need to remove the latest vRTsas1lapm rpm, you can revert to the previously
installed version. For the detailed procedure, refer to the Veritas InfoScale
Troubleshooting Guide.

Enabling discovery of new disk arrays

The vxdctl enable command scans all of the disk devices and their attributes,
updates the SF device list, and reconfigures DMP with the new device database.
There is no need to reboot the host.

Warning: This command ensures that Dynamic Multi-Pathing is set up correctly
for the array. Otherwise, VxVM treats the independent paths to the disks as separate
devices, which can result in data corruption.

To enable discovery of a new disk array

¢ Type the following command:

vxdctl enable

About third-party driver coexistence

The third-party driver (TPD) coexistence feature of Storage Foundation (SF) allows
I/O that is controlled by some third-party multi-pathing drivers to bypass Dynamic
Multi-Pathing (DMP) while retaining the monitoring capabilities of DMP. If a suitable
Array Support Library (ASL) is available and installed, devices that use TPDs can
be discovered without requiring you to set up a specification file, or to run a special
command. The TPD coexistence feature of SF permits coexistence without requiring
any change in a third-party multi-pathing driver.

See “Changing device naming for enclosures controlled by third-party drivers”
on page 288.

See “Displaying information about devices controlled by third-party drivers”
on page 225.

Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

How to administer the Device Discovery Layer

The Device Discovery Layer (DDL) allows dynamic addition of disk arrays. DDL
discovers disks and their attributes that are required for Storage Foundation (SF)
operations.

The DDL is administered using the vxdd1adm utility to perform the following tasks:

= List the hierarchy of all the devices discovered by DDL including iSCSI devices.

= List all the Host Bus Adapters including iSCSI.

= List the ports configured on a Host Bus Adapter.

= List the targets configured from a Host Bus Adapter.

= List the devices configured from a Host Bus Adapter.

n Get or set the iISCSI operational parameters.

= List the types of arrays that are supported.

= Add support for an array to DDL.

= Remove support for an array from DDL.

» List information about excluded disk arrays.

» List disks that are claimed in the p1sks (JBOD) category.
» Add disks from different vendors to the p1sks category.
= Remove disks from the p1sks category.

= Add disks as foreign devices.

The following sections explain these tasks in more detail.

See the vxddladm(1M) manual page.

Listing all the devices including iSCSI

You can display the hierarchy of all the devices discovered by DDL, including iSCSI
devices.

197

Administering Dynamic Multi-Pathing

Discovering and configuring newly added disk devices

To list all the devices including iSCSI

¢ Type the following command:

wvxddladm list

The following is a sample output:

HBA fscsiO
Port fscsiO pO

HBA iscsiO
Port

(20:00:00:E0:8B:19:77:BE)
(50:0A:09:80:85:84:9D:84)
Target fscsiO pO t0 (50:0A:09:81:85:84:9D:84)

Device sda

(1gn.1986-03.com.sun:01:0003ba8edlb5.45220£80)

(10.216.130.10:3260)

iscsi0 pO t0 (ign.1992-08.com.netapp:sn.84188548)
Device sdb
Device sdc
iscsi0 pO tl (ign.1992-08.com.netapp:sn.84190939)

Listing all the Host Bus Adapters including iSCSI

You can obtain information about all the Host Bus Adapters (HBAs) configured on
the system, including iISCSI adapters.

Table 9-1 shows the HBA information.

Table 9-1 HBA information
Field Description
Driver Driver controlling the HBA.
Firmware Firmware version.
Discovery The discovery method employed for the targets.
State Whether the device is Online or Offline.
Address The hardware address.

To list all the Host Bus Adapters including iSCSI

¢ Use the following command to list all of the HBAs, including iSCSI devices,
configured on the system:

vxddladm list hbas

198

Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

Listing the ports configured on a Host Bus Adapter

You can obtain information about all the ports configured on an HBA. The display
includes the following information:

HBA-ID The parent HBA.

State

Whether the device is Online or Offline.

Address The hardware address.

To list the ports configured on a Host Bus Adapter

*

Use the following command to obtain the ports configured on an HBA:

vxddladm list ports

PORT-ID HBA-ID STATE ADDRESS
c2 p0 c2 Online 50:0A:09:80:85:84:9D:84
c3 p0 c3 Online 10.216.130.10:3260

Listing the targets configured from a Host Bus Adapter or
a port
You can obtain information about all the targets configured from a Host Bus Adapter
or a port.

Table 9-2 shows the target information.

Table 9-2 Target information
Field Description
Alias The alias name, if available.
HBA-ID Parent HBA or port.
State Whether the device is Online or Offline.
Address The hardware address.

199

Administering Dynamic Multi-Pathing | 200
Discovering and configuring newly added disk devices

To list the targets

& To list all of the targets, use the following command:
vxddladm list targets
The following is a sample output:

TARGET-ID ALIAS HBA-ID STATE ADDRESS

c2 p0_to0 - c2 Online 50:0A:09:80:85:84:9D:84
c3 pO_tl - c3 Online ign.1992-08.com.netapp:sn.84190939

To list the targets configured from a Host Bus Adapter or port

¢ You can filter based on a HBA or port, using the following command:
vxddladm list targets [hba=hba name|port=port name]
For example, to obtain the targets configured from the specified HBA:
vxddladm list targets hba=c2

TARGET-ID ALIAS HBA-ID STATE ADDRES

c2 p0_to - c2 Online 50:0A:09:80:85:84:9D:84

Listing the devices configured from a Host Bus Adapter
and target

You can obtain information about all the devices configured from a Host Bus Adapter.

Table 9-3 shows the device information.

Table 9-3 Device information
Field Description
Device The device name.
Target-ID The parent target.
State Whether the device is Online or Offline.
DDL status Whether the device is claimed by DDL. If claimed, the output
also displays the ASL name.

Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

To list the devices configured from a Host Bus Adapter

& To obtain the devices configured, use the following command:

vxddladm list devices

Device Target-ID State DDL status (ASL)

sda fscsi0 _pO_t0 Online CLAIMED (libvxemc.so)
sdb fscsi0 _pO_t0 Online SKIPPED (libvxemc.so)
sdc fscsi0 p0_t0 Offline ERROR

sdd fscsi0 _pO_t0 Online EXCLUDED

sde fscsi0 pO _t0 Offline MASKED

To list the devices configured from a Host Bus Adapter and target

¢ To obtain the devices configured from a particular HBA and target, use the
following command:

vxddladm list devices target=target name

Getting or setting the iSCSI operational parameters

DDL provides an interface to set and display certain parameters that affect the
performance of the iSCSI device path. However, the underlying OS framework must
support the ability to set these values. The vxddladm set command returns an
error if the OS support is not available.

Table 9-4 Parameters for iSCSI devices
Parameter Default value Minimum value | Maximum value
DataPDUInOrder yes no yes
DataSequencelnOrder yes no yes
DefaultTime2Retain 20 0 3600
DefaultTime2Wait 2 0 3600
ErrorRecoveryLevel 0 0 2
FirstBurstLength 65535 512 16777215
InitialR2T yes no yes
ImmediateData yes no yes

201

Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

Table 9-4 Parameters for iISCSI devices (continued)
Parameter Default value Minimum value | Maximum value
MaxBurstLength 262144 512 16777215
MaxConnections 1 1 65535
MaxOutStandingR2T 1 1 65535
MaxRecvDataSegmentLength | 8182 512 16777215

To get the iSCSI operational parameters on the initiator for a specific iSCSI
target

.

Type the following commands:

vxddladm getiscsi target=tgt-id {all

| parameter}

You can use this command to obtain all the iISCSI operational parameters.

vxddladm getiscsi target=c2 p2 t0

The following is a sample output:

PARAMETER CURRENT
DataPDUInOrder yes
DataSequenceInOrder yes
DefaultTime2Retain 20
DefaultTime2Wait 2
ErrorRecoveryLevel 0
FirstBurstLength 65535
InitialR2T yes
ImmediateData yes
MaxBurstLength 262144
MaxConnections 1
MaxOutStandingR2T 1

MaxRecvDataSegmentLength 8192

DEFAULT MIN MAX
yes no yes
yes no yes

20 0 3600

2 0 3600

0 0 2
65535 512 16777215
yes no yes
yes no yes

262144 512 16777215

1 1 65535
1 1 65535
8182 512 16777215

To set the iSCSI operational parameters on the initiator for a specific iSCSI
target

.

Type the following command:

vxddladm setiscsi target=tgt-id parameter=value

202

Administering Dynamic Multi-Pathing | 203
Discovering and configuring newly added disk devices

Listing all supported disk arrays

Use this procedure to obtain values for the vid and pid attributes that are used
with other forms of the vxdd1adm command.

To list all supported disk arrays

¢ Use the following command:

vxddladm listsupport all

Displaying details about an Array Support Library

Dynamic Multi-Pathing (DMP) enables you to display details about the Array Support
Libraries (ASL).

To display details about an Array Support Library
¢ Type the following command:

vxddladm listsupport libname=library name.so

This command displays the vendor IDs (vibps), product IDs (p1Ds) for the arrays,
array types (for example, A/A or A/P), and array names. The following is sample
output.

wvxddladm listsupport libname=libvxfujitsu.so

ATTR NAME ATTR VALUE
LIBNAME libvxfujitsu.so
VID vendor
PID GR710, GR720, GR730
GR740, GR820, GR840
ARRAY TYPE A/A, A/P
ARRAY NAME FJ GR710, FJ GR720, FJ GR730

FJ GR740, FJ GR820, FJ GR840

Excluding support for a disk array library

You can exclude support for disk arrays that depends on a particular disk array
library. You can also exclude support for disk arrays from a particular vendor.

Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

To exclude support for a disk array library

& To exclude support for a disk array library, specify the array library to the
following command.

vxddladm excludearray libname=1ibname

You can also exclude support for disk arrays from a particular vendor, as shown
in this example:

vxddladm excludearray vid=ACME pid=X1

vxdisk scandisks

Re-including support for an excluded disk array library

If you previously excluded support for all arrays that depend on a particular disk
array library, use this procedure to include the support for those arrays. This
procedure removes the library from the exclude list.

To re-include support for an excluded disk array library

¢ If you have excluded support for all arrays that depend on a particular disk
array library, you can use the includearray keyword to remove the entry from
the exclude list.

vxddladm includearray libname=libname

This command adds the array library to the database so that the library can
once again be used in device discovery.

vxdisk scandisks

Listing excluded disk arrays

To list all disk arrays that are currently excluded from use by Veritas Volume
Manager (VxVM)

¢ Type the following command:

vxddladm listexclude

204

Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

Listing disks claimed in the DISKS category
To list disks that are claimed in the p1sks (JBOD) category

¢ Type the following command:

vxddladm listjbod

Adding unsupported disk arrays to the DISKS category

Disk arrays should be added as JBOD devices if no Array Support Library (ASL)
is available for the array.

JBODs are assumed to be Active/Active (A/A) unless otherwise specified. If a
suitable ASL is not available, an A/A-A, A/P, or A/PF array must be claimed as an
Active/Passive (A/P) JBOD to prevent path delays and I/O failures. If a JBOD is
ALUA-compliant, it is added as an ALUA array.

See “How DMP works” on page 33.

Warning: This procedure ensures that Dynamic Multi-Pathing (DMP) is set up
correctly on an array that is not supported by Veritas Volume Manager (VxVM).
Otherwise, VXVM treats the independent paths to the disks as separate devices,
which can result in data corruption.

205

Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

To add an unsupported disk array to the DISKS category

1

Use the following command to identify the vendor ID and product ID of the
disks in the array:

/etc/vx/diag.d/vxscsiing device name

where device_name is the device name of one of the disks in the array. Note
the values of the vendor ID (vip) and product ID (p1D) in the output from this
command. For Fujitsu disks, also note the number of characters in the serial
number that is displayed.

The following example output shows that the vendor ID is sEaGaTE and the
product ID is ST318404LSUN18G.

Vendor id (VID) : SEAGATE

Product id (PID) : ST318404LSUN18G
Revision : 8507

Serial Number : 0025TOLA3H

Stop all applications, such as databases, from accessing VxVM volumes that
are configured on the array, and unmount all file systems and Storage
Checkpoints that are configured on the array.

If the array is of type A/A-A, A/P, or A/PF, configure it in autotrespass mode.

Enter the following command to add a new JBOD category:

vxddladm addjbod vid=vendorid [pid=productid] \
[serialnum=opcode/pagecode/offset/length] \
[cabinetnum=opcode/pagecode/offset/length] policy={aal|ap}]

where vendorid and productid are the VID and PID values that you found from
the previous step. For example, vendorid might be FUJITSU, IBM, OF SEAGATE.
For Fujitsu devices, you must also specify the number of characters in the
serial number as the 1ength argument (for example, 10). If the array is of type
A/A-A, A/P, or A/PF, you must also specify the policy=ap attribute.

Continuing the previous example, the command to define an array of disks of
this type as a JBOD would be:

vxddladm addjbod vid=SEAGATE pid=ST318404LSUN18G

Use the vxdctl enable command to bring the array under VxVM control.
vxdctl enable

See “Enabling discovery of new disk arrays” on page 196.

206

Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

To verify that the array is now supported, enter the following command:
vxddladm listjbod
The following is sample output from this command for the example array:

VID PID SerialNum CabinetNum Policy
(Cmd/PageCode/off/len) (Cmd/PageCode/off/len)

SEAGATE ALL PIDs 18/-1/36/12 18/-1/10/11 Disk
SUN SESSO1 18/-1/36/12 18/-1/12/11 Disk

207

Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

7 To verify that the array is recognized, use the vxdmpadm listenclosure
command as shown in the following sample output for the example array:

vxdmpadm listenclosure

ENCLR NAME ENCLR TYPE ENCLR SNO STATUS

ARRAY TYPE LUN COUNT FIRMWARE

Disk Disk DISKS

CONNECTED Disk

The enclosure name and type for the array are both shown as being set to

Disk. You can use the vxdisk 1ist command to display the disks in the array:

vxdisk list
DEVICE TYPE

punr710vm04 _disk 1 auto:
punr710vm04 _disk 2 auto:
punr710vm04 _disk 3 auto:
punr710vm04 disk 4 auto:
sda auto:
xiv0 9148 auto:

none

none

none

none

none

none

GROUP

STATUS

online
online
online
online
online

online

invalid
invalid
invalid
invalid
invalid

invalid thinrclm

8 To verify that the DMP paths are recognized, use the vxdmpadm getdmpnode
command as shown in the following sample output for the example array:

vxdmpadm getdmpnode enclosure=Disk

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME
punr710vm04 disk 1 ENABLED Disk 1 1 0 disk
punr710vm04 disk 2 ENABLED Disk 1 1 0 disk
punr710vm04 disk 3 ENABLED Disk 1 1 0 disk
punr710vm04 disk 4 ENABLED Disk 1 1 0 disk
sda ENABLED Disk 1 1 0 disk

The output in this example shows that there are two paths to the disks in the
array.

For more information, enter the command vxddladm help addjbod.

See the vxddladm(1M) manual page.

See the vxdmpadm(1M) manual page.

Removing disks from the DISKS category

Use the procedure in this section to remove disks from the DISKS category.

208

Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

To remove disks from the p1sks category

¢ Use the vxddladm command with the rmjbod keyword. The following example
illustrates the command for removing disks that have the vendor id of SEAGATE:

vxddladm rmjbod vid=SEAGATE

Foreign devices

The Device Discovery Layer (DDL) may not be able to discover some devices that
are not auto-discoverable, such as RAM disks. Such foreign devices can be made
available as simple disks to Veritas Volume Manager (VxVM) by using the vxddladm
addforeign command. This also has the effect of bypassing DMP for handling I/O.
The following example shows how to add entries for block and character devices
in the specified directories:

vxddladm addforeign blockdir=/dev/foo/dsk chardir=/dev/foo/rdsk

If a block or character device is not supported by a driver, it can be omitted from
the command as shown here:

vxddladm addforeign blockdir=/dev/foo/dsk

By default, this command suppresses any entries for matching devices in the
0OS-maintained device tree that are found by the autodiscovery mechanism. You
can override this behavior by using the -£ and -n options as described on the
vxddladm(1M) manual page.

After adding entries for the foreign devices, use either the vxdisk scandisks or
the vxdctl enable command to discover the devices as simple disks. These disks
then behave in the same way as autoconfigured disks.

Foreign device support has the following limitations:

= A foreign device is always considered as a disk with a single path. Unlike an
autodiscovered disk, it does not have a DMP node.

» Itis not supported for shared disk groups in a clustered environment. Only
standalone host systems are supported.

= Itis not supported for Persistent Group Reservation (PGR) operations.

= Itis not under the control of DMP, so enabling of a failed disk cannot be
automatic, and DMP administrative commands are not applicable.

= Enclosure information is not available to VxVM. This can reduce the availability
of any disk groups that are created using such devices.

209

Administering Dynamic Multi-Pathing
Making devices invisible to VxXVM

= The I/O fencing and Cluster File System features are not supported for foreign
devices.

Making devices invisible to VxVM

Use this procedure to exclude a device from the view of Veritas Volume Manager
(VxVM). The options to prevent a device from being multi-pathed by the Dynamic
Multi-Pathing (DMP) driver (vxdmp) are deprecated.

210

Administering Dynamic Multi-Pathing
Making devices visible to VxXVM

To make devices invisible to VxVM

1 Run the vxdiskadm command, and select Prevent multipathing/Suppress
devices from VxVM’s view from the main menu. You are prompted to confirm
whether you want to continue.

2 Select the operation you want to perform from the following options:

Option 1

Option 2

Option 3

Option 4

Option 5

Deprecated

Option 6

Deprecated

Option 7

Deprecated

Option 8

Suppresses all paths through the specified controller from the view of
VxVM.

Suppresses specified paths from the view of VxVM.

Suppresses disks from the view of VxVM that match a specified Vendor
ID and Product ID combination.

The root disk cannot be suppressed.

The operation fails if the VID:PID of an external disk is the same VID:PID
as the root disk and the root disk is encapsulated under VxVM.

Suppresses all paths to a disk.

Prevents multi-pathing for all disks on a specified controller by VxVM.

This operation is deprecated, since it can lead to unsupported
configurations.

Prevents multi-pathing of a disk by VxVM. The disks that correspond
to a specified path are claimed in the OTHER_DISKS category and are
not multi-pathed.

This operation is deprecated, since it can lead to unsupported
configurations.

Prevents multi-pathing for the disks that match a specified Vendor ID
and Product ID combination. The disks that correspond to a specified
Vendor ID and Product ID combination are claimed in the
OTHER_DISKS category and are not multi-pathed.

This operation is deprecated, since it can lead to unsupported
configurations.

Lists the devices that are currently suppressed.

Making devices visible to VxVM

Use this procedure to make a device visible to Veritas Volume Manager (VxVM)
again. The options to allow multi-pathing by the Dynamic Multi-Pathing (DMP) driver
(vxdmp) are deprecated.

211

Administering Dynamic Multi-Pathing

About enabling and disabling I/O for controllers and storage processors

To make devices visible to VxVM

1 Runthe vxdiskadm command, and select A1low multipathing/Unsuppress
devices from VxVM’s view from the main menu. You are prompted to confirm
whether you want to continue.

2 Select the operation you want to perform from the following options:

Option 1

Option 2

Option 3

Option 4

Option 5

Deprecated

Option 6
Deprecated
Option 7

Deprecated

Option 8

Unsuppresses all paths through the specified controller from the view
of VxVM.

Unsuppresses specified paths from the view of VxVM.

Unsuppresses disks from the view of VxVM that match a specified
Vendor ID and Product ID combination.

Unsuppresses all paths to a disk.

Allows multi-pathing of all disks that have paths through the specified
controller.

This operation is deprecated.
Allows multi-pathing of a disk by VxVM.

This operation is deprecated.

Allows multi-pathing of disks that match a specified Vendor ID and
Product ID combination.

This operation is deprecated.

Lists the devices that are currently suppressed.

About enabling and disabling I/O for controllers
and storage processors

DMP allows you to turn off I/O through a Host Bus Adapter (HBA) controller or the
array port of a storage processor so that you can perform administrative operations.
This feature can be used when you perform maintenance on HBA controllers on
the host, or array ports that are attached to disk arrays supported by SF. I/O
operations to the HBA controller or the array port can be turned back on after the
maintenance task is completed. You can accomplish these operations using the
vxdmpadm command.

For Active/Active type disk arrays, when you disable the 1/0 through an HBA
controller or array port, the 1/O continues on the remaining paths. For Active/Passive
type disk arrays, if disabling 1/0 through an HBA controller or array port resulted in

212

Administering Dynamic Multi-Pathing | 213
About displaying DMP database information

all primary paths being disabled, DMP will failover to secondary paths and 1/0 will
continue on them.

After the administrative operation is over, use the vxdmpadm command to re-enable
the paths through the HBA controllers or array ports.

See “Disabling I/O for paths, controllers, array ports, or DMP nodes” on page 245.
See “Enabling 1/O for paths, controllers, array ports, or DMP nodes” on page 247.

You can also perform certain reconfiguration operations dynamically online.

About displaying DMP database information

You can use the vxdmpadm command to list DMP database information and perform
other administrative tasks. This command allows you to list all controllers that are
connected to disks, and other related information that is stored in the DMP database.
You can use this information to locate system hardware, and to help you decide
which controllers need to be enabled or disabled.

The vxdmpadm command also provides useful information such as disk array serial
numbers, which DMP devices (disks) are connected to the disk array, and which
paths are connected to a particular controller, enclosure, or array port.

See “Administering DMP using the vxdmpadm utility” on page 216.

Displaying the paths to a disk

The vxdisk command is used to display the multi-pathing information for a particular
metadevice. The metadevice is a device representation of a physical disk having
multiple physical paths through the system’s HBA controllers. In Dynamic
Multi-Pathing (DMP,) all the physical disks in the system are represented as
metadevices with one or more physical paths.

To display the multi-pathing information on a system

*

Use the vxdisk path command to display the relationships between the device
paths, disk access names, disk media names, and disk groups on a system

as shown here:

vxdisk path

SUBPATH DANAME DMNAME
sda sda mydg01
sdi sdi mydg01
sdb sdb mydg02
sdj sdj mydg02

This shows that two paths exist to each of the two disks, mydg01 and mydg02,

Administering Dynamic Multi-Pathing
Displaying the paths to a disk

GROUP
mydg
mydg
mydg
mydg

STATE

ENABLED
ENABLED
ENABLED
ENABLED

and also indicates that each disk is in the ENABLED state.

214

Administering Dynamic Multi-Pathing | 215
Displaying the paths to a disk

To view multi-pathing information for a particular metadevice

1

Use the following command:

vxdisk list devicename

For example, to view multi-pathing information for the device sd1, use the
following command:

vxdisk list sdl

The output from the vxdisk 1ist command displays the multi-pathing
information, as shown in the following example:

Device: sdl
devicetag: sdl
type: sliced
hostid: sysl

Multipathing information:

numpaths: 2
sdl state=enabled type=primary
sdp state=disabled type=secondary

The numpaths line shows that there are 2 paths to the device. The next two
lines in the "Multipathing information" section of the output show that one path
is active (state=enabled) and that the other path has failed (state=disabled).

The type field is shown for disks on Active/Passive type disk arrays such as
the EMC CLARIiON, Hitachi HDS 9200 and 9500, Sun StorEdge 6xxx, and
Sun StorEdge T3 array. This field indicates the primary and secondary paths
to the disk.

The type field is not displayed for disks on Active/Active type disk arrays such
as the EMC Symmetrix, Hitachi HDS 99xx and Sun StorEdge 99xx Series, and
IBM ESS Series. Such arrays have no concept of primary and secondary paths.

Administering Dynamic Multi-Pathing

216

Administering DMP using the vxdmpadm utility

2 Alternately, you can use the following command to view multi-pathing

information:

vxdmpadm getsubpaths dmpnodename=devicename

For example, to view multi-pathing information for emc_clariion0 893, use

the following command:

vxdmpadm getsubpaths dmpnodename=emc_clariion0_893

Typical output from the vxdmpadm getsubpaths command is as follows:

NAME STATE [A] PATH-TYPE [M] CTLR-NAME ENCLR-TYPE ENCLR-NAME ATTRS
sdbc ENABLED (A) PRIMARY c3 EMC CLARiiON emc_clariion0 -
sdbm ENABLED SECONDARY c3 EMC CLARiiON emc_clariion0 -
sdbw ENABLED (A) PRIMARY c3 EMC CLARiiON emc_clariion0 -
sdck ENABLED (A) PRIMARY c2 EMC CLARiiON emc clariion0 -
sdcu ENABLED SECONDARY c2 EMC CLARiiON emc clariion0 -
sdde ENABLED (A) PRIMARY c2 EMC CLARiiON emc clariion0 -

Administering DMP using the vxdmpadm utility

The vxdmpadn utility is a command-line administrative interface to Dynamic

Multi-Pathing (DMP).

You can use the vxdmpadm utility to perform the following tasks:

» Retrieve the name of the DMP device corresponding to a particular path.
See “Retrieving information about a DMP node” on page 218.

= Display consolidated information about the DMP nodes.
See “Displaying consolidated information about the DMP nodes” on page 219.

= Display the members of a LUN group.

See “Displaying the members of a LUN group” on page 220.

» List all paths under a DMP device node, HBA controller, enclosure, or array

port.

See “Displaying paths controlled by a DMP node, controller, enclosure, or array

port” on page 220.

= Display information about the HBA controllers on the host.
See “Displaying information about controllers” on page 223.

= Display information about enclosures.

See “Displaying information about enclosures” on page 224.

Administering Dynamic Multi-Pathing | 217
Administering DMP using the vxdmpadm utility

Display information about array ports that are connected to the storage
processors of enclosures.
See “Displaying information about array ports” on page 225.

Display asymmetric access state for ALUA arrays.

Display information about devices that are controlled by third-party multi-pathing
drivers.

See “Displaying information about devices controlled by third-party drivers”

on page 225.

Display extended devices attributes.
See “Displaying extended device attributes” on page 226.

Suppress or include devices from VxVM control.
See “Suppressing or including devices from VxVM control” on page 229.

Gather /O statistics for a DMP node, enclosure, path, or controller.
See “Gathering and displaying 1/O statistics” on page 229.

Configure the attributes of the paths to an enclosure.
See “Setting the attributes of the paths to an enclosure” on page 236.

Display the redundancy level of a device or enclosure.
See “Displaying the redundancy level of a device or enclosure” on page 237.

Specify the minimum number of active paths.
See “Specifying the minimum number of active paths” on page 238.

Display or set the I/O policy that is used for the paths to an enclosure.
See “Specifying the 1/O policy” on page 239.

Enable or disable I/O for a path, HBA controller or array port on the system.
See “Disabling I/O for paths, controllers, array ports, or DMP nodes” on page 245.

Rename an enclosure.
See “Renaming an enclosure” on page 248.

Configure how DMP responds to I/O request failures.
See “Configuring the response to I/O failures” on page 248.

Configure the 1/0O throttling mechanism.
See “Configuring the 1/O throttling mechanism” on page 250.

Control the operation of the DMP path restoration thread.
See “Configuring DMP path restoration policies” on page 253.

Configure array policy modules.
See “Configuring Array Policy Modules” on page 255.

Get or set the values of various tunables used by DMP.

Administering Dynamic Multi-Pathing | 218
Administering DMP using the vxdmpadm utility

See “DMP tunable parameters” on page 773.

See the vxdmpadm(1M) manual page.

Retrieving information about a DMP node

The following command displays the Dynamic Multi-Pathing (DMP) node that
controls a particular physical path:

vxdmpadm getdmpnode nodename=pathname

The physical path is specified by argument to the nodename attribute, which must
be a valid path listed in the device directory.

The device directory is the /dev directory.

The command displays output similar to the following example output.
vxdmpadm getdmpnode nodename=sdbc

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME

emc_clariion0 89 ENABLED EMC CLARiiON 6 6 0 emc_clariion0
Use the -v option to display the LUN serial number and the array volume ID.
vxdmpadm -v getdmpnode nodename=sdbc

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME SERIAL-NO ARRAY VOL ID

emc_clariion0O_89 ENABLED EMC_CLARiiON 6 6 0 emc_clariion0 600601601 893

Use the enclosure attribute with getdmpnode to obtain a list of all DMP nodes for
the specified enclosure.

vxdmpadm getdmpnode enclosure=enc0O

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME
sdm ENABLED ACME 2 2 0 encO
sdn ENABLED ACME 2 2 0 encO
sdo ENABLED ACME 2 2 0 encO
sdp ENABLED ACME 2 2 0 encO

Use the dmpnodename attribute with getdmpnode to display the DMP information for
a given DMP node.

vxdmpadm getdmpnode dmpnodename=emc_clariion0O_158

Administering Dynamic Multi-Pathing
Administering DMP using the vxdmpadm utility

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME

emc_clariion0_ 158 ENABLED EMC CLARiiON 1 1 0 emc_clariion0

Displaying consolidated information about the DMP nodes

dmpdev
state
enclosure
cab-sno

asl

The vxdmpadm list dmpnode command displays the detail information of a Dynamic
Multi-Pathing (DMP) node. The information includes the enclosure name, LUN
serial number, port id information, device attributes, and so on.

The following command displays the consolidated information for all of the DMP
nodes in the system:

vxdmpadm list dmpnode all

Use the enclosure attribute with 1ist dmpnode to obtain a list of all DMP nodes
for the specified enclosure.

vxdmpadm list dmpnode enclosure=enclosurename

For example, the following command displays the consolidated information for all
of the DMP nodes in the enc0 enclosure.

vxdmpadm list dmpnode enclosure=encO

Use the dmpnodename attribute with 1ist dmpnode to display the DMP information
for a given DMP node. The DMP node can be specified by name or by specifying
a path name. The detailed information for the specified DMP node includes path
information for each subpath of the listed DMP node.

The path state differentiates between a path that is disabled due to a failure and a
path that has been manually disabled for administrative purposes. A path that has
been manually disabled using the vxdmpadm disable command is listed as
disabled (m).

vxdmpadm list dmpnode dmpnodename=dmpnodename

For example, the following command displays the consolidated information for the
DMP node emc_clariion0_158.

vxdmpadm list dmpnode dmpnodename=emc_clariion0O_158

emc_clariion0O 158
enabled
emc_clariion0
CK200070400359
1ibvxCLAR110N. so

219

vid

pid
array-name
array-type
iopolicy
avid
lun-sno
udid
dev-attr
###path
path

path

path

path

path

path

DGC
DISK

Administering Dynamic Multi-Pathing | 220
Administering DMP using the vxdmpadm utility

EMC_CLARiiON
CLR-A/PF

MinimumQ

158

600601601A141B001D4A32F92B49DELL
DGC%5FDISK%5FCK200070400359%5F600601601A141B001D4A32F92B49DELL

lun

name
sdck
sdde
sdcu
sdbm
sdbw
sdbc

state type transport ctlr hwpath aportID aportWWN attr
enabled(a) primary FC c2 c2 A5 50:06:01:61:41:e0:3b:33
enabled(a) primary FC c2 c2 A4 50:06:01:60:41:e0:3b:33 -
enabled secondary FC c2 c2 B4 50:06:01:68:41:e0:3b:33 -
enabled secondary FC c3 c3 B4 50:06:01:68:41:e0:3b:33 -
enabled(a) primary FC c3 ¢3 A4 50:06:01:60:41:e0:3b:33 -
enabled(a) primary FC ¢3 ¢3 A5 50:06:01:61:41:e0:3b:33

Displaying the members of a LUN group

The following command displays the Dynamic Multi-Pathing (DMP) nodes that are
in the same LUN group as a specified DMP node:

vxdmpadm getlungroup dmpnodename=dmpnode
For example:

vxdmpadm getlungroup dmpnodename=sdq

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME
sdo ENABLED ACME 2 2 0 encl
sdp ENABLED ACME 2 2 0 encl
sdg ENABLED ACME 2 2 0 encl
sdr ENABLED ACME 2 2 0 encl

Displaying paths controlled by a DMP node, controller, enclosure,
or array port

The vxdmpadm getsubpaths command lists all of the paths known to Dynamic
Multi-Pathing (DMP). The vxdmpadm getsubpaths command also provides options
to list the subpaths through a particular DMP node, controller, enclosure, or array
port. To list the paths through an array port, specify either a combination of enclosure
name and array port id, or array port worldwide name (WWN).

Administering Dynamic Multi-Pathing | 221
Administering DMP using the vxdmpadm utility

To list all subpaths known to DMP:

vxdmpadm getsubpaths

NAME STATE [A] PATH-TYPE [M] DMPNODENAME ENCLR-NAME CTLR ATTRS

sdaf ENABLED (A) PRIMARY ams_wmsO_ 130 ams_wms0 c2 -

sdc ENABLED SECONDARY ams_wmsO_ 130 ams_wms0 c3 -

sdb ENABLED (A) - punr710vm04_disk 24 disk c0 -
sda ENABLED (A) - punr710vm04_disk 25 disk c0 -
sdav ENABLED (A) PRIMARY emc_clariion0 1017 emc _clariion0O c3 -

sdbf ENABLED SECONDARY emc_clariion0 1017 emc _clariion0O c3 -

The vxdmpadm getsubpaths command combined with the dmpnodename attribute
displays all the paths to a LUN that are controlled by the specified DMP node name
from the /dev/vx/dmp directory:

vxdmpadm getsubpaths dmpnodename=sdu

NAME STATE [A] PATH-TYPE[M] CTLR-NAME ENCLR-TYPE ENCLR-NAME ATTRS
sdu ENABLED (A) PRIMARY c2 ACME encO -
sdt ENABLED PRIMARY cl ACME encO -

For AJA arrays, all enabled paths that are available for I/O are shown as ENABLED (2) .

For A/P arrays in which the 1/O policy is set to singleactive, only one path is
shown as ENABLED (2) . The other paths are enabled but not available for I/O. If the
I/O policy is not set to singleactive, DMP can use a group of paths (all primary
or all secondary) for I/O, which are shown as ENABLED (2) .

See “Specifying the I/O policy” on page 239.
Paths that are in the DISABLED state are not available for I/O operations.

A path that was manually disabled by the system administrator displays as
DISABLED(M). A path that failed displays as DISABLED.

You can use getsubpaths to obtain information about all the paths that are
connected to a particular HBA controller:

vxdmpadm getsubpaths ctlr=c2

NAME STATE[-] PATH-TYPE[-] DMPNODENAME ENCLR-TYPE ENCLR-NAME ATTRS

sdk ENABLED (A) PRIMARY sdk ACME encO -
sdl ENABLED (A) PRIMARY sdl ACME encO -

Administering Dynamic Multi-Pathing | 222
Administering DMP using the vxdmpadm utility

sdm DISABLED SECONDARY sdm ACME encO -
sdn ENABLED SECONDARY sdn ACME encO -

You can also use getsubpaths to obtain information about all the paths that are
connected to a port on an array. The array port can be specified by the name of
the enclosure and the array port ID, or by the WWN identifier of the array port:

vxdmpadm getsubpaths enclosure=enclosure portid=portid
vxdmpadm getsubpaths pwwn=pwwn

For example, to list subpaths through an array port through the enclosure and the
array port ID:

vxdmpadm getsubpaths enclosure=emc_clariion0 portid=A5

NAME STATE [A] PATH-TYPE [M] DMPNODENAME ENCLR-NAME CTLR ATTRS

sdav ENABLED (A) PRIMARY emc_clariion0_1017 emc_clariion0 c3 -
sdcd ENABLED (A) PRIMARY emc_clariion0_1017 emc_clariion0 c2 -
sdau ENABLED (A) PRIMARY emc_clariion0_1018 emc_clariion0 c3 -
sdcc ENABLED (A) PRIMARY emc_clariion0_1018 emc_clariion0 c2 -

For example, to list subpaths through an array port through the WWN:

vxdmpadm getsubpaths pwwn=50:06:01:61:41:e0:3b:33

NAME STATE [A] PATH-TYPE [M] CTLR-NAME ENCLR-TYPE ENCLR-NAME ATTRS

sdav ENABLED (A) PRIMARY c3 EMC_CLARiiON emc_clariionO -
sdcd ENABLED (A) PRIMARY c2 EMC_CLARiiON emc_clariionO -
sdau ENABLED (A) PRIMARY c3 EMC_CLARiiON emc_clariionO -
sdcc ENABLED (A) PRIMARY c2 EMC_CLARiiON emc_clariionO -

vxdmpadm getsubpaths pwwn=20:00:00:E0:8B:06:5F:19

You can use getsubpaths to obtain information about all the subpaths of an
enclosure.

vxdmpadm getsubpaths enclosure=enclosure name [ctlr=ctlrname]
To list all subpaths of an enclosure:

vxdmpadm getsubpaths enclosure=emc_clariion0
NAME STATE [A] PATH-TYPE[M] DMPNODENAME ENCLR-NAME CTLR ATTRS

sdav ENABLED (A) PRIMARY emc_clariion0_ 1017 emc_clariion0O c3 -
sdbf ENABLED SECONDARY emc_clariion0_ 1017 emc_clariion0O c3 -

sdau
sdbe

Administering Dynamic Multi-Pathing
Administering DMP using the vxdmpadm utility

ENABLED (A) PRIMARY emc_clariion0 1018 emc clariion0O c3 -
ENABLED SECONDARY emc_clariion0 1018 emc clariion0O c3 -

To list all subpaths of a controller on an enclosure:
vxdmpadm getsubpaths enclosure=Disk ctlr=cl

By default, the output of the vxdmpadm getsubpaths command is sorted by
enclosure name, DMP node name, and within that, path name.

To sort the output based on the pathname, the DMP node name, the enclosure
name, or the host controller name, use the -s option.

To sort subpaths information, use the following command:

vxdmpadm -s {path | dmpnode | enclosure | ctlr} getsubpaths \
[all | ctlr=ctlr name | dmpnodename=dmp device name | \
enclosure=enclr name [ctlr=ctlr name | portid=array port ID] | \

pwwn=port WWN | tpdnodename=tpd node name]

See “Setting customized names for DMP nodes” on page 286.

Displaying information about controllers

The following Dynamic Multi-Pathing (DMP) command lists attributes of all HBA
controllers on the system:

vxdmpadm listctlr all

CTLR-NAME ENCLR-TYPE STATE ENCLR-NAME PATH COUNT
cl OTHER ENABLED other0 3
c2 X1 ENABLED jbodO 10
c3 ACME ENABLED encO 24
c4 ACME ENABLED encO 24

This output shows that the controller c1 is connected to disks that are not in any
recognized DMP category as the enclosure type is OTHER.

The other controllers are connected to disks that are in recognized DMP categories.

All the controllers are in the ENABLED state, which indicates that they are available
for 1/O operations.

The state DISABLED is used to indicate that controllers are unavailable for 1/0O
operations. The unavailability can be due to a hardware failure or due to 1/0
operations being disabled on that controller by using the vxdmpadm disable
command.

223

Administering Dynamic Multi-Pathing | 224
Administering DMP using the vxdmpadm utility

The following forms of the command lists controllers belonging to a specified
enclosure or enclosure type:

vxdmpadm listctlr enclosure=enc0
or

vxdmpadm listctlr type=ACME

CTLR-NAME ENCLR-TYPE STATE ENCLR-NAME PATH_COUNT
c2 ACME ENABLED encO 10
c3 ACME ENABLED encO 24

The vxdmpadm getctlr command displays HBA vendor details and the Controller
ID. For iSCSI devices, the Controller ID is the IQN or IEEE-format based name.
For FC devices, the Controller ID is the WWN. Because the WWN is obtained from
ESD, this field is blank if ESD is not running. ESD is a daemon process used to
notify DDL about occurrence of events. The WWN shown as ‘Controller ID’ maps
to the WWN of the HBA port associated with the host controller.

vxdmpadm getctlr c5

LNAME PNAME VENDOR CTLR-ID

cb cb glogic 20:07:00:a0:b8:17:e1:37

Displaying information about enclosures

Dynamic Multi-Pathing (DMP) can display the attributes of the enclosures, including
the enclosure type, enclosure serial number, status, array type, number of LUNSs,
and the firmware version, if available.

To display the attributes of a specified enclosure, use the following DMP command:

vxdmpadm listenclosure emcO
ENCLR NAME ENCLR TYPE ENCLR SNO STATUS ARRAY TYPE LUN COUNT FIRMWARE

emcO EMC

ENCLR_NAME

000292601383 CONNECTED A/A 30 5875

To display the attrtibutes for all enclosures in a system, use the following DMP
command:

vxdmpadm listenclosure all

ENCLR_TYPE ENCLR_SNO STATUS ARRAY TYPE LUN_COUNT FIRMWARE

Administering Dynamic Multi-Pathing | 225
Administering DMP using the vxdmpadm utility

Disk Disk DISKS CONNECTED Disk 6 -

emcO EMC 000292601383 CONNECTED A/A 1 5875
hitachi usp-vm0 Hitachi USP-VM 25847 CONNECTED A/A 1 6008
emc_clariion0 EMC_CLARiiON CK20007040035 CONNECTED CLR-A/PF 2 0324

Displaying information about array ports

Use the Dynamic Multi-Pathing (DMP) commands in this section to display
information about array ports. The information displayed for an array port includes
the name of its enclosure, its ID, and its worldwide name (WWN) identifier.

To display the attributes of an array port that is accessible through a path, DMP
node or HBA controller, use one of the following commands:

vxdmpadm getportids path=path name
vxdmpadm getportids dmpnodename=dmpnode name
vxdmpadm getportids ctlr=ctlr name

The following form of the command displays information about all of the array ports
within the specified enclosure:

vxdmpadm getportids enclosure=enclr name

The following example shows information about the array port that is accessible
through DMP node sdg:

vxdmpadm getportids dmpnodename=sdg

NAME ENCLR-NAME ARRAY-PORT-ID pWWN

sdg HDS9500V0 1A 20:00:00:E0:8B:06:5F:19

Displaying information about devices controlled by third-party drivers

The third-party driver (TPD) coexistence feature allows 1/O that is controlled by
third-party multi-pathing drivers to bypass Dynamic Multi-Pathing (DMP) while
retaining the monitoring capabilities of DMP. The following commands allow you
to display the paths that DMP has discovered for a given TPD device, and the TPD
device that corresponds to a given TPD-controlled node discovered by DMP:

vxdmpadm getsubpaths tpdnodename=TPD node name
vxdmpadm gettpdnode nodename=TPD path name

See “Changing device naming for enclosures controlled by third-party drivers”
on page 288.

For example, consider the following disks in an EMC Symmetrix array controlled

Administering Dynamic Multi-Pathing
Administering DMP using the vxdmpadm utility

by PowerPath, which are known to DMP:

wvxdisk list

DEVICE

emcpowerp
emcpowerq
emcpowerr
emcpowers

emcpowert

TYPE

auto:
auto:
auto:
auto:

auto:

DISK
cdsdisk -
cdsdisk -
cdsdisk -
cdsdisk -
cdsdisk -

GROUP

STATUS
online
online
online
online

online

The following command displays the paths that DMP has discovered, and which
correspond to the PowerPath-controlled node, emcpowerp:

vxdmpadm getsubpaths tpdnodename=emcpowerp

NAME TPDNODENAME PATH-TYPE[-] DMPNODENAME ENCLR-TYPE ENCLR-NAME

sdt emcpowerp - emcpowerp PP_EMC_CLARiiON pp emc_clariionO
sdo emcpowerp - emcpowerp PP_EMC_CLARiiON pp emc_clariionO
sdj emcpowerp - emcpowerp PP_EMC_CLARiiON pp emc_clariionO
sde emcpowerp - emcpowerp PP_EMC_CLARiiON pp emc_clariionO

Conversely, the next command displays information about the PowerPath node
that corresponds to the path, sdt, discovered by DMP:

vxdmpadm gettpdnode nodename=sdt

NAME

STATE

PATHS

ENCLR-TYPE

ENCLR-NAME

emcpowerp

ENABLED

PP_EMC_CLARiiON pp emc_clariionO

Displaying extended device attributes

Device Discovery Layer (DDL) extended attributes are attributes or flags
corresponding to a Veritas Volume Manager (VxVM) or Dynamic Multi-Pathing

(DMP) LUN or disk and that are discovered by DDL. These attributes identify a LUN

to a specific hardware category.

Table 9-5 describes the list of categories.

226

Administering Dynamic Multi-Pathing
Administering DMP using the vxdmpadm utility

Table 9-5 Categories for extended attributes

Category

Description

Hardware RAID types

Displays what kind of Storage RAID Group the
LUN belongs to

Thin Provisioning Discovery and Displays the LUN'’s thin reclamation abilities

Reclamation

Device Media Type

Displays the type of media —whether SSD (Solid
State Drive)

Storage-based Snapshot/Clone Displays whether the LUN is a SNAPSHOT or a

CLONE of a PRIMARY LUN

Storage-based replication Displays if the LUN is part of a replicated group

across a remote site

Transport

Displays what kind of HBA is used to connect to
this LUN (FC, SATA, iSCSI)

Each LUN can have

extended attributes during device discovery from the Array Support Library (ASL).

one or more of these extended attributes. DDL discovers the

If Veritas Operations Manager (VOM) is present, DDL can also obtain extended
attributes from the VOM Management Server for hosts that are configured as

managed hosts.

The vxdisk -p list command displays DDL extended attributes. For example,
the following command shows attributes of std, fc, and rRa1D_5 for this LUN:

vxdisk -p list
DISK
DISKID
VID

UDID
REVISION
PID

PHYS CTLR NAME :
LUN_SNO_ORDER
LUN_SERTAL_NO
LIBNAME :
HARDWARE MIRROR:
DMP_DEVICE
DDL_THIN DISK
DDL_DEVICE_ATTR:
CAB_SERTAL_NO

: tagmastore-usp0_0Oel8

1253585985.692.rx2600h11

: HITACHI
: HITACHISSFOPEN-V%5F02742%5F0E18

5001

: OPEN-V

0/4/1/1.0x50060e8005274246
411

0E18

libvxhdsusp.sl

no

: tagmastore-usp0_0Oel8
¢ thick

std fc RAID 5
02742

227

vxdisk -e list

DEVICE

Administering Dynamic Multi-Pathing | 228
Administering DMP using the vxdmpadm utility

ATYPE : A/A

ARRAY VOLUME_ID: 0E18

ARRAY PORT PWWN: 50:06:0e:80:05:27:42:46
ANAME : TagmaStore-USP
TRANSPORT : FC

The vxdisk -x attribute -p list command displays the one-line listing for the
property list and the attributes. The following example shows two Hitachi LUNs that
support Thin Reclamation through the attribute hdprcim:

vxdisk -x DDL_DEVICE_ATTR -p list

DEVICE DDL_DEVICE ATTR
tagmastore-usp0_Oa7a std fc RAID 5
tagmastore-usp0_065a hdprclm fc

tagmastore-usp0_065b hdprclm fc

User can specify multiple -x options in the same command to display multiple entries.
For example:

vxdisk -x DDL_DEVICE_ATTR -x VID -p list

DEVICE DDL DEVICE ATTR VID

tagmastore-usp0 Oa7a std fc RAID 5 HITACHI
tagmastore-usp0 O0a7b std fc RAID 5 HITACHI
tagmastore-usp0 0a78 std fc RAID 5 HITACHI
tagmastore-usp0 0a79 std fc RAID 5 HITACHI
tagmastore-usp0 065a hdprclm fc HITACHI
tagmastore-usp0 065b hdprclm fc HITACHI
tagmastore-usp0 065c hdprclm fc HITACHI
tagmastore-usp0 065d hdprclm fc HITACHI

Use the vxdisk -e list command to show the DLL_DEVICE_ATTR property in
the last column named ATTR.

TYPE DISK GROUP STATUS OS NATIVE NAME ATTR

tagmastore-usp0_ Oa7a
tagmastore-usp0_0Oa7b
tagmastore-usp0 _0a78
tagmastore-usp0 0655
tagmastore-usp0 0656
tagmastore-usp0 0657

auto - - online c¢c10t0d2 std fc RAID 5
auto - - online ¢10t0d3 std fc RAID 5
auto - - online ¢10t0d0 std fc RAID 5
auto - - online ¢13t2d7 hdprclm fc
auto - - online ¢13t3d0 hdprclm fc
auto - - online ¢13t3dl hdprclm fc

For a list of ASLs that supports Extended Attributes, and descriptions of these
attributes, refer to the hardware compatibility list (HCL) at the following URL:

Administering Dynamic Multi-Pathing | 229
Administering DMP using the vxdmpadm utility

https://www.veritas.com/support/en_US/article.000107677

Suppressing or including devices from VxVM control

The vxdmpadm exclude command suppresses devices from Veritas Volume
Manager (VxVM) based on the criteria that you specify. When a device is
suppressed, Dynamic Multi-Pathing (DMP) does not claim the device so that the
device is not available for VxVM to use. You can add the devices back into VxVM
control with the vxdmpadm include command. The devices can be included or
excluded based on VID:PID combination, paths, controllers, or disks. You can use
the bang symbol (!) to exclude or include any paths or controllers except the one
specified.

The root disk cannot be suppressed. The operation fails if the VID:PID of an external
disk is the same VID:PID as the root disk and the root disk is encapsulated under
VXVM.

Note: The ! character is a special character in some shells. The following syntax
shows how to escape it in a bash shell.

vxdmpadm exclude { all | product=VID:PID |
ctlr=[\!]ctlrname | dmpnodename=diskname [path=[\!]pathname] }

vxdmpadm include { all | product=VID:PID |
ctlr=[\!]ctlrname | dmpnodename=diskname [path=[\!]pathname] }

where:

all all devices

product=VID:PID all devices with the specified VID:PID
ctir=ctirname all devices through the given controller
dmpnodename=diskname all paths under the DMP node

dmpnodename=diskname path=\|pathname all paths under the DMP node except the one
specified

Gathering and displaying /O statistics

You can use the vxdmpadm iostat command to gather and display I/O statistics
for a specified DMP node, enclosure, path, port, or controller.

https://www.veritas.com/support/en_US/article.000107677

Administering Dynamic Multi-Pathing | 230
Administering DMP using the vxdmpadm utility

The statistics displayed are the CPU usage and amount of memory per CPU used
to accumulate statistics, the number of read and write operations, the number of
kilobytes read and written, and the average time in milliseconds per kilobyte that
is read or written.

To enable the gathering of statistics, enter this command:
vxdmpadm jiostat start [memory=size]

The memory attribute limits the maximum amount of memory that is used to record
I/O statistics for each CPU. The default limit is 32k (32 kilobytes) per CPU.

To reset the 1/O counters to zero, use this command:

vxdmpadm iostat reset

To display the accumulated statistics at regular intervals, use the following command:
vxdmpadm iostat show {filter} [interval=seconds [count=N]]

The above command displays /O statistics for the devices specified by the filter.
The filter is one of the following:

m all

m ctlr=ctlr-name

m dmpnodename=dmp-node

m enclosure=enclr-name [portid=array-portid] [ctlr=ctlr-name]
m pathname=path-name

m pwwn=array-port-wwn [ctlr=ctlr-name]

Use the interval and count attributes to specify the interval in seconds between
displaying the I/O statistics, and the number of lines to be displayed. The actual
interval may be smaller than the value specified if insufficient memory is available
to record the statistics.

DMP also provides a groupby option to display cumulative I/O statistics, aggregated
by the specified criteria.

See “Displaying cumulative I/O statistics” on page 231.

To disable the gathering of statistics, enter this command:

vxdmpadm iostat stop

Administering Dynamic Multi-Pathing | 231
Administering DMP using the vxdmpadm utility

Displaying cumulative /O statistics

The vxdmpadm iostat command provides the ability to analyze the I/O load
distribution across various 1/0 channels or parts of I/O channels. Select the
appropriate filter to display the 1/O statistics for the DMP node, controller, array
enclosure, path, port, or virtual machine. Then, use the groupby clause to display
cumulative statistics according to the criteria that you want to analyze. If the groupby
clause is not specified, then the statistics are displayed per path.

When you combine the filter and the groupby clause, you can analyze the 1/O load
for the required use case scenario. For example:

= To compare I/O load across HBAs, enclosures, or array ports, use the groupby
clause with the specified attribute.

= To analyze I/O load across a given I/O channel (HBA to array port link), use
filter by HBA and PWWN or enclosure and array port.

= To analyze I/O load distribution across links to an HBA, use filter by HBA and
groupby array port.

Use the following format of the iostat command to analyze the I/O loads:

vxdmpadm [-u unit] iostat show [groupby=criteria] {filter} \

[interval=seconds [count=N]]

The above command displays I/O statistics for the devices specified by the filter.
The filter is one of the following:

m all

m ctlr=ctlr-name

m dmpnodename=dmp-node

m enclosure=enclr-name [portid=array-portid] [ctlr=ctlr-name]
m pathname=path-name

m pwwn=array-port-wwn[ctlr=ctlr-name]

You can aggregate the statistics by the following groupby criteria:
m arrayport

m ctlr

m dmpnode

m enclosure

By default, the read/write times are displayed in milliseconds up to 2 decimal places.
The throughput data is displayed in terms of BLOCKS, and the output is scaled,

Administering Dynamic Multi-Pathing | 232
Administering DMP using the vxdmpadm utility

meaning that the small values are displayed in small units and the larger values
are displayed in bigger units, keeping significant digits constant. You can specify
the units in which the statistics data is displayed. The -u option accepts the following
options:

h or H Displays throughput in the highest possible unit.

k Displays throughput in kilobytes.

m Displays throughput in megabytes.

g Displays throughput in gigabytes.

bytes| b Displays throughput in exact number of bytes.

us Displays average read/write time in microseconds.

To group by DMP node:

vxdmpadm [-u unit] iostat show groupby=dmpnode \

[all | dmpnodename=dmpnodename | enclosure=enclr-name]

To group by controller:

vxdmpadm [-u unit] iostat show groupby=ctlr [all | ctlr=ctlr]
For example:

vxdmpadm iostat show groupby=ctlr ctlr=c5

OPERATIONS BLOCKS AVG TIME (ms)
CTLRNAME READS WRITES READS WRITES READS WRITES
cb 224 14 54 7 4.20 11.10

To group by arrayport:

vxdmpadm [-u unit] iostat show groupby=arrayport [all \

| pwwn=array pwwn | enclosure=enclr portid=array-port-id]
For example:

vxdmpadm -u m iostat show groupby=arrayport \
enclosure=HDS9500-ALUAO portid=1A

OPERATIONS BYTES AVG TIME (ms)
PORTNAME READS WRITES READS WRITES READS WRITES
1A 743 1538 1lm 24m 17.13 8.61

To group by enclosure:

Administering Dynamic Multi-Pathing | 233
Administering DMP using the vxdmpadm utility

vxdmpadm [-u unit] iostat show groupby=enclosure [all \

| enclosure=enclr]
For example:

vxdmpadm -u h iostat show groupby=enclosure enclosure=EMC_CLARiiONO

OPERATIONS BLOCKS AVG TIME (ms)
ENCLOSURENAME READS WRITES READS WRITES READS WRITES
EMC_CLARiiONO 743 1538 11392k 24176k 17.13 8.61

You can also filter out entities for which all data entries are zero. This option is
especially useful in a cluster environment that contains many failover devices. You
can display only the statistics for the active paths.

To filter all zero entries from the output of the iostat show command:

vxdmpadm [-u unit] -z iostat show [all|ctlr=ctlr name |
dmpnodename=dmp device name | enclosure=enclr name [portid=portid] |

pathname=path name|pwwn=port WWN] [interval=seconds [count=N]]
For example:
vxdmpadm -z iostat show dmpnodename=emc_clariion(O_893

cpu usage = 9852us per cpu memory = 266240b

OPERATIONS BLOCKS AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
sdbc 32 0 258 0 0.04 0.00
sdbw 27 0 216 0 0.03 0.00
sdck 8 0 57 0 0.04 0.00
sdde 11 0 81 0 0.15 0.00

To display average read/write times in microseconds.
vxdmpadm -u us iostat show pathname=sdck

cpu usage = 9865us per cpu memory = 266240b

OPERATIONS BLOCKS AVG TIME (us)
PATHNAME READS WRITES READS WRITES READS WRITES
sdck 8 0 57 0 43.04 0.00

Displaying statistics for queued or erroneous 1/Os

Use the vxdmpadm iostat show command with the -q option to display the 1/0s
queued in Dynamic Multi-Pathing (DMP) for a specified DMP node, or for a specified
path or controller. For a DMP node, the -q option displays the I/Os on the specified

Administering Dynamic Multi-Pathing | 234
Administering DMP using the vxdmpadm utility

DMP node that were sent to underlying layers. If a path or controller is specified,
the -q option displays I/Os that were sent to the given path or controller and not
yet returned to DMP.

See the vxdmpadm(1m) manual page for more information about the vxdmpadm
iostat command.

To display queued I/O counts on a DMP node:

vxdmpadm -q iostat show [filter] [interval=n [count=m]]
For example:

vxdmpadm -q iostat show dmpnodename=emc_clariion0_352

cpu usage = 338us per cpu memory = 102400b
QUEUED I/0s PENDING I/Os
DMPNODENAME READS WRITES

emc_clariion0_352 0 0 0

To display the count of I/Os that returned with errors on a DMP node, path, or
controller:

vxdmpadm -e iostat show [filter] [interval=n [count=m]]
For example, to show the 1/0 counts that returned errors on a path:
vxdmpadm -e iostat show pathname=sdo

cpu usage = 637us per cpu memory = 102400b

ERROR I/Os
PATHNAME READS WRITES
sdo 0 0

Examples of using the vxdmpadm iostat command

Dynamic Multi-Pathing (DMP) enables you to gather and display 1/O statistics with
the vxdmpadm iostat command. This section provides an example session using
the vxdmpadm iostat command.

The first command enables the gathering of I/O statistics:

vxdmpadm jiostat start

The next command displays the current statistics including the accumulated total
numbers of read and write operations, and the kilobytes read and written, on all
paths.

Administering Dynamic Multi-Pathing | 235
Administering DMP using the vxdmpadm utility

vxdmpadm -u k iostat show all

cpu usage = 7952us per cpu memory = 8192b
OPERATIONS BYTES AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
sdf 87 0 44544k 0 0.00 0.00
sdk 0 0 0 0 0.00 0.00
sdg 87 0 44544k 0 0.00 0.00
sdl 0 0 0 0 0.00 0.00
sdh 87 0 44544k 0 0.00 0.00
sdm 0 0 0 0 0.00 0.00
sdi 87 0 44544k 0 0.00 0.00
sdn 0 0 0 0 0.00 0.00
sdj 87 0 44544k 0 0.00 0.00
sdo 0 0 0 0 0.00 0.00
sdj 87 0 44544k 0 0.00 0.00
sdp 0 0 0 0 0.00 0.00

The following command changes the amount of memory that vxdmpadm can use to
accumulate the statistics:

vxdmpadm iostat start memory=4096

The displayed statistics can be filtered by path name, DMP node name, and
enclosure name (note that the per-CPU memory has changed following the previous
command):

vxdmpadm -u k iostat show pathname=sdk
cpu usage = 8132us per cpu memory = 4096b

OPERATIONS BYTES AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
sdk 0 0 0 0 0.00 0.00

vxdmpadm -u k iostat show dmpnodename=sdf

cpu usage = 8501us per cpu memory = 4096b
OPERATIONS BYTES AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
sdf 1088 0 557056k 0 0.00 0.00

vxdmpadm -u k iostat show enclosure=Disk
cpu usage = 8626us per cpu memory = 4096b
OPERATIONS BYTES AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
sdf 1088 0 557056k 0 0.00 0.00

Administering Dynamic Multi-Pathing | 236
Administering DMP using the vxdmpadm utility

You can also specify the number of times to display the statistics and the time
interval. Here the incremental statistics for a path are displayed twice with a 2-second
interval:

vxdmpadm iostat show pathname=sdk interval=2 count=2

cpu usage = 9621lus per cpu memory = 266240b

OPERATIONS BLOCKS AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
sdk 0 0 0 0 0.00 0.00
sdk 0 0 0 0 0.00 0.00

Setting the attributes of the paths to an enclosure

You can use the vxdmpadm setattr command to set the attributes of the paths to
an enclosure or disk array.

The attributes set for the paths are persistent across reboots or product upgrades.

You can set the following attributes:

active Changes a standby (failover) path to an active path. The following
example specifies an active path for an array:

vxdmpadm setattr path sde pathtype=active
nomanual Restores the original primary or secondary attributes of a path. This

example restores the path to a JBOD disk:

vxdmpadm setattr path sdm pathtype=nomanual
nopreferred Restores the normal priority of a path. The following example restores

the default priority to a path:

vxdmpadm setattr path sdk \
pathtype=nopreferred

Administering Dynamic Multi-Pathing | 237
Administering DMP using the vxdmpadm utility

preferred Specifies a path as preferred, and optionally assigns a priority number

[priority=N] to it. If specified, the priority number must be an integer that is greater
than or equal to one. Higher priority numbers indicate that a path is
able to carry a greater I/O load.

See “Specifying the 1/0 policy” on page 239.

This example first sets the 1/0O policy to priority for an Active/Active
disk array, and then specifies a preferred path with an assigned priority
of 2:

vxdmpadm setattr enclosure encO \
iopolicy=priority

vxdmpadm setattr path sdk pathtype=preferred \
priority=2

primary Defines a path as being the primary path for a JBOD disk array. The
following example specifies a primary path for a JBOD disk array:
vxdmpadm setattr path sdm pathtype=primary
secondary Defines a path as being the secondary path for a JBOD disk array. The
following example specifies a secondary path for a JBOD disk array:
vxdmpadm setattr path sdn pathtype=secondary
standby Marks a standby (failover) path that it is not used for normal 1/0

scheduling. This path is used if there are no active paths available for
I/0. The next example specifies a standby path for an A/P-C disk array:

vxdmpadm setattr path sde pathtype=standby

Displaying the redundancy level of a device or enclosure

Use the vxdmpadm getdmpnode command to list the devices with less than the
required redundancy level.

To list the devices on a specified enclosure with fewer than a given number of
enabled paths, use the following command:

vxdmpadm getdmpnode enclosure=encl name redundancy=value

For example, to list the devices with fewer than 3 enabled paths, use the following
command:

vxdmpadm getdmpnode enclosure=EMC_CLARiiONO redundancy=3

Administering Dynamic Multi-Pathing | 238
Administering DMP using the vxdmpadm utility

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME

emc_clariionO_162 ENABLED EMC CLARiiON
emc_clariionO_182 ENABLED EMC CLARiiON
emc_clariion0O_ 184 ENABLED EMC CLARiiON
emc_clariion0_186 ENABLED EMC CLARiiON

emc_clariion0
emc_clariion0

emc_clariion0

N W N W
NN
o B O B

emc_clariion0

To display the minimum redundancy level for a particular device, use the vxdmpadm
getattr command, as follows:

vxdmpadm getattr enclosure|arrayname|arraytype \

component-name redundancy

For example, to show the minimum redundancy level for the enclosure
HDS9500-ALUAO:

vxdmpadm getattr enclosure HDS9500-ALUAO redundancy

ENCLR_NAME DEFAULT CURRENT

HDS9500-ALUAQ 0 4

Specifying the minimum number of active paths

You can set the minimum redundancy level for a device or an enclosure. The
minimum redundancy level is the minimum number of paths that should be active
for the device or the enclosure. If the number of paths falls below the minimum
redundancy level for the enclosure, a message is sent to the system console and
also logged to the Dynamic Multi-Pathing (DMP) log file. Also, notification is sent
to vxnotify clients.

The value set for minimum redundancy level is persistent across reboots and product
upgrades. If no minimum redundancy level is set, the default value is 0.

You can use the vxdmpadm setattr command to set the minimum redundancy
level.

Administering Dynamic Multi-Pathing | 239
Administering DMP using the vxdmpadm utility

To specify the minimum number of active paths

¢ Usethe vxdmpadm setattr command with the redundancy attribute as follows:

vxdmpadm setattr enclosure|arrayname|arraytype component-name

redundancy=value

where value is the number of active paths.

For example, to set the minimum redundancy level for the enclosure
HDS9500-ALUAO:

vxdmpadm setattr enclosure HDS9500-ALUAO0 redundancy=2

Displaying the 1/0O policy

To display the current and default settings of the I/O policy for an enclosure, array,
or array type, use the vxdmpadm getattr command.

The following example displays the default and current setting of iopolicy for
JBOD disks:

vxdmpadm getattr enclosure Disk iopolicy

ENCLR NAME DEFAULT CURRENT

Disk MinimumQ Balanced

The next example displays the setting of partitionsize for the enclosure enco,
on which the balanced I/O policy with a partition size of 2MB has been set:

vxdmpadm getattr enclosure encO partitionsize

ENCLR_NAME DEFAULT CURRENT

Specifying the 1/O policy

You can use the vxdmpadm setattr command to change the Dynamic Multi-Pathing
(DMP) 1/O policy for distributing 1/O load across multiple paths to a disk array or
enclosure. You can set policies for an enclosure (for example, Epso1), for all
enclosures of a particular type (such as ubps), or for all enclosures of a particular
array type (such as a/a for Active/Active, or a/p for Active/Passive).

Administering Dynamic Multi-Pathing | 240
Administering DMP using the vxdmpadm utility

Note: I/O policies are persistent across reboots of the system.

Table 9-6 describes the I/O policies that may be set.

Table 9-6 DMP /O policies
Policy Description
adaptive This policy attempts to maximize overall I/0O throughput from/to the disks by dynamically

scheduling I/0 on the paths. It is suggested for use where I/O loads can vary over time.
For example, I/0O from/to a database may exhibit both long transfers (table scans) and
short transfers (random look ups). The policy is also useful for a SAN environment where
different paths may have different number of hops. No further configuration is possible
as this policy is automatically managed by DMP.

In this example, the adaptive 1/O policy is set for the enclosure enc1:

vxdmpadm setattr enclosure encl \
iopolicy=adaptive

adaptiveming Similar to the adaptive policy, except that I/O is scheduled according to the length of
the 1/0 queue on each path. The path with the shortest queue is assigned the highest
priority.

Administering Dynamic Multi-Pathing | 241
Administering DMP using the vxdmpadm utility

Table 9-6 DMP 1/O policies (continued)
Policy Description
balanced This policy is designed to optimize the use of caching in disk drives and RAID controllers.

[partitionsize=size]

The size of the cache typically ranges from 120KB to 500KB or more, depending on the
characteristics of the particular hardware. During normal operation, the disks (or LUNSs)
are logically divided into a number of regions (or partitions), and I/O from/to a given region
is sent on only one of the active paths. Should that path fail, the workload is automatically
redistributed across the remaining paths.

You can use the partitionsize attribute to specify the size for the partition. The partition
size in blocks is adjustable in powers of 2 from 2 up to 231. A value that is not a power
of 2 is silently rounded down to the nearest acceptable value.

Specifying a partition size of 0 is equivalent to specifying the default partition size.

The default value for the partition size is 512 blocks (256k). Specifying a partition size
of 0 is equivalent to the default partition size of 512 blocks (256k).

The default value can be changed by adjusting the value of the
dmp pathswitch blks shift tunable parameter.

See “DMP tunable parameters” on page 773.
Note: The benefit of this policy is lost if the value is set larger than the cache size.
For example, the suggested partition size for an Hitachi HDS 9960 A/A array is from

32,768 to 131,072 blocks (16MB to 64MB) for an 1/0O activity pattern that consists mostly
of sequential reads or writes.

The next example sets the balanced I/O policy with a partition size of 4096 blocks (2MB)
on the enclosure enc0:

vxdmpadm setattr enclosure encO \
iopolicy=balanced partitionsize=4096

minimumg

This policy sends I/O on paths that have the minimum number of outstanding I/O requests
in the queue for a LUN. No further configuration is possible as DMP automatically
determines the path with the shortest queue.

The following example sets the I/O policy to minimumg for a JBOD:

vxdmpadm setattr enclosure Disk \
iopolicy=minimumqgq

This is the default I/O policy for all arrays.

Administering Dynamic Multi-Pathing | 242
Administering DMP using the vxdmpadm utility

Table 9-6 DMP 1/O policies (continued)
Policy Description
priority This policy is useful when the paths in a SAN have unequal performance, and you want

to enforce load balancing manually. You can assign priorities to each path based on your
knowledge of the configuration and performance characteristics of the available paths,
and of other aspects of your system.

See “Setting the attributes of the paths to an enclosure” on page 236.

In this example, the 1/O policy is set to priority for all SENA arrays:

vxdmpadm setattr arrayname SENA \
iopolicy=priority

round-robin

This policy shares I/0 equally between the paths in a round-robin sequence. For example,
if there are three paths, the first I/O request would use one path, the second would use
a different path, the third would be sent down the remaining path, the fourth would go
down the first path, and so on. No further configuration is possible as this policy is
automatically managed by DMP.

The next example sets the I/O policy to round-robin for all Active/Active arrays:

vxdmpadm setattr arraytype A/A \
iopolicy=round-robin

singleactive

This policy routes I/O down the single active path. This policy can be configured for A/P
arrays with one active path per controller, where the other paths are used in case of
failover. If configured for A/A arrays, there is no load balancing across the paths, and
the alternate paths are only used to provide high availability (HA). If the current active
path fails, 1/0 is switched to an alternate active path. No further configuration is possible
as the single active path is selected by DMP.

The following example sets the 1/0 policy to singleactive for JBOD disks:

vxdmpadm setattr arrayname Disk \
iopolicy=singleactive

Scheduling I/O on the paths of an Asymmetric
Active/Active or an ALUA array

You can specify the use_all paths attribute in conjunction with the adaptive,
balanced, minimumg, priority, and round-robin I/O policies to specify whether
I/O requests are to be scheduled on the secondary paths in addition to the primary
paths of an Asymmetric Active/Active (A/A-A) array or an ALUA array. Depending
on the characteristics of the array, the consequent improved load balancing can

Administering Dynamic Multi-Pathing | 243
Administering DMP using the vxdmpadm utility

increase the total I/O throughput. However, this feature should only be enabled if
recommended by the array vendor. It has no effect for array types other than A/A-A
or ALUA.

For example, the following command sets the balanced I/O policy with a partition
size of 4096 blocks (2MB) on the enclosure enco, and allows scheduling of I/O
requests on the secondary paths:

vxdmpadm setattr enclosure encO iopolicy=balanced \

partitionsize=4096 use_all paths=yes

The default setting for this attribute is use_a11 paths=no.

You can display the current setting for use_al11 paths for an enclosure, arrayname,
or arraytype. To do this, specify the use_all paths option to the vxdmpadm
gettattr command.

vxdmpadm getattr enclosure HDS9500-ALUAO use_all paths

ENCLR_NAME ATTR_NAME DEFAULT CURRENT

HDS9500-ALUAO use_all paths no yes

The use_all paths attribute only applies to A/A-A arrays and ALUA arrays. For
other arrays, the above command displays the message:

Attribute is not applicable for this array.

Example of applying load balancing in a SAN

This example describes how to use Dynamic Multi-Pathing (DMP) to configure load
balancing in a SAN environment where there are multiple primary paths to an
Active/Passive device through several SAN switches.

As shown in this sample output from the vxdisk 1ist command, the device sdm
has eight primary paths:

vxdisk list sdq

Device: sdg

numpaths: 8

sdj state=enabled type=primary
sdk state=enabled type=primary
sdl state=enabled type=primary

sdm
sdn
sdo
sdp
sdqg

state=enabled
state=enabled
state=enabled
state=enabled

state=enabled

type=primary
type=primary
type=primary
type=primary
type=primary

Administering Dynamic Multi-Pathing
Administering DMP using the vxdmpadm utility

244

In addition, the device is in the enclosure Enco, belongs to the disk group mydg, and
contains a simple concatenated volume myvol1.

The first step is to enable the gathering of DMP statistics:

vxdmpadm iostat start

Next, use the dd command to apply an input workload from the volume:
dd if=/dev/vx/rdsk/mydg/myvoll of=/dev/null &

By running the vxdmpadm iostat command to display the DMP statistics for the
device, it can be seen that all I/O is being directed to one path, sdq:

vxdmpadm iostat show dmpnodename=sdq interval=5 count=2

cpu usage = 11294us per cpu memory = 32768b

OPERATIONS KBYTES AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
sdj 0 0 0 0 0.00 0.00
sdk 0 0 0 0 0.00 0.00
sdl 0 0 0 0 0.00 0.00
sdm 0 0 0 0 0.00 0.00
sdn 0 0 0 0 0.00 0.00
sdo 0 0 0 0 0.00 0.00
sdp 0 0 0 0 0.00 0.00
sdq 10986 0 5493 0 0.41 0.00

The vxdmpadm command is used to display the I/O policy for the enclosure that
contains the device:

vxdmpadm getattr enclosure ENCO iopolicy

ENCLR_NAME DEFAULT CURRENT

ENCO MinimumQ Single-Active

Administering Dynamic Multi-Pathing | 245
Administering DMP using the vxdmpadm utility

This shows that the policy for the enclosure is set to singleactive, which explains
why all the I/O is taking place on one path.

To balance the 1/O load across the multiple primary paths, the policy is set to
round-robin as shown here:

vxdmpadm setattr enclosure ENCO iopolicy=round-robin

vxdmpadm getattr enclosure ENCO iopolicy

ENCLR NAME DEFAULT CURRENT

ENCO MinimumQ Round-Robin
The DMP statistics are now reset:
vxdmpadm jiostat reset

With the workload still running, the effect of changing the 1/0 policy to balance the
load across the primary paths can now be seen.

vxdmpadm iostat show dmpnodename=sdq interval=5 count=2

cpu usage = 14403us per cpu memory = 32768b

OPERATIONS KBYTES AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
sdj 2041 0 1021 0 0.39 0.00
sdk 1894 0 947 0 0.39 0.00
sdl 2008 0 1004 0 0.39 0.00
sdm 2054 0 1027 0 0.40 0.00
sdn 2171 0 1086 0 0.39 0.00
sdo 2095 0 1048 0 0.39 0.00
sdp 2073 0 1036 0 0.39 0.00
sdg 2042 0 1021 0 0.39 0.00

The enclosure can be returned to the single active I/O policy by entering the following
command:

vxdmpadm setattr enclosure ENCO iopolicy=singleactive

Disabling I/O for paths, controllers, array ports, or DMP nodes

Disabling 1/O through a path, HBA controller, array port, or Dynamic Multi-Pathing
(DMP) node prevents DMP from issuing I/O requests through the specified path,
or the paths that are connected to the specified controller, array port, or DMP node.

Administering Dynamic Multi-Pathing | 246
Administering DMP using the vxdmpadm utility

If the specified paths have pending I/Os, the vxdmpadm disable command waits
until the I/Os are completed before disabling the paths.

Note: From release 5.0 of Veritas Volume Manager (VxVM), this operation is
supported for controllers that are used to access disk arrays on which
cluster-shareable disk groups are configured.

DMP does not support the operation to disable I/O for the controllers that use
Third-Party Drivers (TPD) for multi-pathing.

To disable I/O for one or more paths, use the following command:
vxdmpadm [-c|-f] disable path=path namel[,path name2,path nameN]

To disable 1/O for the paths connected to one or more HBA controllers, use the
following command:

vxdmpadm [-c|-f] disable ctlr=ctlr namel[,ctlr name2,ctlr nameN]

To disable I/O for the paths connected to an array port, use one of the following
commands:

vxdmpadm [-c|-f] disable enclosure=enclr name portid=array port ID
vxdmpadm [-c|-f] disable pwwn=array port WWN

where the array port is specified either by the enclosure name and the array port
ID, or by the array port’s worldwide name (WWN) identifier.

The following examples show how to disable 1/O on an array port:

vxdmpadm disable enclosure=HDS9500V0 portid=1A
vxdmpadm disable pwwn=20:00:00:E0:8B:06:5F:19

To disable I/O for a particular path, specify both the controller and the portID, which
represent the two ends of the fabric:

vxdmpadm [-c|-f] disable ctlr=ctlr name enclosure=enclr name \

portid=array port ID
To disable I/O for a particular DMP node, specify the DMP node name.
vxdmpadm [-c|-f] disable dmpnodename=dmpnode

You can use the -c option to check if there is only a single active path to the disk.

The last path disable operation fails without -f option irrespective whether the device
is in use or not.

Administering Dynamic Multi-Pathing | 247
Administering DMP using the vxdmpadm utility

The disable operation fails if it is issued to a controller that is connected to the
root disk through a single path, and there are no root disk mirrors configured on
alternate paths. If such mirrors exist, the command succeeds. The disable operation
fails if it is issued to a controller that is connected to the swap device through a
single path.

Enabling 1/O for paths, controllers, array ports, or DMP nodes

Enabling a controller allows a previously disabled path, HBA controller, array port,
or Dynamic Multi-Pathing (DMP) node to accept I/O again. This operation succeeds
only if the path, controller, array port, or DMP node is accessible to the host, and
I/O can be performed on it. When connecting Active/Passive disk arrays, the enable
operation results in failback of 1/0 to the primary path. The enable operation can
also be used to allow I/O to the controllers on a system board that was previously
detached.

Note: This operation is supported for controllers that are used to access disk arrays
on which cluster-shareable disk groups are configured.

DMP does not support the operation to enable 1/O for the controllers that use
Third-Party Drivers (TPD) for multi-pathing.

To enable I/O for one or more paths, use the following command:
vxdmpadm enable path=path namel[,path name2,path nameN]

To enable /O for the paths connected to one or more HBA controllers, use the
following command:

vxdmpadm enable ctlr=ctlr namel[,ctlr name2,ctlr nameN]

To enable 1/O for the paths connected to an array port, use one of the following
commands:

vxdmpadm enable enclosure=enclr name portid=array port ID
vxdmpadm enable pwwn=array port WWN

where the array port is specified either by the enclosure name and the array port
ID, or by the array port’s worldwide name (WWN) identifier.

The following are examples of using the command to enable I/O on an array port:

vxdmpadm enable enclosure=HDS9500V0 portid=1A
vxdmpadm enable pwwn=20:00:00:E0:8B:06:5F:19

Administering Dynamic Multi-Pathing | 248
Administering DMP using the vxdmpadm utility

To enable I/O for a particular path, specify both the controller and the portID, which
represent the two ends of the fabric:

vxdmpadm enable ctlr=ctlr name enclosure=enclr name \

portid=array port ID
To enable I/O for a particular DMP node, specify the DMP node name.

vxdmpadm enable dmpnodename=dmpnode

Renaming an enclosure

The vxdmpadm setattr command can be used to assign a meaningful name to an
existing enclosure, for example:

vxdmpadm setattr enclosure emcO name=GRP1l

This example changes the name of an enclosure from emc0 to Grp1.

Note: The maximum length of the enclosure name prefix is 23 characters.

The following command shows the changed name:

vxdmpadm listenclosure all

ENCLR NAME ENCLR TYPE ENCLR_ SNO STATUS ARRAY TYPE LUN COUNT
Disk Disk DISKS CONNECTED Disk 6
GRP1 EMC 000292601383 CONNECTED A/A 1
hitachi usp-vm0 Hitachi USP-VM 25847 CONNECTED A/A 1
emc_clariion0 EMC CLARiiON CK20007040035 CONNECTED CLR-A/PF 2

Configuring the response to I/O failures

You can configure how Dynamic Multi-Pathing (DMP) responds to failed I/O requests
on the paths to a specified enclosure, disk array name, or type of array. By default,
DMP is configured to retry a failed I/O request up to five minutes on various active
paths.

To display the current settings for handling I/O request failures that are applied to
the paths to an enclosure, array name, or array type, use the vxdmpadm getattr
command.

See “Displaying recovery option values” on page 252.

O o U

Administering Dynamic Multi-Pathing
Administering DMP using the vxdmpadm utility

To set a limit for the number of times that DMP attempts to retry sending an 1/0
request on a path, use the following command:

vxdmpadm setattr \
{enclosure enc-name|arrayname name|arraytype type} \

recoveryoption=fixedretry retrycount=n

The value of the argument to retrycount specifies the number of retries to be
attempted before DMP reschedules the 1/0 request on another available path, or
fails the request altogether.

As an alternative to specifying a fixed number of retries, you can specify the amount
of time DMP allows for handling an 1/O request. If the I/O request does not succeed
within that time, DMP fails the I/O request. To specify an iotimeout value, use the
following command:

vxdmpadm setattr \
{enclosure enc-name|arrayname name|arraytype type} \

recoveryoption=timebound iotimeout=seconds

The default value of iotimeout is 300 seconds. For some applications such as
Oracle, it may be desirable to set i ot imeout to a larger value. The iotimeout value
for DMP should be greater than the 1/0O service time of the underlying operating
system layers.

Note: The fixedretry and timebound settings are mutually exclusive.

The following example configures time-bound recovery for the enclosure enco, and
sets the value of iotimeout to 360 seconds:

vxdmpadm setattr enclosure enc0O recoveryoption=timebound \

iotimeout=360

The next example sets a fixed-retry limit of 10 for the paths to all Active/Active
arrays:

vxdmpadm setattr arraytype A/A recoveryoption=fixedretry \
retrycount=10

Specifying recoveryoption=default resets DMP to the default settings for recovery.

For example, the following command sets the default settings:

vxdmpadm setattr arraytype A/A recoveryoption=default

249

Administering Dynamic Multi-Pathing | 250
Administering DMP using the vxdmpadm utility

For PCI devices, the default settings are recoveryoption=fixedretry

retrycount=5.

For all other devices, the default settings are recoveryoption=timebound

iotimeout=300

Specifying recoveryoption=defaultalso has the effect of configuring I/O throttling
with the default settings.

See “Configuring the 1/O throttling mechanism” on page 250.

Note: The response to I/O failure settings is persistent across reboots of the system.

Configuring the 1/O throttling mechanism

By default, Dynamic Multi-Pathing (DMP) is configured with 1/O throttling turned off
for all paths. To display the current settings for I/O throttling that are applied to the
paths to an enclosure, array name, or array type, use the vxdmpadm getattr
command.

See “Displaying recovery option values” on page 252.

If enabled, 1/O throttling imposes a small overhead on CPU and memory usage
because of the activity of the statistics-gathering daemon. If I/O throttling is disabled,
the daemon no longer collects statistics, and remains inactive until I/O throttling is
re-enabled.

To turn off I/O throttling, use the following form of the vxdmpadm setattr command:
vxdmpadm setattr \

{enclosure enc-name|arrayname name|arraytype type} \

recoveryoption=nothrottle

The following example shows how to disable 1/O throttling for the paths to the
enclosure enco:

vxdmpadm setattr enclosure encO recoveryoption=nothrottle

The vxdmpadm setattr command can be used to enable I/O throttling on the paths
to a specified enclosure, disk array name, or type of array:

vxdmpadm setattr \
{enclosure enc-name|arrayname name|arraytype type}\

recoveryoption=throttle [iotimeout=seconds]

If the iotimeout attribute is specified, its argument specifies the time in seconds
that DMP waits for an outstanding I/O request to succeed before invoking I/O

Administering Dynamic Multi-Pathing | 251
Administering DMP using the vxdmpadm utility

throttling on the path. The default value of iotimeout is 10 seconds. Setting
iotimeout to alarger value potentially causes more I/O requests to become queued
up in the SCSI driver before 1/O throttling is invoked.

The following example sets the value of iotimeout to 60 seconds for the enclosure

encO:

vxdmpadm setattr enclosure enc0O recoveryoption=throttle \
jotimeout=60

Specify recoveryoption=default to reset I/O throttling to the default settings, as
follows:

vxdmpadm setattr arraytype A/A recoveryoption=default

The above command configures the default behavior, corresponding to
recoveryoption=nothrottle. The above command also configures the default
behavior for the response to 1/O failures.

See “Configuring the response to I/O failures” on page 248.

Note: The I/O throttling settings are persistent across reboots of the system.

Configuring Low Impact Path Probing (LIPP)

The Low Impact Path Probing (LIPP) feature can be turned on or off using the
vxdmpadm settune command:

vxdmpadm settune dmp_low_impact_ probe=[on|off]

Path probing will be optimized by probing a subset of paths connected to the same
HBA and array port. The size of the subset of paths can be controlled by the
dmp_probe threshold tunable. The default value is set to 5.

vxdmpadm settune dmp_ probe_ threshold=N

Configuring Subpaths Failover Groups (SFG)

The Subpaths Failover Groups (SFG) feature can be turned on or off using the
tunable dmp_sfg threshold. The default value of the tunable is 1, which represents
that the feature is on.

To turn off the feature, set the tunable dmp sfg threshold value to 0:

vxdmpadm settune dmp sfg threshold=0

Administering Dynamic Multi-Pathing | 252
Administering DMP using the vxdmpadm utility

To turn on the feature, set the dmp sfg threshold value to the required number
of path failures that triggers SFG.

vxdmpadm settune dmp_ sfg threshold=N
To see the Subpaths Failover Groups ID, use the following command:

vxdmpadm getportids {ctlr=ctlr name | dmpnodename=dmp device name \

| enclosure=enclr name | path=path name}

Displaying recovery option values

To display the current settings for handling I/O request failures that are applied to
the paths to an enclosure, array name, or array type, use the following Dynamic
Multi-Pathing (DMP) command:

vxdmpadm getattr \
{enclosure enc-name|arrayname name|arraytype type} \

recoveryoption

The following example shows the vxdmpadm getattr command being used to
display the recoveryoption option values that are set on an enclosure.

vxdmpadm getattr enclosure HDS9500-ALUAO recoveryoption

ENCLR-NAME RECOVERY-OPTION DEFAULT[VAL] CURRENT [VAL]
HDS9500-ALUAO Throttle Nothrottle[0] Nothrottle[0]
HDS9500-ALUAO Error-Retry Timebound[300] Timebound[300]

The command output shows the default and current policy options and their values.

Table 9-7 summarizes the possible recovery option settings for retrying 1/0 after

an error.
Table 9-7 Recovery options for retrying I/O after an error
Recovery option Possible settings Description
recoveryoption=fixedretry Fixed-Retry (retrycount) DMP retries a failed I/O
request for the specified
number of times if I/O fails.
recoveryoption=timebound | Timebound (iotimeout) DMP retries a failed /0
request for the specified time
in seconds if I/O fails.

Table 9-8 summarizes the possible recovery option settings for throttling 1/0.

Administering Dynamic Multi-Pathing | 253
Administering DMP using the vxdmpadm utility

Table 9-8 Recovery options for 1/O throttling
Recovery option Possible settings Description
recoveryoption=nothrottle None 1/0 throttling is not used.
recoveryoption=throttle Timebound (iotimeout) DMP throttles the path if an

1/0 request does not return
within the specified time in
seconds.

Configuring DMP path restoration policies

Dynamic Multi-Pathing (DMP) maintains a kernel task that re-examines the condition
of paths at a specified interval. The type of analysis that is performed on the paths
depends on the checking policy that is configured.

Note: The DMP path restoration task does not change the disabled state of the
path through a controller that you have disabled using vxdmpadm disable.

When configuring DMP path restoration policies, you must stop the path restoration
thread, and then restart it with new attributes.

See “Stopping the DMP path restoration thread” on page 254.

Use the vxdmpadm settune dmp restore policy command to configure one of
the following restore policies. The policy remains in effect until the restore thread
is stopped or the values are changed using the vxdmpadm settune command.

m check all
The path restoration thread analyzes all paths in the system and revives the
paths that are back online, as well as disabling the paths that are inaccessible.
The command to configure this policy is:

vxdmpadm settune dmp restore_policy=check_all

m check alternate
The path restoration thread checks that at least one alternate path is healthy.
It generates a notification if this condition is not met. This policy avoids inquiry
commands on all healthy paths, and is less costly than check all in cases
where a large number of paths are available. This policy is the same as
check_all if there are only two paths per DMP node. The command to configure
this policy is:

vxdmpadm settune dmp_ restore_policy=check_alternate

Administering Dynamic Multi-Pathing | 254
Administering DMP using the vxdmpadm utility

m check disabled
This is the default path restoration policy. The path restoration thread checks
the condition of paths that were previously disabled due to hardware failures,
and revives them if they are back online. The command to configure this policy
is:

vxdmpadm settune dmp_ restore policy=check disabled

m check periodic
The path restoration thread performs check_all once in a given number of
cycles, and check_disabled in the remainder of the cycles. This policy may
lead to periodic slowing down (due to check_al1)if a large number of paths are
available. The command to configure this policy is:

vxdmpadm settune dmp_restore_policy=check_periodic

The default number of cycles between running the check_al1 policy is 10.

The dmp restore interval tunable parameter specifies how often the path
restoration thread examines the paths. For example, the following command sets
the polling interval to 400 seconds:

vxdmpadm settune dmp_ restore_interval=400

The settings are immediately applied and are persistent across reboots. Use the
vxdmpadm gettune command to view the current settings.

See “DMP tunable parameters” on page 773.

If the vxdmpadm start restore command is given without specifying a policy or
interval, the path restoration thread is started with the persistent policy and interval
settings previously set by the administrator with the vxdmpadm settune command.
If the administrator has not set a policy or interval, the system defaults are used.
The system default restore policy is check disabled. The system default interval
is 300 seconds.

Warning: Decreasing the interval below the system default can adversely affect
system performance.

Stopping the DMP path restoration thread

Use the following command to stop the Dynamic Multi-Pathing (DMP) path
restoration thread:

vxdmpadm stop restore

Administering Dynamic Multi-Pathing | 255
Administering DMP using the vxdmpadm utility

Warning: Automatic path failback stops if the path restoration thread is stopped.

Displaying the status of the DMP path restoration thread
Use the vxdmpadm gettune command to display the tunable parameter values that
show the status of the Dynamic Multi-Pathing (DMP) path restoration thread. These
tunables include:
dmp_restore_state the status of the automatic path restoration kernel thread.

dmp_restore_interval the polling interval for the DMP path restoration thread.

dmp_restore_policy the policy that DMP uses to check the condition of paths.

To display the status of the DMP path restoration thread

¢ Use the following commands:
vxdmpadm gettune dmp_restore_state
vxdmpadm gettune dmp_restore_interval

vxdmpadm gettune dmp_ restore_policy

Configuring Array Policy Modules

Dynamic Multi-Pathing (DMP) provides Array Policy Modules (APMs) for use with
an array. An APM is a dynamically loadable kernel module (or plug-in) that defines
array-specific procedures and commands to:

= Select an I/0 path when multiple paths to a disk within the array are available.
» Select the path failover mechanism.

» Select the alternate path in the case of a path failure.

= Put a path change into effect.

= Respond to SCSI reservation or release requests.

DMP supplies default procedures for these functions when an array is registered.
An APM may modify some or all of the existing procedures that DMP provides, or
that another version of the APM provides.

You can use the following command to display all the APMs that are configured for
a system:

vxdmpadm listapm all

Administering Dynamic Multi-Pathing
Administering DMP using the vxdmpadm utility

The output from this command includes the file name of each module, the supported
array type, the APM name, the APM version, and whether the module is currently
loaded and in use.

To see detailed information for an individual module, specify the module name as
the argument to the command:

vxdmpadm listapm module name
To add and configure an APM, use the following command:

vxdmpadm -a cfgapm module name [attrl=valuel \
[attr2=value2 ...]]

The optional configuration attributes and their values are specific to the APM for
an array. Consult the documentation from the array vendor for details.

Note: By default, DMP uses the most recent APM that is available. Specify the -u
option instead of the -a option if you want to force DMP to use an earlier version
of the APM. The current version of an APM is replaced only if it is not in use.

Specify the -r option to remove an APM that is not currently loaded:
vxdmpadm -r cfgapm module name

See the vxdmpadm(1M) manual page.

256

Dynamic Reconfiguration
of devices

This chapter includes the following topics:
= About online Dynamic Reconfiguration

= Reconfiguring a LUN online that is under DMP control using the Dynamic
Reconfiguration tool

= Manually reconfiguring a LUN online that is under DMP control
= Changing the characteristics of a LUN from the array side

» Upgrading the array controller firmware online

About online Dynamic Reconfiguration

System administrators and storage administrators may need to modify the set of
LUNs provisioned to a server. You can change the LUN configuration dynamically,
without performing a reconfiguration reboot on the host.

Note: You can change the LUN configuration dynamically either using the Dynamic
Reconfiguration (DR) tool or manually. Veritas recommends using the Dynamic
Reconfiguration tool.

Table 10-1 lists the kinds of online dynamic reconfigurations that you can perform:

Dynamic Reconfiguration of devices | 258
Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool

Table 10-1

Task Topic

Reconfigure a LUN online that |= DR tool—See “Reconfiguring a LUN online that is

is under DMP control under DMP control using the Dynamic Reconfiguration
tool” on page 258.

= Manual—See “Manually reconfiguring a LUN online
that is under DMP control” on page 269.

Replace a host bus adapter s DR tool—See “Replacing a host bus adapter online”
(HBA) online on page 269.
Update the array controller = See “Upgrading the array controller firmware online”
firmware, also known as a on page 280.

nondisruptive upgrade

Reconfiguring a LUN online that is under DMP
control using the Dynamic Reconfiguration tool

Perform the following tasks to reconfigure a LUN online that is under DMP control
using the Dynamic Reconfiguration tool:

Table 10-2

Task Topic

Removing LUNs dynamically See “Removing LUNs dynamically from an existing target
from an existing target ID ID” on page 258.

Adding LUNs dynamically toa | See “Adding new LUNs dynamically to a target ID”
new target ID on page 262.

Replacing a LUN on an existing | See “Replacing LUNs dynamically from an existing target

target ID ID” on page 265.

Dynamic LUN expansion See “Dynamic LUN expansion” on page 267.

Changing the LUN See “Changing the characteristics of a LUN from the array
characteristics side” on page 278.

Removing LUNs dynamically from an existing target ID

Dynamic Multi-Pathing (DMP) provides a Dynamic Reconfiguration tool to simplify
the removal of LUNs from an existing target ID. Each LUN is unmapped from the

Dynamic Reconfiguration of devices

Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool

host. DMP issues an operating system device scan and cleans up the operating
system device tree.

Warning: Do not run any device discovery operations outside of the Dynamic
Reconfiguration tool until the device operation is completed.

In a cluster, perform the steps on all nodes in the cluster.
To remove LUNs dynamically from an existing target ID

1 Stop all applications and volumes that are hosted on the LUNs that are to be
removed.

If the device is in use by Veritas Volume Manager (VxVM), perform the following
steps:

= If the device is part of a disk group, move the disk out of the disk group.
vxdg -g dgname rmdisk daname

See “Removing a disk from a disk group” on page 675.

= Remove the disk from the vxdisk list.
In a cluster, perform this step from all of the nodes.

vxdisk rm da-name
For example:

vxdisk rm evadkék0_0

For LUNs using Linux LVM over DMP devices, remove the device from the
LVM volume group.

vgreduce vgname devicepath

2 Start the vxdiskadm utility:

wvxdiskadm

3 Select the Dynamic Reconfiguration operations option from the vxdiskadm
menu.

4 Select the Remove LUNs option.

259

Dynamic Reconfiguration of devices | 260
Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool

5 Type list or press Return to display a list of LUNs that are available for removal.
A LUN is available for removal if it is not in use.

The following shows an example output:

Select disk devices to remove: [<pattern-list>,all,list]: list
LUN (s) available for removal:

evadk6k0 0

evadk6k0_1

evadk6k0_2

evadk6k0 3

evadk6k0_4

emcO_0119

6 Enter the name of a LUN, a comma-separated list of LUNs, or a regular
expression to specify the LUNs to remove.

For example, enter emc0_0119.

Select disk devices to Remove: [<pattern-list>,all,list,
file=<filename>,q] (default:list): emcO 0119

7 At the prompt, confirm the LUN selection.
DMP removes the LUN from VxVM usage.
8 At the following prompt, remove the LUN from the array/target.

Remove Luns

Menu: VolumeManager/Disk/DynamicReconfigurationOperations/RemoveLuns

INFO: Removing Lun [emcO 0119] from VxVM

INFO: LUN [emcO 0119] removed successfully from VxVM.
Enclosure=emcO AVID=0119

Device=emcO 0119 Serial=2200119000

PATH=sdad ctlr=cll port=1l6c-0 [-]
PATH=sdah ctlr=cl2 port=1l6c-0 [-]
PATH=sdaj ctlr=cl2 port=leéc-1 [-]
PATH=sdaf ctlr=cll port=léc-1 [-]

Please remove LUNs with Above details from array and press 'y' to

continue removal or 'gq' to quit

Dynamic Reconfiguration of devices | 261
Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool

9 The following are sample EMC Symmetrix commands:

#
#
#
#

symmask
symmask
symmask

symmask

symmask

-sid
-sid
-sid

-sid

-sid

822
822
822
822

822

-wwn 2001000elec307de
-wwn 2001000elec307de
-wwn 2001000elec307df
-wwn 2001000elec307df

refresh -nopr

-dir
-dir
-dir

-dir

l6¢c
l6¢c
l6¢c
l6¢c

-p 0
-p 1
-p 0
-p 1

remove

remove

remove

remove

Symmetrix FA/SE directors updated with contents of SymMask
Database 000290300822

When complete,

respond to previous array prompt.

Please remove LUNs with Above details from array and

press 'y

v

to continue removal or 'g' to quit

y

devs 0119
devs 0119
devs 0119
dev 0119

Dynamic Reconfiguration of devices | 262
Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool

10 DMP completes the removal of the device from VxVM usage. Output similar
to the following is displayed:

Remove Luns

Menu: VolumeManager/Disk/DynamicReconfigurationOperations/RemovelLuns

INFO: Checking/Removing stale device entries (if any).
INFO: Refreshing OS device Tree
INFO: Updating VxVM device tree

Press <Enter> or <Return> to continue:

11 Specify the dynamic reconfiguration operation to be done:

Specify Dynamic Reconfiguration Operation to be done:

Menu: VolumeManager/Disk/DynamicReconfigurationOperations

Add Luns

Remove Luns
Replace Luns
Replace HBA

Sw N

? Display help about menu
?? Display help about the menuing system
q Exit

To exit the Dynamic Reconfiguration tool, enter: g

Adding new LUNs dynamically to a target ID

Dynamic Multi-Pathing (DMP) provides a Dynamic Reconfiguration tool to simplify
the addition of new LUNSs to a new or existing target ID. One or more new LUNs
are mapped to the host by way of multiple HBA ports. An operating system device
scan is issued for the LUNs to be recognized and added to DMP control.

Dynamic Reconfiguration of devices

Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool

Warning: Do not run any device discovery operations outside of the Dynamic
Reconfiguration tool until the device operation is completed.

In a cluster, perform the steps on all the nodes in the cluster.

To add new LUNs dynamically to a target ID

1

Start the vxdiskadm utility:

vxdiskadm

Select the Dynamic Reconfiguration operations option from the vxdiskadm
menu.

Select the Add LUNs option.

Output similar to the following is displayed:

Add Luns

Menu: VolumeManager/Disk/DynamicReconfigurationOperations/AddLuns

INFO: Refreshing OS device Tree
INFO: Updating VxVM device tree
Add LUNs from array, once done then press 'y' to continue

or 'g' to quit.

The following are sample EMC Symmetrix commands:

symmask -sid 822 -wwn 2001000elec307de -dir 1l6c -p 0 add devs
0119 -nopr
symmask -sid 822 -wwn 2001000elec307de -dir 1l6c -p 1 add devs
0119 -nopr
symmask -sid 822 -wwn 2001000elec307df -dir 16c -p 0 add devs
0119 -nopr
symmask -sid 822 -wwn 2001000elec307df -dir 16c -p 1 add devs
0119 -nopr

symmask -sid 822 refresh -nopr

Symmetrix FA/SE directors updated with contents of SymMask
Database 000290300822

263

Dynamic Reconfiguration of devices | 264
Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool

5 When the prompt displays, add the LUNs from the array.

Output similar to the following is displayed:

Add LUNs from array, once done then press 'y' to continue

or 'gq' to quit. : vy

Add Luns

Menu: VolumeManager/Disk/DynamicReconfigurationOperations/AddLuns

INFO: Refreshing OS device Tree

INFO: Updating VxVM device tree

INFO: Updating partition table information and disk size
INFO: Number of Paths for Lun [emcO_0119] presented=4
INFO: Updating VxVM device tree

Dynamic Reconfiguration of devices
Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool

6 Selecty to continue to add the LUNs to DMP.

DMP updates the operating system device tree and the VxVM device tree. The
newly-discovered devices are now visible.

Enclosure=emcO AVID=0119
Device=emcO 0119 Serial=2200119000
PATH=sdaf ctlr=cll port=l6c-1 [-]

PATH=sdah ctlr=cl2 port=1l6c-0 [-]

PATH=sdaj ctlr=cl2 port=l6c-1 [-]

PATH=sdad ctlr=cll port=1l6c-0 [-]

Press <Enter> or <Return> to continue:

7 Specify the dynamic reconfiguration operation to be done:

Specify Dynamic Reconfiguration Operation to be done:

Menu: VolumeManager/Disk/DynamicReconfigurationOperations

Add Luns

Remove Luns
Replace Luns
Replace HBA

Sw N

? Display help about menu
?? Display help about the menuing system
q Exit

Select an operation to perform : g

To exit the Dynamic Reconfiguration tool, enter: g

Replacing LUNs dynamically from an existing target 1D

Dynamic Multi-Pathing (DMP) provides a Dynamic Reconfiguration tool to simplify
the replacement of new LUNs from an existing target ID. Each LUN is unmapped
from the host. DMP issues an operating system device scan and cleans up the
operating system device tree.

265

Dynamic Reconfiguration of devices | 266

Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool

Warning: Do not run any device discovery operations outside of the Dynamic
Reconfiguration tool until the device operation is completed.

In a cluster, perform the steps on all the nodes in the cluster.

To replace LUNs dynamically from an existing target ID

1

Stop all applications and volumes that are hosted on the LUNSs that are to be
removed.

If the device is in use by Veritas Volume Manager (VxVM), perform the following
steps:

» If the device is part of a disk group, move the disk out of the disk group.
vxdg -g dgname rmdisk daname

See “Removing a disk from a disk group” on page 675.

= Remove the disk from the vxdisk list.
In a cluster, perform this step from all of the nodes.

vxdisk rm da-name
For example:

vxdisk rm evadkék0_0

For LUNs using Linux LVM over DMP devices, remove the device from the
LVM volume group

vgreduce vgname devicepath

Start the vxdiskadm utility:

vxdiskadm

Select the Dynamic Reconfiguration operations option from the vxdiskadm
menu.

Select the Replace LUNs option.

The output displays a list of LUNs that are available for replacement. A LUN
is available for replacement if there is no open on the LUN, and the state is
online or nolabel.

Select one or more LUNs to replace.

At the prompt, confirm the LUN selection.

Dynamic Reconfiguration of devices | 267
Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool

Remove the LUN from the array/target.
Return to the Dynamic Reconfiguration tool and select y to continue the removal.

After the removal completes successfully, the Dynamic Reconfiguration tool
prompts you to add a LUN.

9 When the prompt displays, add the LUNs from the array/target.
10 Select y to continue to add the LUNSs.

DMP updates the operating system device tree and the VxVM device tree. The
newly-discovered devices are now visible.

Dynamic LUN expansion

Many modern disk arrays allow existing LUNSs to be resized. Veritas Volume Manager
(VxVM) supports dynamic LUN expansion, by providing a facility to update disk
headers and other VxVM structures to match a new LUN size. The device must
have a SCSI interface that is presented by a smart switch, smart array, or RAID
controller.

Resizing should only be performed on LUNSs that preserve data. Consult the array
documentation to verify that data preservation is supported and has been qualified.
The operation also requires that only storage at the end of the LUN is affected.
Data at the beginning of the LUN must not be altered. No attempt is made to verify
the validity of pre-existing data on the LUN. The operation should be performed on
the host where the disk group is imported (or on the master node for a cluster-shared
disk group).

VxVM does not support resizing of LUNs that are not part of a disk group. It is not
possible to resize LUNs that are in the boot disk group (aliased as bootdg), in a
deported disk group, or that are offline, uninitialized, being reinitialized, or in an
error state.

VxVM does not support resizing of a disk with the VxXVM cdsdisk layout to a size
greater than 1 TB if the disk group version is less than 160. VxVM added support
for cdsdisk disks greater than 1 TB starting in disk group version 160.

When a disk is resized from the array side, you must also resize the disk from the
VxVM side to make VxVM aware of the new size.

Use the following form of the vxdisk command to make VxVM aware of the new
size of a LUN that has been resized:

vxdisk [-f] [-g diskgroup] resize {accessname|medianame} \

[length=value]

Dynamic Reconfiguration of devices | 268
Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool

If a disk media name rather than a disk access name is specified, a disk group
name is required. Specify a disk group with the -g option or configure a default disk
group. If the default disk group is not configured, the above command generates
an error message.

Following a resize operation to increase the length that is defined for a device,
additional disk space on the device is available for allocation. You can optionally
specify the new size by using the 1ength attribute.

Any volumes on the device should only be grown after the LUN itself has first been
grown.

Warning: Do not perform this operation when replacing a physical disk with a disk
of a different size as data is not preserved.

Before shrinking a LUN, first shrink any volumes on the LUN or move those volumes
off of the LUN. Then, resize the device using vxdisk resize. Finally, resize the
LUN itself using the storage array's management utilities. By default, the resize
fails if any subdisks would be disabled as a result of their being removed in whole
or in part during a shrink operation.

If the device that is being resized has the only valid configuration copy for a disk
group, the - £ option may be specified to forcibly resize the device. Note the following
exception. For disks with the VXVM cdsdisk layout, disks larger than 1 TB in size
have a different internal layout than disks smaller than 1 TB. Therefore, resizing a
cdsdisk disk from less than 1 TB to greater than 1 TB requires special care if the
disk group only has one disk. In this case, you must add a second disk (of any size)
to the disk group prior to performing the vxdisk resize command on the original
disk. You can remove the second disk from the disk group after the resize operation
has completed.

Caution: Resizing a device that contains the only valid configuration copy for a
disk group can result in data loss if a system crash occurs during the resize.

Resizing a virtual disk device is a non-transactional operation outside the control
of VXVM. This means that the resize command may have to be re-issued following
a system crash. In addition, a system crash may leave the private region on the
device in an unusable state. If this occurs, the disk must be reinitialized, reattached
to the disk group, and its data resynchronized or recovered from a backup.

Dynamic Reconfiguration of devices
Manually reconfiguring a LUN online that is under DMP control

Replacing a host bus adapter online

Dynamic Multi-Pathing (DMP) provides a Dynamic Reconfiguration tool to simplify
the removal of host bus adapters from an existing system.

To replace a host bus adapter online

1

N~ o a b~

Start the vxdiskadm utility:

vxdiskadm

Select the Dynamic Reconfiguration operations option from the vxdiskadm
menu.

Select the Replace HBAs option.

The output displays a list of HBAs that are available to DMP.
Select one or more HBAs to replace.

At the prompt, confirm the HBA selection.

Replace the host bus adapter.

Return to the Dynamic Reconfiguration tool and select y to continue the
replacement process.

DMP updates the operating system device tree.

Manually reconfiguring a LUN online that is under

DMP control

Dynamic LUN reconfigurations require array configuration commands, operating
system commands, and Veritas Volume manager commands. To complete the
operations correctly, you must issue the commands in the proper sequence on the
host.

Overview of manually reconfiguring a LUN

This section only provides an overview of the prechecks and the procedure to
manually add or remove a LUN. The procedures have been elaborately documented
in the topics listed in the following table:

269

Dynamic Reconfiguration of devices

Manually reconfiguring a LUN online that is under DMP control

Table 10-3

Task

Topic

Removing LUN dynamically
from an existing target ID

See “Manually removing LUNs dynamically from an
existing target ID” on page 273.

Cleaning up the operating
system device tree after
removing LUNs

See “Manually cleaning up the operating system device
tree after removing LUNs” on page 278.

Scanning an operating system
device tree after adding or
removing LUNs

See “Scanning an operating system device tree after
adding or removing LUNs” on page 277.

Adding LUN dynamically to a
new target ID

See “Manually adding new LUNs dynamically to a new
target ID” on page 275.

Dynamic LUN expansion

See “Dynamic LUN expansion” on page 267.

Changing the LUN
characteristics

See “Changing the characteristics of a LUN from the array
side” on page 278.

270

Dynamic Reconfiguration of devices
Manually reconfiguring a LUN online that is under DMP control

Figure 10-1 LUN reconfiguration overview

*

[vxdisk rm da-name |

*

Refresh fetc/vx/disk.info

Procedure
to add a
vxdmpadm —f disable
Félampnnds Refresh VxVM and LUN to the
l DMP server
Remove LUN Soar G5 o ttecinew
LUN
Clean-up stale OS5 T
device handles
l Refresh array database
Refresh VxVM and T
DMP
‘L Add LUN
Refrash /etc/iv/disk.info |
Prechecks

Perform the following prechecks before manually reconfiguring a LUN:

Table 10-4 Prechecks

Task

Command

Check the /etc/vx/disk.info file

grep “Oxffff” /etc/vx/disk.info

Refresh the OS layer

echo '- - -' >

/sys/class/scsi_host/host$i/scan

List OS device handles

lsscsi

Refresh VxVM and DMP

vxdisk scandisks

271

Dynamic Reconfiguration of devices
Manually reconfiguring a LUN online that is under DMP control

Table 10-4 Prechecks (continued)
Task Command
Refresh DDL layer/dev_t (device # vxddladm assign names
number) list

Note: Ensure that the OS and VxVM are both clean prior to provisioning any new
LUNSs.

Manually removing a LUN

Perform the following steps to manually remove a LUN:

Table 10-5 LUN removal steps
Task Validation
Unmount file system (s) Confirm whether the disk has been removed from

the disk group.

Close the VxVM device: Confirm whether the VxVM device has been

. closed:
vxdisk rm da-name

vxdisk list

Disable DMP paths: Confirm whether the DMP paths have been

disabled:
vxdmpadm —-f disable

dmpnodename=da-name # vxdmpadm getsubpaths
dmpnodename=da-name

Mask LUN from the server Confirm whether the LUN has been removed at
the array level.

Clean-up OS device handles: Confirm whether OS device handles are clean:

echo 1 > # lsscsi

/sys/block/device name/device/delete

Refresh VxVM and DMP:

vxdisk scandisks

Refresh DDL layer/dev_t (device number) list:

vxddladm assign names

272

Dynamic Reconfiguration of devices | 273
Manually reconfiguring a LUN online that is under DMP control

Manually adding a LUN
To manually add a LUN

1

a h~h WODN

Mask LUN to HBA worldwide name (WWN) in the server.
Refresh the array database.

Refresh OS device handles.

Refresh VxVM and DMP.

Refresh the /etc/vx/disk.info file.

Manually removing LUNs dynamically from an existing target ID

In this case, a group of LUNs is unmapped from the host HBA ports and an operating
system device scan is issued. To add subsequent LUNs seamlessly, perform
additional steps to clean up the operating system device tree.

The high-level procedure and the SF commands are generic. However, the operating
system commands may vary depending on the Linux version. For example, the
following procedure uses Linux Suse10.

To remove LUNs dynamically from an existing target ID

1

Prior to any dynamic reconfiguration, ensure that the dmp cache open tunable
is set to on. This setting is the default.

vxdmpadm gettune dmp_cache_open
If the tunable is set to ot £, set the dmp_cache open tunable to on.

vxdmpadm settune dmp_cache_open=on

Identify which LUNs to remove from the host. Do one of the following:

= Use Storage Array Management to identify the Array Volume ID (AVID) for
the LUNSs.

= If the array does not report the AVID, use the LUN index.
For LUNs under VxVM, perform the following steps:

» Evacuate the data from the LUNs using the vxevac command.
See the vxevac(1M) online manual page.

After the data has been evacuated, enter the following command to remove
the LUNs from the disk group:

vxdg -g diskgroup rmdisk da-name

Dynamic Reconfiguration of devices | 274
Manually reconfiguring a LUN online that is under DMP control

= If the data has not been evacuated and the LUN is part of a subdisk or disk
group, enter the following command to remove the LUNs from the disk
group. If the disk is part of a shared disk group, you must use the -x option
to force the removal.

vxdg -g diskgroup -k rmdisk da-name

For LUNs using Linux LVM over DMP devices, remove the device from the
LVM volume group

vgreduce vgname devicepath

Using the AVID or LUN index, use Storage Array Management to unmap or
unmask the LUNs you identified in step 2.

Remove the LUNs from the vxdisk list. Enter the following command on all
nodes in a cluster:

vxdisk rm da-name

This is a required step. If you do not perform this step, the DMP device tree
shows ghost paths.

Clean up the Linux SCSI device tree for the devices that you removed in step
6.

See “Manually cleaning up the operating system device tree after removing
LUNSs” on page 278.

This step is required. You must clean up the operating system SCSI device
tree to release the SCSI target ID for reuse if a new LUN is added to the host
later.

Scan the operating system device tree.

See “Scanning an operating system device tree after adding or removing LUNs”
on page 277.

Use SF to perform a device scan. You must perform this operation on all nodes
in a cluster. Enter one of the following commands:

m # vxdctl enable

m # vxdisk scandisks

Dynamic Reconfiguration of devices | 275
Manually reconfiguring a LUN online that is under DMP control

10 Refresh the DMP device name database using the following command:

vxddladm assign names

11 Verify that the LUNs were removed cleanly by answering the following
questions:

= Is the device tree clean?
Verify that the operating system metanodes are removed from the
/sys/block directory.

= Were all the appropriate LUNs removed?
Use the DMP disk reporting tools such as the vxdisk 1ist command output
to determine if the LUNs have been cleaned up successfully.

» Isthe vxdisk 1ist output correct?
Verify that the vxdisk 1ist output shows the correct number of paths and
does not include any ghost disks.

If the answer to any of these questions is "No," return to step 5 and perform
the required steps.

If the answer to all of the questions is "Yes," the LUN remove operation is
successful.

Manually adding new LUNs dynamically to a new target ID

In this case, a new group of LUNs is mapped to the host via multiple HBA ports.
An operating system device scan is issued for the LUNs to be recognized and added
to DMP control.

The high-level procedure and the SF commands are generic. However, the operating
system commands may vary depending on the Linux version. For example, the
following procedure uses Linux Suse10.

To add new LUNs dynamically to a new target ID

1 Prior to any dynamic reconfiguration, ensure that the dmp_cache open tunable
is set to on. This setting is the default.

vxdmpadm gettune dmp_cache_open
If the tunable is set to of £, set the dmp _cache open tunable to on.

vxdmpadm settune dmp_cache_open=on

2 Identify which LUNs to add to the host. Do one of the following:

Dynamic Reconfiguration of devices
Manually reconfiguring a LUN online that is under DMP control

» Use Storage Array Management to identify the Array Volume ID (AVID) for
the LUNSs.

= If the array does not report the AVID, use the LUN index.
3 Map/mask the LUNSs to the new target IDs on multiple hosts.
Scan the operating system device.

See “Scanning an operating system device tree after adding or removing LUNs”
on page 277.

Repeat step 2 and step 3 until you see that all the LUNs have been added.

5 Use SF to perform a device scan. You must perform this operation on all nodes
in a cluster. Enter one of the following commands:

m # vxdctl enable
m # vxdisk scandisks

6 Refresh the DMP device name database using the following command:

vxddladm assign names

7 Verify that the LUNs were added correctly by answering the following questions:
= Do the newly provisioned LUNs appear in the vxdisk 1ist output?
= Are the configured paths present for each LUN?

If the answer to any of these questions is "No," return to step 2 and begin the
procedure again.

If the answer to all of the questions is "Yes," the LUNs have been successfully
added. You can now add the LUNs to a disk group, create new volumes, or
grow existing volumes.

If the dmp_native_support tunable is set to ON and the new LUN does not
have a VxVM label or is not claimed by a TPD driver then the LUN is available
for use by LVM.

About detecting target ID reuse if the operating system device tree
is not cleaned up

If you try to reprovision a LUN or set of LUNs whose previously-valid operating
system device entries are not cleaned up, the following messages are displayed.
Also, DMP reconfiguration during the DMP device scan and DMP reconfiguration
are temporarily inhibited.

276

Dynamic Reconfiguration of devices
Manually reconfiguring a LUN online that is under DMP control

See “Manually cleaning up the operating system device tree after removing LUNs”
on page 278.

VxVM vxdisk ERROR V-5-1-14519 Data Corruption Protection Activated

- User Corrective Action Needed

VxVM vxdisk INFO V-5-1-14521 To recover, first ensure that the 0S

device tree is up to date (requires OS specific commands) .

VxVM vxdisk INFO V-5-1-14520 Then, execute 'vxdisk rm' on the

following devices before reinitiating device discovery. <DA names>

The message above indicates that a new LUN is trying to reuse the target ID of an
older LUN. The device entries have not been cleaned, so the new LUN cannot use
the target ID. Until the operating system device tree is cleaned up, DMP prevents
this operation.

Scanning an operating system device tree after adding or removing

LUNs

After you add or remove LUNs, scan the operating system device tree to verify that
the operation completed successfully.

Linux provides several methods for rescanning the SCSI bus and identifying the
devices mapped to it. These methods include the following:

m The SCSI scan function in the /sys directory
= HBA vendor utilities
To scan using the SCSI scan function

¢ Enter the following command:
echo '- - -' > /sys/class/scsi_host/host$i/scan

where the three dashes refer to the channel, target, and LUN numbers, and
host$i is the host bus adapter instance. This example scans every channel,
target, and LUN visible via this host bus adapter instance.

To scan using HBA vendor utilities

¢ Follow the vendor's instructions for the HBA utility. Examples include the
following:

= QLogic provides a script that dynamically scans for newly-added LUNs.
You can download it from the QLogic Web site. To run the script, enter the
following command:

./ql-dynamic-tgt-lun-disc.sh

277

Dynamic Reconfiguration of devices
Changing the characteristics of a LUN from the array side

= Emulex provides an HBAnywhere script. You can download it from the
Emulex web site. The script has a LUN Scan Utility that dynamically scans
for newly-added LUNs. To run the utility, enter the following command:

lun_scan all

Manually cleaning up the operating system device tree after removing
LUNSs

After you remove LUNSs, you must clean up the operating system device tree.

The operating system commands may vary, depending on the Linux version. The
following procedure uses SUSE 10. If any of these steps do not produce the desired
result, contact Novell support.

To clean up the operating system device tree after removing LUNs

1 Remove the device from the operating system database. Enter the following
command:

echo 1 > /sys/block/$PATH _SYS/device/delete

where PATH_SYS is the name of the device you want to remove.

2 When you enter the following command, no devices should be displayed. This
step verifies that the LUNs have been removed.

lsscsi | grep PATH SYS

3 After you remove the LUNS, clean up the device. Enter the following command:
echo "- - -" > /sys/class/scsi_host/host$I/scan

where the three dashes refer to the channel, target, and LUN numbers, and
host$iis the host bus adapter instance. This example cleans up every channel,
target, and LUN visible via this host bus adapter instance.

Changing the characteristics of a LUN from the
array side

Some arrays provide a way to change the properties of LUNs. In most cases, you
must completely stop usage of the device before the device shows the changed
characteristics. We recommend taking the device offline before changing the LUN
properties, and bringing the device back online again afterwards.

278

Dynamic Reconfiguration of devices
Changing the characteristics of a LUN from the array side

In certain cases, such as EMC BCV and SRDF operations, the device can remain
online during this procedure.

In a cluster, perform the steps on all the nodes in the cluster.

To change the properties of a LUN

1

Stop all applications and volumes that are hosted on the device.

If the device is in use by Veritas Volume Manager (VxVM), perform the following
steps:

= If the device is part of a disk group, move the disk out of the disk group.
vxdg -g dgname rmdisk da_name

See “Removing a disk from a disk group” on page 675.

= Bring the disk offline.
In a cluster, perform this step from all of the nodes.

vxdisk offline da name
For example:

vxdisk offline eva4ké6k0_ 0

For LUNs using Linux LVM over DMP devices, remove the device from the
LVM volume group

vgreduce vgname devicepath

Change the LUN characteristics.
Bring the device online.
For a Veritas VVolume Manager disk:

= Bring the device online.

vxdisk online da_ name

= Add the disk back into the disk group.
vxdg -g dgname adddisk da name

See “Removing a disk from a disk group” on page 675.

For LUNs using Linux LVM over DMP devices, add the device back into the
LVM volume group

279

Dynamic Reconfiguration of devices | 280
Upgrading the array controller firmware online

vgreduce vgname

devicepath

4 Use DMP to perform a device scan.

In a cluster, perform this command on all the nodes.

vxdisk scandisks

Upgrading the array controller firmware online

Storage array subsystems need code upgrades as fixes, patches, or feature
upgrades. You can perform these upgrades online when the file system is mounted
and I/Os are being served to the storage.

Storage subsystems contain multiple controllers for redundancy. An online upgrade
is done one controller at a time. Dynamic Multi-Pathing (DMP) fails over all I/O to
an alternate controller while one of the controllers is undergoing an Online Controller
Upgrade. After the controller has completely staged the code, it reboots, resets,
and comes online with the new version of the code. The other controller goes
through the same process, and I/O fails over to the alternate controller.

Note: Throughout this process, application I/O is not affected.

Array vendors have different names for this process. For example, EMC calls it a
nondisruptive upgrade (NDU) for CLARIiON arrays.

A/A type arrays require no special handling during this online upgrade process. For
A/P, A/IPF, and ALUA type arrays, DMP performs array-specific handling through
vendor-specific array policy modules (APMs) during an online controller code
upgrade.

When a controller resets and reboots during a code upgrade, DMP detects this
state through the SCSI status. DMP immediately fails over all I/O to the next
controller.

If the array does not fully support NDU, all paths to the controllers may be
unavailable for I/O for a short period of time. Before beginning the upgrade, set the
dmp_lun_retry timeout tunable to a period greater than the time that you expect
the controllers to be unavailable for /0. DMP does not fail the 1/0Os until the end of
the dmp_lun retry timeout period, or until the I/O succeeds, whichever happens
first. Therefore, you can perform the firmware upgrade without interrupting the
application 1/Os.

Dynamic Reconfiguration of devices | 281
Upgrading the array controller firmware online

For example, if you expect the paths to be unavailable for 1/0 for 300 seconds, use
the following command:

vxdmpadm settune dmp_lun_retry timeout=300

DMP does not fail the 1/Os for 300 seconds, or until the 1/0 succeeds.

To verify which arrays support Online Controller Upgrade or NDU, see the hardware
compatibility list (HCL) at the following URL:

https://www.veritas.com/support/en_US/article.000107677

https://www.veritas.com/support/en_US/article.000107677

Managing devices

This chapter includes the following topics:

= Displaying disk information

= Changing the disk device naming scheme
= About disk installation and formatting

= Adding and removing disks

= Renaming a disk

Displaying disk information

Before you use a disk, you need to know if it has been initialized and placed under
Veritas Volume Manager (VxVM) control. You also need to know if the disk is part
of a disk group, because you cannot create volumes on a disk that is not part of a
disk group. The vxdisk 1ist command displays device names for all recognized
disks, the disk names, the disk group names associated with each disk, and the
status of each disk.

To display information on all disks that are known to VxVM

¢ Use the following command:

vxdisk list

VxVM displays output similar to the following:

DEVICE TYPE

emc_clariion0_ 26
emc_clariion0_ 27
emc_clariion0_107
emc_clariion0O_108
emc_clariion0O_110
emc_clariion0O_ 111

emc_clariion0O_144

auto:
auto:
auto:
auto:
auto:
:cdsdisk

auto:

auto

DISK

cdsdisk
cdsdisk
cdsdisk
cdsdisk
cdsdisk

none

Managing devices | 283

Displaying disk information

GROUP STATUS

- - online

- - online
dskO tcdg online
dskl tcdg online
dsk2 tcdg online
dsk3 tcdg online

online invalid

The phrase online invalid in the sTaTus line indicates that a disk has not
yet been added to VxVM control. These disks may or may not have been
initialized by VxVM previously. Disks that are listed as online are already

under VxVM control.

To display information about an individual disk

¢ Use the following command:

vxdisk [-v] list diskname

The -v option causes the command to additionally list all tags and tag values
that are defined for the disk. By default, tags are not displayed.

Displaying disk information with vxdiskadm

Veritas Volume Manager (VxVM) enables you to see disk information using the
vxdiskadm program. Disk information shows you which disks are initialized, to which
disk groups they belong, and the disk status. The 1ist option displays device names
for all recognized disks, the disk names, the disk group names associated with
each disk, and the status of each disk.

To display disk information

1 Start the vxdiskadm program, and select 1ist (List disk information)

from the main menu.

2 Atthe following prompt, enter the name of the device you want to see, or enter
al1 for a list of all devices:

Managing devices | 284
Changing the disk device naming scheme

List disk information

Menu: VolumeManager/Disk/ListDisk

VxVM INFO V-5-2-475 Use this menu operation to display a list of
disks. You can also choose to list detailed information about

the disk at a specific disk device address.

Enter disk device or "all" [<address>,all,q,?] (default: all)

» If you enter a11, VxVM displays the device name, disk name, group, and
status of all the devices.

= Ifyou enter the name of a device, VxVM displays complete disk information
(including the device name, the type of disk, and information about the
public and private areas of the disk) of that device.

Once you have examined this information, press Return to return to the main
menu.

Changing the disk device naming scheme

You can either use enclosure-based naming for disks or the operating system’s
naming scheme. DMP commands display device names according to the current
naming scheme.

The default naming scheme is enclosure-based naming (EBN).

When you use Dynamic Multi-Pathing (DMP) with native volumes, the disk naming
scheme must be EBN, the use_avid attribute must be yes, and the persistence
attribute must be set to yes.

Managing devices | 285
Changing the disk device naming scheme

To change the disk-naming scheme

& Select change the disk naming scheme from the vxdiskadm main menu to
change the disk-naming scheme that you want SF to use. When prompted,
enter y to change the naming scheme.

OR

Change the naming scheme from the command line. Use the following
command to select enclosure-based naming:

vxddladm set namingscheme=ebn [persistence={yes|no}] \

[use_avid={yes|no}] [lowercase={yes|no}]
Use the following command to select operating system-based naming:

vxddladm set namingscheme=osn [persistence={yes|no}] \

[lowercase=yes|no]

The optional persistence argument allows you to select whether the names
of disk devices that are displayed by SF remain unchanged after disk hardware
has been reconfigured and the system rebooted. By default, enclosure-based
naming is persistent. Operating system-based naming is not persistent by
default.

To change only the naming persistence without changing the naming scheme,
run the vxddladm set namingscheme command for the current naming scheme,
and specify the persistence attribute.

By default, the names of the enclosure are converted to lowercase, regardless
of the case of the name specified by the ASL. The enclosure-based device
names are therefore in lowercase. Set the 1owercase=no option to suppress
the conversion to lowercase.

For enclosure-based naming, the use_avid option specifies whether the Array
Volume ID is used for the index number in the device name. By default,
use_avid=yes, indicating the devices are named as enclosure_avid. If use_avid
is set to no, DMP devices are named as enclosure_index. The index number
is assigned after the devices are sorted by LUN serial number.

The change is immediate whichever method you use.

See “Regenerating persistent device names” on page 287.

Displaying the disk-naming scheme

In Dynamic Multi-Pathing (DMP), disk naming can be operating system-based
naming or enclosure-based naming.

Managing devices | 286
Changing the disk device naming scheme

The following command displays whether the SF disk-naming scheme is currently
set. It also displays the attributes for the disk naming scheme, such as whether
persistence is enabled.

To display the current disk-naming scheme and its mode of operations, use the
following command:

vxddladm get namingscheme
NAMING SCHEME PERSISTENCE LOWERCASE USE AVID

Enclosure Based Yes Yes Yes

Setting customized names for DMP nodes

The Dynamic Multi-Pathing (DMP) node name is the metadevice name that
represents the multiple paths to a disk. The Device Discovery Layer (DDL) generates
the DMP node name from the device name according to the Storage Foundation
(SF) naming scheme.

You can specify a customized name for a DMP node. User-specified names are
persistent even if names persistence is turned off.

You cannot assign a customized name that is already in use by a device. However,
if you assign names that follow the same naming conventions as the names that
the DDL generates, a name collision can potentially occur when a device is added.
If the user-defined name for a DMP device is the same as the DDL-generated name
for another DMP device, the vxdisk 1ist command output displays one of the
devices as 'error'.

To specify a custom name for a DMP node

¢ Use the following command:

vxdmpadm setattr dmpnode dmpnodename name=name

You can also assign names from an input file. This enables you to customize the
DMP nodes on the system with meaningful names.

To specify a custom name for an enclosure

¢ Use the following command:

vxdmpadm setattr enclosure enc name name=custom name

Managing devices | 287
Changing the disk device naming scheme

To assign DMP nodes from a file

1 To obtain a file populated with the names of the devices in your configuration,
use the following command:

vxddladm -1 assign names > filename

The sample file shows the format required and serves as a template to specify
your customized names.

You can also use the script vxgetdmpnames to get a sample file populated from
the devices in your configuration.

Modify the file as required. Be sure to maintain the correct format in the file.

To assign the names, specify the name and path of the file to the following
command:

vxddladm assign names file=pathname

To clear custom names

& To clear the names, and use the default operating system-based naming or
enclosure-based naming, use the following command:

vxddladm -c assign names

Regenerating persistent device names

The persistent device naming feature makes the names of disk devices persistent
across system reboots. The Device Discovery Layer (DDL) assigns device names
according to the persistent device name database.

If operating system-based naming is selected, each disk name is usually set to the
name of one of the paths to the disk. After hardware reconfiguration and a
subsequent reboot, the operating system may generate different names for the
paths to the disks. Therefore, the persistent device names may no longer correspond
to the actual paths. This does not prevent the disks from being used, but the
association between the disk name and one of its paths is lost.

Similarly, if enclosure-based naming is selected, the device name depends on the
name of the enclosure and an index number. If a hardware configuration changes
the order of the LUNs exposed by the array, the persistent device name may not
reflect the current index.

Managing devices | 288

Changing the disk device naming scheme

To regenerate persistent device names

& To regenerate the persistent names repository, use the following command:
vxddladm [-c] assign names

The -c option clears all user-specified names and replaces them with
autogenerated names.

If the -c option is not specified, existing user-specified names are maintained,
but operating system-based and enclosure-based names are regenerated.

Changing device naming for enclosures controlled by third-party

drivers

By default, enclosures controlled by third-party drivers (TPD) use pseudo device
names based on the TPD-assigned node names. If you change the device naming
to native, the devices are named in the same format as other Storage Foundation
(SF) devices. The devices use either operating system names (OSN) or
enclosure-based names (EBN), depending on which naming scheme is set.

See “Displaying the disk-naming scheme” on page 285.
To change device naming for TPD-controlled enclosures

& Fordisk enclosures that are controlled by third-party drivers (TPD) whose
coexistence is supported by an appropriate Array Support Library (ASL), the
default behavior is to assign device names that are based on the TPD-assigned
node names. You can use the vxdmpadm command to switch between these
names and the device names that are known to the operating system:

vxdmpadm setattr enclosure enclosure name tpdmode=native|pseudo

The argument to the tpdmode attribute selects names that are based on those
used by the operating system (native), or TPD-assigned node names (pseudo).

The use of this command to change between TPD and operating system-based
naming is illustrated in the following example for the enclosure named
pp_emc_clariiono. Inthis example, the device-naming scheme is set to OSN.

wvxdisk list

DEVICE TYPE DISK GROUP STATUS
emcpowerp auto:cdsdisk - - online
emcpowerq auto:cdsdisk - - online
emcpowerr auto:cdsdisk - - online
emcpowers auto:cdsdisk - - online

emcpowert auto:cdsdisk - - online

Managing devices | 289
Changing the disk device naming scheme

vxdmpadm setattr enclosure pp_emc_clariion0 tpdmode=native

wvxdisk list

DEVICE TYPE DISK GROUP STATUS
sde auto:cdsdisk - - online
sdf auto:cdsdisk - - online
sdg auto:cdsdisk - - online
sdh auto:cdsdisk - - online
sdi auto:cdsdisk - - online

If tpdmode is set to native, the path with the smallest device number is
displayed.

About the Array Volume Identifier (AVID) attribute

DMP assigns enclosure-based names to DMP metadevices using an array-specific
attribute called the Array Volume ID (AVID). The AVID is a unique identifier for the
LUN that is provided by the array. The Array Support Library (ASL) corresponding
to the array provides the AVID property. Within an array enclosure, DMP uses the
Array Volume Identifier (AVID) as an index in the DMP metanode name. The DMP
metanode name is in the format enclosureIp avip.

The SF utilities such as vxdmpadm getdmpnode display the DMP metanode name,
which includes the AVID property. Use the AVID to correlate the DMP metanode
name to the LUN displayed in the array management interface (GUI or CLI) .

If the ASL does not provide the array volume ID property, then DMP generates an
index number. DMP sorts the devices seen from an array by the LUN serial number
and then assigns the index number. In this case, the DMP metanode name is in
the format enclosureID index.

Enclosure based naming with the Array Volume Identifier
(AVID) attribute

By default, Dynamic Multi-Pathing (DMP) assigns enclosure-based names to DMP
metadevices using an array-specific attribute called the Array Volume ID (AVID).
The AVID provides a unique identifier for the LUN that is provided by the array. The
ASL corresponding to the array provides the AVID property. Within an array
enclosure, DMP uses the Array Volume Identifier (AVID) as an index in the DMP
metanode name. The DMP metanode name is in the format enclosureIp aviIp.

With the introduction of AVID to the enclosure-based naming (EBN) naming scheme,
identifying storage devices becomes much easier. The array volume identifier (AVID)
enables you to have consistent device naming across multiple nodes connected to

Managing devices
Changing the disk device naming scheme

the same storage. The disk access name never changes, because it is based on
the name defined by the array itself.

Note: DMP does not support AVID with third party drivers.

If DMP does not have access to a device’s AVID, it retrieves another unique LUN
identifier called the LUN serial number. DMP sorts the devices based on the LUN
Serial Number (LSN), and then assigns the index number. All hosts see the same
set of devices, so all hosts will have the same sorted list, leading to consistent
device indices across the cluster. In this case, the DMP metanode name is in the
format enclosureID index.

DMP also supports a scalable framework, that allows you to fully customize the
device names on a host by applying a device naming file that associates custom
names with cabinet and LUN serial numbers.

If a Cluster Volume Manager (CVM) cluster is symmetric, each node in the cluster
accesses the same set of disks. Enclosure-based names provide a consistent
naming system so that the device names are the same on each node.

The Storage Foundation (SF) utilities such as vxdisk 1ist display the DMP
metanode name, which includes the AVID property. Use the AVID to correlate the
DMP metanode name to the LUN displayed in the array management interface
(GUl or CLI) .

For example, on an EMC CX array where the enclosure is emc_clariion0 and the
array volume ID provided by the ASL is 91, the DMP metanode name is
emc_clariion0_91. The following sample output shows the DMP metanode names:

S wxdisk list

290

emc_clariion0_91 auto:cdsdisk emc_clariion0_91 dgl online shared
emc_clariion0_92 auto:cdsdisk emc_clariion0_92 dgl online shared
emc_clariion0_93 auto:cdsdisk emc_clariion0_93 dgl online shared

emc_clariion0_282 auto:cdsdisk emc_clariion0_282 dgl online shared

emc_clariion0_283 auto:cdsdisk emc_clariion0_283 dgl online shared

emc_clariion0_284 auto:cdsdisk emc_clariion0_284 dgl online shared

vxddladm get namingscheme
NAMING SCHEME PERSISTENCE LOWERCASE USE_AVID

Enclosure Based Yes Yes Yes

Managing devices
About disk installation and formatting

About disk installation and formatting

Depending on the hardware capabilities of your disks and of your system, you may
either need to shut down and power off your system before installing the disks, or
you may be able to hot-insert the disks into the live system. Many operating systems
can detect the presence of the new disks on being rebooted. If the disks are inserted
while the system is live, you may need to enter an operating system-specific
command to notify the system.

If the disks require low or intermediate-level formatting before use, use the operating
system-specific formatting command to do this.

Note: SCSI disks are usually preformatted. Reformatting is needed only if the
existing formatting has become damaged.

See “Adding a disk to VxVM” on page 291.

Adding and removing disks

This section describes managing devices.

Adding a disk to VxVM

Formatted disks being placed under Veritas Volume Manager (VxVM) control may
be new or previously used outside VxVM.

The set of disks can consist of all disks on a controller, selected disks, or a
combination of these.

Depending on the circumstances, all of the disks may not be processed in the same
way.

For example, some disks may be initialized, while others may be encapsulated to
preserve existing data on the disks.

When initializing multiple disks at one time, it is possible to exclude certain disks
or certain controllers.

You can also exclude certain disks or certain controllers when encapsulating multiple
disks at one time.

To exclude a device from the view of VXVM, select prevent
multipathing/Suppress devices from VxVM’s view from the vxdiskadm main
menu.

291

Managing devices | 292
Adding and removing disks

Warning: Initialization does not preserve the existing data on the disks.

A disk cannot be initialized if it does not have a valid useable partition table. You
can use the £disk command to create an empty partition table on a disk as shown
here:

fdisk /dev/sdX

Command (m for help): o

Command (m for help): w

where /dev/sdx is the name of the disk device, for example, /dev/sdi.

Warning: The £disk command can destroy data on the disk. Do not use this
command if the disk contains data that you want to preserve.

See “Making devices invisible to VxVM” on page 210.

Managing devices | 293
Adding and removing disks

To initialize disks for VxVM use

1

Select Add or initialize one or more disks from the vxdiskadm main
menu.

At the following prompt, enter the disk device name of the disk to be added to
VxVM control (or enter 1ist for a list of disks):

Select disk devices to add:
[<pattern-list>,all,list,q,?]

The pattern-list can be a single disk, or a series of disks. If pattern-list consists
of multiple items, separate them using white space. For example, specify four
disks as follows:

sde sdf sdg sdh

If you enter 1ist at the prompt, the vxdiskadm program displays a list of the
disks available to the system:

DEVICE DISK GROUP STATUS
sdb mydg01 mydg online
sdc mydg02 mydg online
sdd mydg03 mydg online
sde - - online
sdf mydg04 mydg online
sdg - - online invalid

The phrase online invalid inthe sTaTUS line indicates that a disk has yet
to be added or initialized for VxVM control. Disks that are listed as on1ine with
a disk name and disk group are already under VxVM control.

Enter the device name or pattern of the disks that you want to initialize at the
prompt and press Return.

To continue with the operation, enter y (or press Return) at the following prompt:

Here are the disks selected. Output format: [Device]
list of device names

Continue operation? [y,n,q,?] (default: y) y

Managing devices
Adding and removing disks

At the following prompt, specify the disk group to which the disk should be
added, or none to reserve the disks for future use:

You can choose to add these disks to an existing disk group,

a new disk group, or you can leave these disks available for use
by future add or replacement operations. To create a new disk
group, select a disk group name that does not yet exist. To
leave the disks available for future use, specify a disk group

name of none.
Which disk group [<group>,none,list,q, ?]
If you specified the name of a disk group that does not already exist, vxdiskadm

prompts for confirmation that you really want to create this new disk group:

There is no active disk group named disk group name.

Create a new group named disk group name? [y,n,d,?]

(default: y)y

You are then prompted to confirm whether the disk group should support the
Cross-platform Data Sharing (CDS) feature:

Create the disk group as a CDS disk group? [y,n,q,?]
(default: vy)

If the new disk group may be moved between different operating system
platforms, enter y. Otherwise, enter n.

At the following prompt, either press Return to accept the default disk name
or enter n to allow you to define your own disk names:

Use default disk names for the disks? [y,n,q,?] (default: y) n

When prompted whether the disks should become hot-relocation spares, enter
n (or press Return):

Add disks as spare disks for disk group name? [y,n,q,?]
(default: n) n

When prompted whether to exclude the disks from hot-relocation use, enter n
(or press Return).

Exclude disks from hot-relocation use? [y,n,q,?}
(default: n) n

294

10

11

Managing devices
Adding and removing disks

You are next prompted to choose whether you want to add a site tag to the
disks:

Add site tag to disks? [y,n,q,?] (default: n)

A site tag is usually applied to disk arrays or enclosures, and is not required
unless you want to use the Remote Mirror feature.

If you enter y to choose to add a site tag, you are prompted to the site name
at step 11.

To continue with the operation, enter v (or press Return) at the following prompt:

The selected disks will be added to the disk group
disk group name with default disk names.
list of device names

Continue with operation? [y,n,q,?] (default: y) y
If you chose to tag the disks with a site in step 9, you are now prompted to
enter the site name that should be applied to the disks in each enclosure:

The following disk(s):

list of device names

belong to enclosure(s):

list of enclosure names

Enter site tag for disks on enclosure enclosure name

[<name>, q,?] site name

295

Managing devices | 296
Adding and removing disks

12 If you see the following prompt, it lists any disks that have already been
initialized for use by VxVM:

The following disk devices appear to have been initialized
already.
The disks are currently available as replacement disks.

Output format: [Device]
list of device names

Use these devices? [Y,N,S(elect),q,?] (default: Y) Y

This prompt allows you to indicate “yes” or “no” for all of these disks (v or)
or to select how to process each of these disks on an individual basis (s).

If you are sure that you want to reinitialize all of these disks, enter v at the
following prompt:

VxVM NOTICE V-5-2-366 The following disks you selected for use
appear to already have been initialized for the Volume
Manager. If you are certain the disks already have been
initialized for the Volume Manager, then you do not need to
reinitialize these disk devices.

Output format: [Device]
list of device names

Reinitialize these devices? [Y,N,S(elect),q,?] (default: Y) ¥

Managing devices
Adding and removing disks

13 vxdiskadm may now indicate that one or more disks is a candidate for
encapsulation. Encapsulation allows you to add an active disk to VxVM control
and preserve the data on that disk.If you want to preserve the data on the disk,

enter y. If you are sure that there is no data on the disk that you want to
preserve, enter n to avoid encapsulation.

VxVM NOTICE V-5-2-355 The following disk device has a valid
partition table, but does not appear to have been initialized
for the Volume Manager. If there is data on the disk that
should NOT be destroyed you should encapsulate the existing
disk partitions as volumes instead of adding the disk as a new
disk.

Output format: [Device]
device name

Encapsulate this device? [y,n,q,?] (default: y)

297

Managing devices | 298
Adding and removing disks

14 If you choose to encapsulate the disk, vxdiskadm confirms its device name
and prompts you for permission to proceed. Enter y (or press Return) to
continue encapsulation:

VxVM NOTICE V-5-2-311 The following disk device has been
selected for encapsulation.

Output format: [Device]
device name

Continue with encapsulation? [y,n,q,?] (default: y) y

vxdiskadm now displays an encapsulation status and informs you
that you must perform a shutdown and reboot as soon as

possible:

VxVM INFO V-5-2-333 The disk device device name will be
encapsulated and added to the disk group disk group name with the

disk name disk name.

You can now choose whether the disk is to be formatted as a CDS disk that
is portable between different operating systems, or as a non-portable sliced or
simple disk:

Enter the desired format [cdsdisk,sliced,simple,q, ?]
(default: cdsdisk)

Enter the format that is appropriate for your needs. In most cases, this is the
default format, cdsdisk.

At the following prompt, vxdiskadm asks if you want to use the default private
region size of 65536 blocks (32MB). Press Return to confirm that you want to
use the default value, or enter a different value. (The maximum value that you
can specify is 524288 blocks.)

Enter desired private region length [<privlen>,q, ?]
(default: 65536)

If you entered cdsdisk as the format, you are prompted for the action to be
taken if the disk cannot be converted to this format:

Do you want to use sliced as the format should cdsdisk fail?

ly,n,gq,?] (default: y)

If you enter y, and it is not possible to encapsulate the disk as a CDS disk, it
is encapsulated as a sliced disk. Otherwise, the encapsulation fails.

15

16

17

Managing devices | 299
Adding and removing disks

vxdiskadm then proceeds to encapsulate the disks. You should now reboot
your system at the earliest possible opportunity, for example by running this
command:

shutdown -r now

The /etc/fstab file is updated to include the volume devices that are used to
mount any encapsulated file systems. You may need to update any other
references in backup scripts, databases, or manually created swap devices.
The original /etc/fstab file is saved as /etc/fstab.bdvxvm.

If you choose not to encapsulate the disk, vxdiskadm asks if you want to
initialize the disk instead. Enter y to confirm this:

Instead of encapsulating, initialize? [y,n,q,?] (default: n) yvxdiskadm now
confirms those disks that are being initialized and added to VxVM control with
messages similar to the following. In addition, you may be prompted to perform
surface analysis.

VxVM INFO V-5-2-205 Initializing device device name.

You can now choose whether the disk is to be formatted as a CDS disk that
is portable between different operating systems, or as a non-portable sliced or
simple disk:

Enter the desired format [cdsdisk,sliced,simple,q, ?]
(default: cdsdisk)

Enter the format that is appropriate for your needs. In most cases, this is the
default format, cdsdisk.

At the following prompt, vxdiskadm asks if you want to use the default private
region size of 65536 blocks (32MB). Press Return to confirm that you want to
use the default value, or enter a different value. (The maximum value that you
can specify is 524288 blocks.)

Enter desired private region length [<privlen>,q, ?]
(default: 65536)

vxdiskadm then proceeds to add the disks.

VxVM INFO V-5-2-88 Adding disk device device name to disk group
disk group name with disk name disk name.

Managing devices
Adding and removing disks

18 If you choose not to use the default disk names, vxdiskadm prompts you to
enter the disk name.

19 Atthe following prompt, indicate whether you want to continue to initialize more
disks (y) or return to the vxdiskadm main menu (n):

Add or initialize other disks? [y,n,q,?] (default: n)

You can change the default layout for disks using the vxdisk command or the
vxdiskadm utility.

See the vxdisk(1M) manual page.

See the vxdiskadm(1M) manual page.

Disk reinitialization

You can reinitialize a disk that has previously been initialized for use by Veritas
Volume Manager (VxVM) by putting it under VxVM control as you would a new
disk.

See “Adding a disk to VxVM” on page 291.

Warning: Reinitialization does not preserve data on the disk. If you want to
reinitialize the disk, make sure that it does not contain data that should be preserved.

If the disk you want to add has been used before, but not with a volume manager,
you can encapsulate the disk to preserve its information. If the disk you want to add
has previously been under LVM control, you can preserve the data it contains on
a VxVM disk by the process of conversion.

For detailed information about migrating volumes, see the Veritas InfoScale Solutions
Guide.

Using vxdiskadd to put a disk under VxVM control

You can add a disk to Veritas Volume Manager (VxVM) control with the vxdiskadd
command.

300

Managing devices | 301
Adding and removing disks

To use the vxdiskadd command to put a disk under VxVM control.

¢ Type the following command:
vxdiskadd disk
For example, to initialize the disk sdb:
vxdiskadd sdb

The vxdiskadd command examines your disk to determine whether it has
been initialized and also checks for disks that have been added to VxVM, and
for other conditions.

The vxdiskadd command also checks for disks that can be encapsulated.
See “Encapsulating a disk” on page 723.

If you are adding an uninitialized disk, the vxdiskadd command displays
warning and error messages on the console. Ignore these messages. These
messages should not appear after the disk has been fully initialized; the
vxdiskadd command displays a success message when the initialization
completes.

The interactive dialog for adding a disk using vxdiskadd is similar to that for

vxdiskadm.

See “Adding a disk to VxVM” on page 291.

Removing disks
This section describes how to remove a Veritas Volume Manager (VxVM) disk.
You must disable a disk group before you can remove the last disk in that group.
See “Disabling a disk group” on page 703.
As an alternative to disabling the disk group, you can destroy the disk group.
See “Destroying a disk group” on page 703.

You can remove a disk from a system and move it to another system if the disk is
failing or has failed.

Managing devices | 302
Adding and removing disks

To remove a disk

1 Stop all activity by applications to volumes that are configured on the disk that
is to be removed. Unmount file systems and shut down databases that are
configured on the volumes.

2 Use the following command to stop the volumes:

vxvol [-g diskgroup] stop voll vol2 ...

3 Move the volumes to other disks or back up the volumes. To move a volume,
use vxdiskadm to mirror the volume on one or more disks, then remove the
original copy of the volume. If the volumes are no longer needed, they can be
removed instead of moved.

4 Check that any data on the disk has either been moved to other disks or is no
longer needed.

Select Remove a disk from the vxdiskadm main menu.

6 At the following prompt, enter the disk name of the disk to be removed:
Enter disk name [<disk>,list,q,?] mydg0l

7 If there are any volumes on the disk, VxVM asks you whether they should be

evacuated from the disk. If you wish to keep the volumes, answer y. Otherwise,
answer n.

8 At the following verification prompt, press Return to continue:

VxVM NOTICE V-5-2-284 Requested operation is to remove disk
mydg0l from group mydg.

Continue with operation? [y,n,q,?] (default: y)

The vxdiskadm utility removes the disk from the disk group and displays the
following success message:

VxVM INFO V-5-2-268 Removal of disk mydg0l is complete.

You can now remove the disk or leave it on your system as a replacement.

9 At the following prompt, indicate whether you want to remove other disks (y)
or return to the vxdiskadm main menu (n):

Remove another disk? [y,n,q,?] (default: n)

Managing devices
Adding and removing disks

Removing a disk with subdisks

You can remove a Veritas Volume Manager (VxVM) disk on which some subdisks
are defined. For example, you can consolidate all the volumes onto one disk. If you
use the vxdiskadm program to remove a disk, you can choose to move volumes
off that disk.

Some subdisks are not movable. A subdisk may not be movable for one of the
following reasons:

= There is not enough space on the remaining disks in the subdisks disk group.

= Plexes or striped subdisks cannot be allocated on different disks from existing
plexes or striped subdisks in the volume.

If the vxdiskadm program cannot move some subdisks, remove some plexes from
some disks to free more space before proceeding with the disk removal operation.

See “Removing a volume” on page 712.
To remove a disk with subdisks
1 Run the vxdiskadm program and select Remove a disk from the main menu.

If the disk is used by some subdisks, the following message is displayed:

VxVM ERROR V-5-2-369 The following volumes currently use part of
disk mydg02:

home usrvol
Volumes must be moved from mydg02 before it can be removed.

Move volumes to other disks? [y,n,q,?] (default: n)

2 Choose y to move all subdisks off the disk, if possible.

Removing a disk with no subdisks

You can remove a Veritas Volume Manager (VxVM) disk that contains no subdisks.

303

Managing devices | 304
Renaming a disk

To remove a disk that contains no subdisks from its disk group
¢ Run the vxdiskadm program and select Remove a disk from the main menu,
and respond to the prompts as shown in this example to remove mydg02:

Enter disk name [<disk>,list,q,?] mydg02

VxVM NOTICE V-5-2-284 Requested operation is to remove disk
mydg02 from group mydg.

Continue with operation? [y,n,q,?] (default: y) y
VxVM INFO V-5-2-268 Removal of disk mydg02 is complete.
Clobber disk headers? [y,n,q,?] (default: n) y

Enter y to remove the disk completely from VxVM control. If you do not want
to remove the disk completely from VxVM control, enter n.

Renaming a disk

Veritas Volume Manager (VxVM) gives the disk a default name when you add the
disk to VxVM control, unless you specify a VxVM disk name. VxVM uses the VxVM
disk name to identify the location of the disk or the disk type.

To rename a disk

¢ Type the following command:

Managing devices
Renaming a disk

vxedit [-g diskgroup] rename old diskname new_diskname

By default, VxXVM names subdisk objects after the VxVM disk on which they
are located. Renaming a VxVM disk does not automatically rename the subdisks

on that disk.

For example, you might want to rename disk mydg03, as shown in the following

output from vxdisk list, t0 mydg02:

wvxdisk list

DEVICE
sdb
sdc
sdd

TYPE
auto
auto

auto

:sliced
:sliced

:sliced

DISK
mydg01
mydg03

GROUP STATUS
mydg online
mydg online
- online

You would use the following command to rename the disk.

vxedit -g mydg rename mydg03 mydg02

To confirm that the name change took place, use the vxdisk 1ist command

again:

wvxdisk list

DEVICE
sdb
sdc
sdd

TYPE
auto
auto

auto

:sliced
:sliced
:sliced

DISK
mydg01
mydg02

GROUP STATUS
mydg online
mydg online

online

305

Event monitoring

This chapter includes the following topics:

About the Dynamic Multi-Pathing (DMP) event source daemon (vxesd)
Fabric Monitoring and proactive error detection

Dynamic Multi-Pathing (DMP) discovery of iSCSI and SAN Fibre Channel
topology

DMP event logging

Starting and stopping the Dynamic Multi-Pathing (DMP) event source daemon

About the Dynamic Multi-Pathing (DMP) event
source daemon (vxesd)

The event source daemon (vxesd) is a Dynamic Multi-Pathing (DMP) component
process that receives notifications of any device-related events that are used to
take appropriate actions. The benefits of vxesd include:

Monitoring of SAN fabric events and proactive error detection (SAN event)
See “Fabric Monitoring and proactive error detection” on page 307.

Logging of DMP events for troubleshooting (DMP event)
See “DMP event logging” on page 308.

Automated device discovery (OS event)

Discovery of SAN components and HBA-array port connectivity (Fibre Channel
and iSCSI)

See “Dynamic Multi-Pathing (DMP) discovery of iSCSI and SAN Fibre Channel
topology” on page 308.

Event monitoring | 307
Fabric Monitoring and proactive error detection

See “Starting and stopping the Dynamic Multi-Pathing (DMP) event source daemon”
on page 309.

Fabric Monitoring and proactive error detection

DMP takes a proactive role in detecting errors on paths.

The DMP event source daemon vxesd uses the Storage Networking Industry
Association (SNIA) HBA API library to receive SAN fabric events from the HBA.

DMP checks devices that are suspect based on the information from the SAN
events, even if there is no active 1/0. New I/O is directed to healthy paths while
DMP verifies the suspect devices.

During startup, vxesd queries the HBA (by way of the SNIA library) to obtain the
SAN topology. The vxesd daemon determines the Port World Wide Names (PWWN)
that correspond to each of the device paths that are visible to the operating system.
After the vxesd daemon obtains the topology, vxesd registers with the HBA for SAN
event notification. If LUNs are disconnected from a SAN, the HBA notifies vxesd
of the SAN event, specifying the PWWNs that are affected. The vxesd daemon
uses this event information and correlates it with the previous topology information
to determine which set of device paths have been affected.

The vxesd daemon sends the affected set to the vxconfigd daemon (DDL) so that
the device paths can be marked as suspect.

When the path is marked as suspect, DMP does not send new /O to the path unless
it is the last path to the device. In the background, the DMP restore task checks
the accessibility of the paths on its next periodic cycle using a SCSI inquiry probe.
If the SCSI inquiry fails, DMP disables the path to the affected LUNs, which is also
logged in the event log.

If the LUNSs are reconnected at a later time, the HBA informs vxesd of the SAN
event. When the DMP restore task runs its next test cycle, the disabled paths are
checked with the SCSI probe and re-enabled if successful.

Note: If vxesd receives an HBA LINK UP event, the DMP restore task is restarted
and the SCSI probes run immediately, without waiting for the next periodic cycle.
When the DMP restore task is restarted, it starts a new periodic cycle. If the disabled
paths are not accessible by the time of the first SCSI probe, they are re-tested on
the next cycle (300s by default).

The fabric monitor functionality is enabled by default. The value of the
dmp_monitor fabric tunable is persistent across restarts.

Event monitoring | 308
Dynamic Multi-Pathing (DMP) discovery of iSCSI and SAN Fibre Channel topology

To display the current value of the dmp monitor fabric tunable, use the following
command:

vxdmpadm gettune dmp monitor fabric

To disable the Fabric Monitoring functionality, use the following command:
vxdmpadm settune dmp monitor fabric=off

To enable the Fabric Monitoring functionality, use the following command:

vxdmpadm settune dmp monitor fabric=on

Dynamic Multi-Pathing (DMP) discovery of iISCSI
and SAN Fibre Channel topology

The vxesd builds a topology of iISCSI and Fibre Channel (FC) devices that are
visible to the host. The vxesd daemon uses the SNIA Fibre Channel HBA API to
obtain the SAN topology. If IMA is not available, then the iISCSI management CLI
is used to obtain the iISCSI SAN topology.

To display the hierarchical listing of Fibre Channel and iSCSI devices, use the
following command:

vxddladm list

See the vxddladm (1M) manual page.

DMP event logging

The event source daemon (vxesd) is a Dynamic Multi-Pathing (DMP) component
process that receives notifications of any device-related events that are used to
take appropriate actions.

DMP notifies vxesd of major events, and vxesd logs the event in a log file. These
events include:

= Marking paths or dmpnodes enabled
= Marking paths or dmpnodes disabled
= Throttling of paths

= |/O error analysis

= HBA and SAN events

Event monitoring | 309
Starting and stopping the Dynamic Multi-Pathing (DMP) event source daemon

You can change the level of detail that is displayed in the system or console log
about the DMP events. Use the tunable dmp 1og_level. Valid values are 1 through
9. The default level is 1.

vxdmpadm settune dmp log level=X
The current value of dmp_log_level can be displayed with:
vxdmpadm gettune dmp_log level

For details on the various log levels, see the vxdmpadm(1M) manual page.

Starting and stopping the Dynamic Multi-Pathing
(DMP) event source daemon

By default, Dynamic Multi-Pathing (DMP) starts the event source daemon, vxesd,
at boot time.

To stop the vxesd daemon, use the vxddladm utility:

vxddladm stop eventsource

To start the vxesd daemon, use the vxddladm utility:

vxddladm start eventsource [logfile=logfilename]

To view the status of the vxesd daemon, use the vxddladm utility:

vxddladm status eventsource

Administering Storage
Foundation

= Chapter 13. Administering sites and remote mirrors

Administering sites and

remote

mIrrors

This chapter includes the following topics:

About sites and remote mirrors

Making an existing disk group site consistent

Configuring a new disk group as a Remote Mirror configuration
Fire drill — testing the configuration

Changing the site name

Administering the Remote Mirror configuration

Examples of storage allocation by specifying sites

Displaying site information

Failure and recovery scenarios

About sites and remote mirrors

In a Remote Mirror configuration (also known as a campus cluster or stretch cluster)
the hosts and storage that would usually be located in one place, are instead divided
between two or more sites.

For applications and services to function correctly at a site when other sites have
become inaccessible, at least one complete plex of each volume must be configured
at each site (site-based allocation), and the consistency of the data in the plexes
at each site must be ensured (site consistency).

Administering sites and remote mirrors
About sites and remote mirrors

By tagging disks with site names, storage can be allocated from the correct location
when creating, resizing or relocating a volume, and when changing a volume’s
layout.

Figure 13-1 shows an example of a site-consistent volume with two plexes configured
at each of two sites.

Figure 13-1 Site-consistent volume with two plexes at each of two sites

Site A Site B

Disk group

The allocated storage for plexes P1 and P2 is tagged with site A and the allocated
storage for plexes P3 and P4 is tagged with site B.

Although not shown in this figure, DCO log volumes are also mirrored across the
sites, and disk group configuration copies are distributed across the sites.

Site consistency means that the data in the plexes for a volume must be consistent
at each site. The site consistency of a volume is ensured by detaching a site when
its last complete plex fails at that site. If a site fails, all its plexes are detached and
the site is said to be detached. If site consistency is not on, only the plex that fails
is detached. The remaining volumes and their plexes on that site are not detached.

To enhance read performance, VxVM will service reads from the plexes at the local
site where an application is running if the siteread read policy is set on a volume.
Writes are written to plexes at all sites.

Figure 13-2 shows a configuration with remote storage only (that is also supported).

312

Administering sites and remote mirrors | 313
About sites and remote mirrors

Figure 13-2 Example of a two-site configuration with remote storage only
Site A Site B
Cluster or
standalone
system Metropolitan
or wide area
network link
(Fibre Channel
Fibre or DWDM)
Channel&, (}:(/-. \\\\[’ﬂ” _______

switch §h”\nh Q/ \;ﬂﬁﬂ/ Fibre Channel
switch

S SK

Disk enclosures Disk enclosures

About site-based allocation

Site-based allocation policies are enforced by default in a site-configured disk group.
Site-based allocation requires that each volume has at least one plex at each site
that is configured in the disk group. When a new volume is created in a
site-configured disk group, the a11sites attribute is set to on by default. The
allsites attribute indicates that the volume must have at least one plex on each
configured site in the disk group. For new volumes, the read policy is setto siteread
by default.

If mirroring across sites is not required, or is not possible (as is the case for RAID-5
volumes), specify the allsites=off attribute to the vxassist command. If sites
are configured in the disk group, a plex will always be confined to a site and will
not span across sites. This enforcement cannot be overridden.

Before adding a new site to a disk group, be sure to meet the following requirements:

= Disks from the site being added (site tagged) are present or added to the disk
group.

= Each existing volume with a11sites set in the disk group must have at least
one plex at the site being added. If this condition is not met, the command to

Administering sites and remote mirrors | 314
About sites and remote mirrors

add the site to the disk group fails. If the -t option is specified, the command
does not fail, but instead it sets the al1sites attribute for the volume to oft.

About site consistency

Site consistency means that at any point in time, the data at each site is consistent
with the application for a given set of volumes. A site-consistent volume must have
at least one plex, or mirror, on each configured site in the disk group. The site
consistency is ensured by detaching a site when a site-consistent volume loses its
last complete plex on that site. The site detach detaches all the plexes on that site
and also disallows further configuration updates to the configuration copies on that
site. Turn on this behavior by setting the siteconsistent attribute to on on the
desired volumes.

If you set the siteconsistent attribute to of £, only the plex that fails is detached.
The plexes for the remaining volumes on that site are not detached.

The siteconsistent attribute is also present at the disk group level and can be
used to turn on or off the site consistency functionality in the disk group boundary.
In addition, if you turn on the siteconsistent attribute for a disk group, each new
volume created in the disk group inherits the siteconsistent attribute of the disk
group, by default. Setting the siteconsistent attribute on a disk group does not
affect siteconsistent attributes for existing volumes. You can also control the
site consistency on individual volumes.

By default, a volume inherits the value that is set on its disk group.

By default, creating a site-consistent volume also creates an associated version 20
DCO volume, and enables Persistent FastResync on the volume. This allows faster
recovery of the volume during the reattachment of a site.

See “Configuring site consistency on a volume” on page 322.

Before setting site consistency on a disk group, be sure to meet the following
requirements:

A license enabling the Site Awareness feature must be installed on all the hosts
in the Remote Mirror configuration.

At least two sites must be configured in the disk group before site consistency
is turned on.

See “Making an existing disk group site consistent” on page 316.

All the disks in a disk group must be registered to one of the sites before you
can set the siteconsistent attribute on the disk group.

Administering sites and remote mirrors | 315
About sites and remote mirrors

About site tags

In a Remote Mirror configuration, each storage device in the disk group must be
tagged with site information. The site tag indicates to which site the device is
associated. VxVM provides a facility to tag VxVM-initialized disks with an arbitrary
name-value pair. The tag name site is reserved by VxVM and is used to identify
the site information of tagged disks. The command vxdisk settag can be used
to tag multiple disks or all disks from an enclosure or disks from multiple enclosures.
The tagging can be restricted to disks in a disk group by specifying the disk group
with the command.

You can use automatic site tagging to assign site tags to disks when adding them
to a disk group. When automatic site tagging is on, newly added disks or LUNs
inherit the site tag from the site-enclosure mapping stored in the disk group. To use
automatic site tagging, turn on automatic site tagging for a disk group, and then
assign the site names to the enclosures in the disk group. Any disks or LUNs in
that disk group inherit the tag from the enclosure to which they belong.

About the site read policy

To enhance read performance, VxVM will service reads from the plexes at the local
site where an application is running, if the siteread read policy is set on a volume.
siteread is the default read policy for volumes that have sites configured. Writes
are written to plexes at all sites. By tagging hosts with site information, VxVM
identifies which hosts belong to which site. Reads initiated by a host from one site
are then satisfied by disks which are tagged with the same site. Tagging hosts and
disks with correct site information gives you maximum read performance when
siteread read policy is used.

If a license enabling the Site Awareness feature is installed on all the hosts in the
Remote Mirror configuration, the disk group is configured for site consistency with
several sites enabled, and the a11sites=on attribute is specified for a volume, the
default read policy is siteread.

If the siteread policy is not set, use the following command to set the read policy
to siteread policy on a volume:

vxvol [-g diskgroup] rdpol siteread volume

This command has no effect if a site name has not been set for the host.

See “Changing the read policy for mirrored volumes” on page 158.

Administering sites and remote mirrors
Making an existing disk group site consistent

Making an existing disk group site consistent

The site consistency feature requires that a license enabling the site awareness
feature has been installed on all hosts at all sites that participate in the configuration.

To make an existing disk group site consistent

1

Ensure that the disk group is updated to at least version 140, by running the
vxdg upgrade command on it:

vxdg upgrade diskgroup

On each host that can access the disk group, define the site name:

vxdctl set site=sitename

Tag all the disks in the disk group with the appropriate site name:
vxdisk [-g diskgroup] settag site=sitename diskl disk2
Or, to tag all the disks in a specified enclosure, use the following command:

vxdisk [-g diskgroup] settag site=sitename encl:encl name

Use the vxdg move command to move any unsupported RAID-5 volumes to
another disk group. Alternatively, use the vxassist convert commands to
convert the volumes to a supported layout such as mirror Or mirror-stripe.
You can use the site and mirror=site storage allocation attribute to ensure
that the plexes are created on the correct storage.

Use the vxevac command to ensure that the volumes have at least one plex
at each site. You can use the site and mirror=site storage allocation attribute
to ensure that the plexes are created on the correct storage.

Register a site record for each site with the disk group:

vxdg -g diskgroup addsite sitename

Turn on site consistency for the disk group:

vxdg -g diskgroup set siteconsistent=on

316

Administering sites and remote mirrors
Configuring a new disk group as a Remote Mirror configuration

Turn on the a11sites flag for the volume which requires data replication to
each site:

vxvol [-g diskgroup] set allsites=on volume

Turn on site consistency for each existing volume in the disk group for which
siteconsistency is needed. You also need to attach pcov2o0 if it is not attached
already. pcov20 is required to ensure that site detach and reattach are
instantaneous.

vxvol [-g diskgroup] set siteconsistent=on volume ...

Configuring a new disk group as a Remote Mirror
configuration

Note: The Remote Mirror feature requires that a license enabling the Site Awareness
feature has been installed on all hosts at all sites that participate in the configuration.

This section describes setting up a new disk group. To configure an existing disk
group as a Remote Mirror configuration, additional steps may be required.

See “Making an existing disk group site consistent” on page 316.

Setting up a new disk group for a Remote Mirror configuration

1

Define the site name for each host that can access the disk group.
vxdctl set site=sitename
To verify the site name assigned to the host, use the following command:

wvxdectl list

Create the disk group with storage from each site.

Register a site record to the disk group, for each site.

vxdg -g diskgroup [-f] addsite sitename

Do one of the following:

= To tag all disks regardless of the disk group, do the following:
Assign a site name to the disks or enclosures. You can set site tags at the
disk level, or at the enclosure level. If you specify one or more enclosures,

317

Administering sites and remote mirrors | 318
Fire drill — testing the configuration

the site tag applies to the disks in that enclosure that are within the disk
group. Enter the following command:

vxdisk [-g diskgroup] settag site=sitename \

disk diskl... |encl:encl name encl:encl namel...

where the disks can be specified either by the disk access name or the disk
media name.

= To autotag new disks added to the disk group based on the enclosure to
which they belong, perform the following steps in the order presented. These
steps are limited to disks in a single group.

= Setthe autotagging policy to on for the disk group, if required.
Automatic tagging is the default setting, so this step is only required if
the autotagging policy was previously disabled. To turn on autotagging,
enter the following command:

vxdg [-g diskgroup] set autotagging=on

= Add site-enclosure mapping information to the diskgroup for each
site-enclosure combination. Enter the following command:

vxdg [-g diskgroup] settag encl:encl namel site=sitenamel

As a result of this command, all disks of enclosure encl namel in the
specified disk group are tagged with site information.

5 Turn on the site consistency requirement for a disk group:

vxdg -g diskgroup set siteconsistent=on

Fire drill — testing the configuration

Warning: To avoid potential loss of service or data, it is recommended that you do
not use these procedures on a live system.

After validating the consistency of the volumes and disk groups at your sites, you
should validate the procedures that you will use in the event of the various possible
types of failure. A fire drill lets you test that a site can be brought up cleanly during
recovery from a disaster scenario such as site failure.

Administering sites and remote mirrors | 319
Changing the site name

Simulating site failure

To simulate the failure of a site, use the following command to detach all the devices
at a specified site:

vxdg -g diskgroup [-f] detachsite sitename
The - option must be specified if any plexes configured on storage at the site are
currently online.

After the site is detached, the application should run correctly on the available site.
This step verifies that the primary site is fine. Continue the fire drill by verifying the
secondary site.

Verifying the secondary site

After detaching the site from primary site, verify whether the application starts
correctly on a secondary site. The fire drill ensures that the application can run on
the secondary if disaster strikes the primary site. These procedures assume that
the application is running correctly before the fire drill operation begins.

To verify the secondary site, import the detached site on a different host using the
following command:

vxdg -o site=sitename import dgname

Then start the application. If the application runs correctly on the secondary site,
this step verifies the integrity of the secondary site.

Recovery from simulated site failure

After verifying the data on the secondary for a simulated site failure, deport the disk
group from the secondary site. Then reattach the site back to the primary host.

Use the following commands to reattach a site and recover the disk group:

vxdg -g diskgroup [-o overridessb] reattachsite sitename

vxrecover -g diskgroup

It may be necessary to specify the -o overridessb option if a serial split-brain
condition is indicated.

Changing the site name

You can change the site name, or tag, that is used to identify each site in a Remote
Mirror configuration. Renaming the site changes the site record in the disk group.

Administering sites and remote mirrors | 320
Administering the Remote Mirror configuration

The site name is also changed for all of the disks and enclosures that are tagged
with the existing site name.

After you rename a site, you need to explicitly change the site name for each host
that belongs to that site.

See “Resetting the site name for a host” on page 320.
To rename the site

& Specify the new site name as follows:

vxdg [-g diskgroup] renamesite old sitename new_sitename

Resetting the site name for a host

If you rename a site, you need to explicitly set each host to refer to the new site
name.

To reset a site name for a host

1 Remove the site name from a host:

vxdctl [-F] unset site

The -F option is required if any imported disk groups are registered to the site.
2 Set the new site name for the host.

vxdctl set site=sitename

The name that has been assigned to a site is stored in the /etc/vx/volboot
file.

Administering the Remote Mirror configuration

After the Remote Mirror site is configured, refer to the following sections for additional
tasks to maintain the configuration.

Configuring site tagging for disks or enclosures

To set up a Remote Mirror configuration, specify to which site each storage device
in the disk group belongs. Assign a site tag to one or more disks or enclosures. If
the disk or enclosure does not belong to a disk group, you must use this method
to assign a site tag.

Administering sites and remote mirrors | 321
Administering the Remote Mirror configuration

To tag disks or enclosures with a site name

& Assign a site name to one or more disks or enclosures, using the following
command:

vxdisk [-g diskgroup] settag site=sitename \

disk diskl...|encl:encl name encl:encl namel...

where the disks can be specified either by the disk access name or the disk
media name.

To display the disks or enclosures registered to a site

& To check which disks or enclosures are registered to a site, use the following
command:

vxdisk [-g diskgroup] listtag

To remove the site tag from a disk or enclosure

¢ Toremove the site tag from a disk or enclosure, use the following command:

vxdisk rmtag site=sitename \

disk diskl...|encl:encl name encl:encl namel...

Configuring automatic site tagging for a disk group

Configure automatic site tagging if you want disks or LUNSs to inherit the tag from
the enclosure. After you turn on automatic site tagging for a disk group, assign the
site names to the enclosures in the disk group. Any disks or LUNs added to that
disk group inherit the tag from the enclosure to which they belong.

To configure automatic site tagging for a disk group

1 Set the autotagging policy to on for the disk group. Automatic tagging is the
default setting, so this step is only required if the autotagging policy was
previously disabled.

To turn on autotagging, use the following command:

vxdg [-g diskgroup] set autotagging=on

2 Assign the site name to an enclosure within the disk group, using the following
command:

vxdg [-g diskgroup] settag encl:encl name site=sitename

Administering sites and remote mirrors | 322
Examples of storage allocation by specifying sites

To list the site tags for a disk group

& To list the site tags for a disk group, use the following command:
vxdg [-q] [-o tag=name|~name[=value|~value] \
listtag [diskgroup ...]

To remove a site tag from an enclosure or a disk group

& Toremove a site tag from a disk group, use the following command:

vxdg [-g diskgroup] rmtag [encl:encl name] site=sitename

Configuring site consistency on a volume

To set the site consistency requirement when creating a volume, specify the
siteconsistent attribute to the vxassist make command, for example:

vxassist [-g diskgroup] make volume size \
nmirror=4 siteconsistent={on|off}
By default, a volume inherits the value that is set on its disk group.

By default, creating a site-consistent volume also creates an associated version 20
DCO volume, and enables Persistent FastResync on the volume. This allows faster
recovery of the volume during the reattachment of a site.

To turn on the site consistency requirement for an existing volume, use the following
form of the vxvol command:

vxvol [-g diskgroup] set siteconsistent=on volume

To turn off the site consistency requirement for a volume, use the following
command:

vxvol [-g diskgroup] set siteconsistent=off volume

The siteconsistent attribute and the al1sites attribute must be set to orf for
RAID-5 volumes in a site-consistent disk group.

Examples of storage allocation by specifying sites

Table 13-1 shows examples of how to use sites with the vxassist command to
allocate storage. These examples assume that the disk group, ccdg, has been
enabled for site consistency with disks configured at two sites, sitel and site2.

Administering sites and remote mirrors | 323
Examples of storage allocation by specifying sites

Also, ccdg01, ccdg02, and ccdg03 are dm names of disks tagged with site sitel.
ccdg09, ccdgl0, and ccdgl1 are dm names of disks tagged with site site2.

Table 13-1 Examples of storage allocation by specifying sites

Command Description

vxassist -g ccdg make vol 2g \ Create a volume with one mirror at

nmirror=2

each site. The nmirror keyword is
optional. If the nmirror keyword is
specified, it must equal the number of
sites.

vxassist -g ccdg -o ordered \
make vol 2g \
layout=mirror-stripe ncol=3 \
ccdg01 ccdg02 ccdg03 ccdg09 \
ccdglO ccdgll

Create a mirrored-stripe volume
specifying allocation order to validate
redundancy across the sites. The
named disks must be tagged with the
appropriate site name, and there must
be sufficient disks at each site to
create the volume.

vxassist -g ccdg make vol 2g
nmirror=2 ccdg0l ccdg09

Create a volume with one mirror on
each of the named disks. The named
disks must be tagged with the
appropriate site name, and there must
be sufficient disks at each site to
create the volume.

vxassist -g ccdg make vol 2g
nmirror=2 siteconsistent=off
allsites=off

Create a mirrored volume that is not
site consistent. Both mirrors can be

allocated from any available storage
in the disk group, but the storage for
each mirror is confined to a single site.

vxassist -g ccdg make vol 2g
nmirror=2 site:site2 \
siteconsistent=off \
allsites=off

Create a mirrored volume that is not
site consistent. Both mirrors are
allocated from any available storage
in the disk group that is tagged as
belonging to site2.

Table 131

Administering sites and remote mirrors
Displaying site information

Examples of storage allocation by specifying sites (continued)

Command

Description

vxassist -g ccdg make vol 2g \

nmirror=2 \!site:sitel \
siteconsistent=off \
allsites=off

Create a mirrored volume that is not
site consistent. Both mirrors are
allocated from any available storage
in the disk group that is tagged as not
belonging to sitel.

Note: The ! character is a special
character in some shells. This
example shows how to escape itin a
bash shell.

vxassist -g ccdg mirror vol \
site:sitel

Add a mirror at a specified site. The
command fails if there is insufficient
storage available at the site. This
command does not affect the
allsitesorsiteconsistentofa
volume.

vxassist -g ccdg remove \
mirror vol site:sitel

Remove a mirror from a volume at a
specified site. If the volume has the
allsites attribute set to on, the
command fails if this would remove
the last remaining plex at a site.

vxassist -g ccdg growto vol \
4g

Grow a volume. Each mirror of a
volume is grown using the same site
storage to which it belongs. If there is
not enough storage to grow a mirror
on each site, the command fails.

Displaying site information

To display the site name for a host

*

To determine to which site a host belongs, use the following command on the

host:

vxdctl list | grep siteid
siteid: buildingl

324

Administering sites and remote mirrors | 325
Failure and recovery scenarios

To display the disks or enclosures registered to a site

& To check which disks or enclosures are registered to a site, use the following
command:

vxdisk [-g diskgroup] listtag

To display the setting for automatic site tagging for a disk group

¢ To determine whether automatic site tagging is on for a disk group, use the
following command:

vxprint -g diskgroup -F"%autotagging" diskgroup

To verify whether site consistency has been enabled for a disk group

& To verify whether site consistency has been enabled for a disk group, use the
following command:

vxdg list diskgroup | grep siteconsistent

flags: siteconsistent

To verify whether site consistency has been enabled for a volume

& To verify whether site consistency has been enabled for a volume, use the
following command:

vxprint -g diskgroup -F"$siteconsistent" vol

To identify which site a plex or mirror is allocated from

¢ To identify which site a plex or mirror is allocated from, use the following
command:

vxprint -g diskgroup -F"%site" plex
To list the site tags for a disk group

¢ To list the site tags for a disk group, use the following command:

vxdg [-q] [-o tag=name|~name[=value|~value] \

listtag [diskgroup ...]

Failure and recovery scenarios

Table 13-2 lists the possible failure scenarios and recovery procedures for the
Remote Mirror feature.

Administering sites and remote mirrors | 326
Failure and recovery scenarios

Table 13-2 Failure scenarios and recovery procedures
Failure scenario Recovery procedure
Disruption of network link See “Recovering from a loss of site connectivity” on page 326.

between sites.

Failure of storage at a site. | See “Recovering from storage failure” on page 326.

Failure of both hosts and See “Recovering from site failure” on page 327.
storage at a site.

Disruption of connectivity to | See “Recovering from disruption to connectivity to storage
storage at all sites for hosts | at all sites from the hosts at a site” on page 327.
at a site

Recovering from a loss of site connectivity

At the chosen site, use the following commands to reattach a site and recover the
disk group:

vxdg -g diskgroup -o overridessb reattachsite sitename

vxrecover -g diskgroup

In the case that the host systems are configured at a single site with only storage
at the remote sites, the usual resynchronization mechanism of VxVM is used to
recover the remote plexes when the storage comes back on line.

See “Handling conflicting configuration copies” on page 696.

Recovering from storage failure

If storage fails at a site, the plexes that are configured on that storage are detached
locally if a site-consistent volume still has other mirrors available at the site. The
hot-relocation feature of VxVM will attempt to recreate the failed plexes on other
available storage in the disk group. If no plexes of a site-consistent volume remain
in operation at a site, and hot-relocation cannot recreate the plexes at that site, the
site is detached. Because site connectivity has not been lost, applications running
on hosts at the site can still access data at the other sites.

When the storage comes back online, the vxattachd reattaches the site
automatically.

See “Automatic site reattachment” on page 327.

If the vxattachd is not running, use the following commands to reattach a site and
recover the disk group:

Administering sites and remote mirrors | 327
Failure and recovery scenarios

vxdg -g diskgroup reattachsite sitename

vxrecover -g diskgroup

For more information about recovering a disk group, refer to the Veritas InfoScale
Troubleshooting Guide.

Recovering from site failure

If all the hosts and storage fail at a site, use the following commands to reattach
the site after it comes back online, and to recover the disk group:

vxdg -g diskgroup reattachsite sitename

vxrecover -g diskgroup

Recovering from disruption to connectivity to storage at all sites from
the hosts at a site

In this scenario, hosts at a site lose connectivity to the storage at all sites. For
example, hosts in Site A lose connectivity to the storage at both Site A and Site B.

In this case, no site is detached. I/O fails on the hosts that lose connectivity to the
storage at all sites. The application should be failed over to hosts on the other site.

Restore the connectivity to the storage, and then bring the applications online.

Automatic site reattachment

The automatic site reattachment daemon, vxattachd, provides automatic
reattachment of sites. The vxattachd daemon uses the vxnotify mechanism to
monitor storage coming back online on a site after a previous failure, and to restore
redundancy of mirrors across sites.

If the hot-relocation daemon, vxrelocd, is running, vxattachd attempts to reattach
the site, and allows vxrelocd to try to use the available disks in the disk group to
relocate the failed subdisks. If vxrelocd succeeds in relocating the failed subdisks,
it starts the recovery of the plexes at the site. When all the plexes have been
recovered, the plexes are put into the ACTIVE state, and the state of the site is set
to ACTIVE.

If vxrelocd is not running, vxattachd reattaches a site only when all the disks at
that site become accessible. After reattachment succeeds, vxattachd sets the site
state to ACTIVE, and initiates recovery of the plexes. When all the plexes have
been recovered, the plexes are put into the ACTIVE state.

Administering sites and remote mirrors
Failure and recovery scenarios

Note: vxattachd does not try to reattach a site that you have explicitly detached
by using the vxdg detachsite command.

The automatic site reattachment feature is enabled by default. The vxattachd
daemon uses email to notify root of any attempts to reattach sites and to initiate
recovery of plexes at those sites.

To send mail to other users, add the user name to the line that starts vxattachd
inthe /etc/init.d/vxvm-recover startup script, and reboot the system.

If you do not want a site to be recovered automatically, kill the vxattachd daemon,
and prevent it from restarting. If you stop vxattachd, the automatic plex reattachment
also stops. To kill the daemon, run the following command from the command line:

ps -afe

Locate the process table entry for vxattachd, and kill it by specifying its process
ID:

kill -9 PID

If there is no entry in the process table for vxattachd, the automatic site
reattachment feature is disabled.

To prevent the automatic site reattachment feature from being restarted, comment
out the line that starts vxattachdinthe /etc/init.d/vxvm-recover startup script.

328

Optimizing I/O performance

= Chapter 14. Veritas File System 1/O

= Chapter 15. Veritas Volume Manager /O

Veritas File System /O

This chapter includes the following topics:
= About Veritas File System 1/0

» Buffered and Direct I/O

= Concurrent I/0

= Cache advisories

= Freezing and thawing a file system

» Getting the 1/O size

= About Veritas InfoScale product components database accelerators

About Veritas File System 1/O

VxFS processes two basic types of file system 1/O:
= Sequential
= Random or I/O that is not sequential

For sequential /0, VxFS employs a read-ahead policy by default when the
application is reading data. For writing, it allocates contiguous blocks if possible.
In most cases, VxFS handles /O that is sequential through buffered /0. VxFS
handles random or nonsequential I/O using direct /O without buffering.

VxFS provides a set of /0 cache advisories for use when accessing files.
See the Veritas File System Programmer's Reference Guide.

See the vxfsio(7) manual page.

Veritas File System 1/0 | 331
Buffered and Direct I1/0

Buffered and Direct I/O

VxFS responds with read-ahead for sequential read 1/O. This results in buffered
I/0O. The data is prefetched and retained in buffers for the application. The data
buffers are commonly referred to as VxFS buffer cache. This is the default VxFS
behavior.

Direct I/O

On the other hand, direct I/O does not buffer the data when the I/O to the underlying
device is completed. This saves system resources like memory and CPU usage.
Direct I/O is possible only when alignment and sizing criteria are satisfied.

See “Direct I/0 requirements” on page 331.

All of the supported platforms have a VxFS buffered cache. Each platform also has
either a page cache or its own buffer cache. These caches are commonly known
as the file system caches.

Direct I/0 does not use these caches. The memory used for direct I/O is discarded
after the I/O is complete, and is therefore not buffered.

Direct I/O is an unbuffered form of I/O. If the vx_DIRECT advisory is set, the user is
requesting direct data transfer between the disk and the user-supplied buffer for
reads and writes. This bypasses the kernel buffering of data, and reduces the CPU
overhead associated with I/O by eliminating the data copy between the kernel buffer
and the user's buffer. This also avoids taking up space in the buffer cache that
might be better used for something else. The direct I/O feature can provide significant
performance gains for some applications.

The direct I/0O and vx_DIRECT advisories are maintained on a per-file-descriptor
basis.

Direct I/O requirements

For an 1/0O operation to be performed as direct I/O, it must meet certain alignment
criteria. The alignment constraints are usually determined by the disk driver, the
disk controller, and the system memory management hardware and software.

The requirements for direct I/O are as follows:

The starting file offset must be aligned to a 512-byte boundary.

The ending file offset must be aligned to a 512-byte boundary, or the length
must be a multiple of 512 bytes.

The memory buffer must start on an 8-byte boundary.

Veritas File System 1/0 | 332
Buffered and Direct I1/0

Direct I/O versus synchronous I/O

Because direct /0O maintains the same data integrity as synchronous /O, it can be
used in many applications that currently use synchronous I/O. If a direct I/O request
does not allocate storage or extend the file, the inode is not immediately written.

Direct 1/0 CPU overhead

The CPU cost of direct I/0 is about the same as a raw disk transfer. For sequential
I/O to very large files, using direct I/O with large transfer sizes can provide the same
speed as buffered 1/0 with much less CPU overhead.

If the file is being extended or storage is being allocated, direct I/O must write the
inode change before returning to the application. This eliminates some of the
performance advantages of direct I/O.

Discovered Direct I1/0

Discovered Direct I/O is a file system tunable that is set using the vxtunefs
command. When the file system gets an I/O request larger than the
discovered direct iosz, it tries to use direct I/O on the request. For large I/O
sizes, Discovered Direct I/O can perform much better than buffered I/O.

Discovered Direct I/O behavior is similar to direct I/O and has the same alignment
constraints, except writes that allocate storage or extend the file size do not require
writing the inode changes before returning to the application.

Unbuffered I/O

If the vx_UNBUFFERED advisory is set, I/O behavior is the same as direct I/O with
the vx_DIRECT advisory set, so the alignment constraints that apply to direct /0
also apply to unbuffered I/O. For unbuffered 1/O, however, if the file is being
extended, or storage is being allocated to the file, inode changes are not updated
synchronously before the write returns to the user. The vx_UNBUFFERED advisory
is maintained on a per-file-descriptor basis.

Data synchronous 1/O

If the vx_psync advisory is set, the user is requesting data synchronous 1/O. In
synchronous /O, the data is written, and the inode is written with updated times
and, if necessary, an increased file size. In data synchronous I/O, the data is
transferred to disk synchronously before the write returns to the user. If the file is
not extended by the write, the times are updated in memory, and the call returns
to the user. If the file is extended by the operation, the inode is written before the
write returns.

Veritas File System 1/0 | 333
Concurrent I/O

The direct I/0 and VX_DSYNC advisories are maintained on a per-file-descriptor
basis.

Data synchronous /O vs. synchronous I/O

Like direct I/0, the data synchronous I/O feature can provide significant application
performance gains. Because data synchronous I/O maintains the same data integrity
as synchronous I/O, it can be used in many applications that currently use
synchronous I/O. If the data synchronous I/O does not allocate storage or extend
the file, the inode is not immediately written. The data synchronous I/O does not
have any alignment constraints, so applications that find it difficult to meet the
alignment constraints of direct 1/0 should use data synchronous I/0.

If the file is being extended or storage is allocated, data synchronous I/O must write
the inode change before returning to the application. This case eliminates the
performance advantage of data synchronous I/O.

Concurrent 1/0

Concurrent I/O (vx_coNcURRENT) allows multiple processes to read from or write to
the same file without blocking other read(2) or write(2) calls. POSIX semantics
requires read and write calls to be serialized on a file with other read and write
calls. With POSIX semantics, a read call either reads the data before or after the
write call occurred. With the vx_concURRENT advisory set, the read and write
operations are not serialized as in the case of a character device. This advisory is
generally used by applications that require high performance for accessing data
and do not perform overlapping writes to the same file. It is the responsibility of the
application or the running threads to coordinate the write activities to the same
file when using Concurrent I/O.

Concurrent I/O can be enabled in the following ways:

» By specifying the vx_concurrenT advisory flag for the file descriptor in the
VX_SETCACHE joctl command. Only the read(2) and write(2) calls occurring
through this file descriptor use concurrent I/0O. The read and write operations
occurring through other file descriptors for the same file will still follow the POSIX
semantics.

See vxfsio(7) manual page.

= By using the cio mount option. The read(2) and write(2) operations occurring
on all of the files in this particular file system will use concurrent 1/O.
See “cio mount option” on page 174.
See the mount_vx£s(1M) manual page.

Veritas File System 1/0 | 334
Cache advisories

Cache advisories

VxFS allows an application to set cache advisories for use when accessing files.
VxFS cache advisories enable applications to help monitor the buffer cache and
provide information on how better to tune the buffer cache to improve performance
gain.

The cache advisory let's you know whether you could have avoided a later re-read
of block X if the buffer cache had been a little larger. Conversely, the cache advisory
can also let you know that you could safely reduce the buffer cache size without
putting block X into jeopardy.

These advisories are in memory only and do not persist across reboots. Some
advisories are currently maintained on a per-file, not a per-file-descriptor, basis.
Only one set of advisories can be in effect for all accesses to the file. If two conflicting
applications set different advisories, both must use the advisories that were last
set.

All advisories are set using the vx_sercacsE ioctl command. The current set of
advisories can be obtained with the vx_GETCaCHE ioctl command.

See the vxfsio(7) manual page.

Freezing and thawing a file system

Freezing a file system is a necessary step for obtaining a stable and consistent
image of the file system at the volume level. Consistent volume-level file system
images can be obtained and used with a file system snapshot tool. The freeze
operation flushes all buffers and pages in the file system cache that contain dirty
metadata and user data. The operation then suspends any new activity on the file
system until the file system is thawed.

The vx_FrREEZE ioctl command is used to freeze a file system. Freezing a file system
temporarily blocks all 1/0 operations to a file system and then performs a sync on
the file system. When the vx_rFreezk ioctl is issued, all access to the file system is
blocked at the system call level. Current operations are completed and the file
system is synchronized to disk.

When the file system is frozen, any attempt to use the frozen file system, except
for a vx_THaw ioctl command, is blocked until a process executes the vx_THaw ioctl
command or the time-out on the freeze expires.

Getting the 1/O size

Veritas File System 1/0
Getting the 1/O size

VXFS provides the vx_GET IOPARAMETERS ioctl to get the recommended I/O sizes
to use on a file system. This ioctl can be used by the application to make decisions
about the I/O sizes issued to VxFS for a file or file device.

See the vxtunefs(1M) and vxfsio(7) manual pages.

About Veritas InfoScale product components
database accelerators

The major concern in any environment is maintaining respectable performance or
meeting performance service level agreements (SLAs). Veritas InfoScale product
components improve the overall performance of database environments in a variety

of ways.

Table 14-1 Veritas InfoScale product components database accelerators
Veritas InfoScale Supported Use cases and considerations
database databases
accelerator
Oracle Disk Manager Oracle s To improve Oracle performance and
(ODM) manage system bandwidth through an

improved Application Programming
Interface (API) that contains advanced
kernel support for file 1/0.

» To use Oracle Resilvering and turn off
Veritas Volume Manager Dirty Region
Logging (DRL) to increase
performance, use ODM.

= To reduce the time required to restore
consistency, freeing more 1/0
bandwidth for business-critical
applications, use SmartSync recovery
accelerator.

Cached Oracle Disk Oracle To enable selected I/O to use caching to

Manager (Cached OD
M)

improve ODM 1/O performance, use
Cached ODM.

335

Veritas File System 1/0

About Veritas InfoScale product components database accelerators

Table 14-1 Veritas InfoScale product components database accelerators
(continued)
Veritas InfoScale Supported Use cases and considerations
database databases
accelerator
Concurrent I/0O DB2 Concurrent I/0 (ClO) is optimized for DB2
and Sybase environments
Sybase

To achieve improved performance for
databases run on VxFS file systems
without restrictions on increasing file size,
use Veritas InfoScale Concurrent 1/0.

These database accelerator technologies enable database performance equal to
raw disk partitions, but with the manageability benefits of a file system. With the
Dynamic Multi-pathing (DMP) feature of Storage Foundation, performance is
maximized by load-balancing 1/O activity across all available paths from server to

array. DMP supports all major hardware RAID vendors, hence there is no need for

third-party multi-pathing software, reducing the total cost of ownership.

Veritas InfoScale database accelerators enable you to manage performance for
your database with more precision.

For details about using ODM and Cached ODM for Oracle, see Veritas InfoScale
Storage and Availability Management for Oracle Databases.

For details about using Concurrent I/O for DB2, see Veritas InfoScale Storage and

Availability Management for DB2 Databases.

336

Veritas Volume Manager
/O

This chapter includes the following topics:
= Veritas Volume Manager throttling of administrative I/O

= Managing application 1/O workloads using maximum IOPS settings

Veritas Volume Manager throttling of
administrative 1/O

Veritas Volume Manager (VxVM) provides throttling of administrative 1/0. During
heavy 1/O loads, VxVM throttles /O that it creates to do administrative operations.
This behavior ensures that the administrative 1/0s do not affect the application 1/0
performance. When the application I/O load is lighter, VxXVM increases the bandwidth
usage for administrative 1/O operations.

VxVM automatically manages the 1/O throttling for administrative tasks, based on
its perceived load on the storage. Currently, I/O throttling is supported for the copy
operations which use ATOMIC_COPY and involve one destination mirror. The 1/0
throttling is transparent, and does not change the command usage or output. The
following commands are supported:

m vxassist mirror

m vxassist snapcreate
m vxevac

m vxplex att

m vxplex cp

Managing
maximum

Veritas Volume Manager 1/0 | 338
Managing application I/O workloads using maximum IOPS settings

m vxplex mv

m vxsnap addmir

m vxsnap reattach
m vxsd mv

The administrative 1/0 operations allocate memory for I/O from a separate memory
pool. You can tune the maximum size of this pool with the tunable parameter,

vol max adminio poolsz.

For example, to change the vol max adminio poolsz parameter to 256MB, use
tbe following command:

vxtune vol max adminio_poolsz 256M

See the vxtune(1M) command for more info.

application I/O workloads using
IOPS settings

When multiple applications use a common storage subsystem, it is important to
balance application I/O requests in a way that allows multiple applications to co-exist
in a shared environment. You can address this need by setting a maximum threshold
on the 1/O operations per second (IOPS) for the volumes of an application. The
volumes of an application are grouped to form an application volume group. The
maximum IOPS limit determines the maximum number of I/Os processed per second
collectively by all the volumes in an application volume group.

When an I/O request comes in from an application, it is serviced by the volumes in
the group until the application volume group reaches the IOPS limit. When the group
exceeds this limit for a specified time interval, further I/O requests on the group are
queued. The queued I/Os are taken up on priority in the next time interval along
with new /O requests from the application.

You will want to consider the following factors when you set the maximum IOPS
threshold:

= Storage capacity of the shared subsystem
= Number of active applications
» |/O requirements of the individual applications

s VXVM adminstrative 1/Os

Veritas Volume Manager 1/0 | 339
Managing application I/O workloads using maximum IOPS settings

For instance, if the volumes have associated VxVM instant or space-optimized
snapshot volumes, you will want to set a smaller IOPS threshold on the source

volumes.

Figure 15-1 illustrates the process.

Figure 15-1

= =

Queued 1/Os to be processed
in the next 1/0 cycle
alongwith new requests

500 1/0

requests
01010010 01010010 — — i —
10101101 10101101 :

Managing application 1/0O workloads

App1
| |]|

I/O requests at
2500 IOPS

VxVM

appvg1

maxiops=2000

L 11|
2000 IOPS
N
YV VvV

@

App2
[1| |

I/O requests at
500 IOPS

maxiops=1500

[I
500 IOPS

I 11 |
VvVYVvwv

gl ghat

Storage system

About application volume groups

An application volume group is a logical grouping of volumes associated with an
application. The group may contain one or more volumes. All the volumes in the
application volume group must be selected from the same disk group. The volumes

Veritas Volume Manager 1/0 | 340
Managing application I/O workloads using maximum IOPS settings

may belong to a private or shared disk group. Set the maximum IOPS threshold on
the application volume group to balance multiple application 1/O workloads. The
IOPS value is set as a combined threshold for all the volumes in the application
volume group.

You can construct multiple such application volume groups, bringing together
volumes that have similar I/O load characteristics. For example, the 1/0O load
characteristic of redo log volumes of a database application will differ from that of
the application's archive volumes and will therefore need different IOPS thresholds.
In such scenarios, create separate application volume groups and set respective
IOPS thresholds. A volume cannot be shared between multiple application volume
groups for setting maximum IOPS limits.

In clustered environments, you can create an application volume group and set its
threshold from any node in the cluster. The application volume group is visible on
all nodes and the same threshold value is propagated to all nodes in the cluster.
The threshold, however, applies to each node independently.

The vxvolgrp command can be used to manage the application volume group and
its settings.

See the vxvolgrp(1M) manual page.

The vxstat command provides a detailed view of IOPS statistics on each application
volume group.

See the vxstat(1M) manual page.

Creating application volume groups

Identify the volumes that are not already part of an existing application volume
group. Ensure that the volumes you select belong to the same disk group.

You can use the vxvolgrp command to create application volume groups.

See the vxvolgrp(1M) manual page.

Veritas Volume Manager 1/0 | 341
Managing application I/O workloads using maximum IOPS settings

To create application volume groups
1 Create the application volume group.

For example, the following command creates an application volume group
datavol_grp consisting of volumes datavol1, datavol2, datavol3. oradg is the
name of the disk group from which the volumes are selected.

vxvolgrp -g oradg make datavol grp \
datavoll datavol2 datavol3

2 \Verify that the application volume group is created successfully.

For example:

vxvolgrp -g oradg list datavol_grp
Volume Group: datavol grp
volume (s) : datavoll datavol2 datavol3

Viewing the list of application volume groups
You can use the vxvolgrp command to:
= View the list of existing application volume groups
= View detailed information about a specific application volume group
See the vxvolgrp(1M) manual page.
To view the list of existing application volume groups:

vxvolgrp -g dgname list

To view the list of application volume groups created from volumes in the oradg

disk group:

vxvolgrp -g oradg list

Volume Group: datavol grp

volume (8) : datavoll datavol2 datavol3
Volume Group: logvol grp

volume (s) : logvoll logvol2 logvol3 logvol4

For example, to view information about the application volume group datavol_grp:

vxvolgrp -g oradg list datavol grp
Volume Group: datavol grp
volume (s) : datavoll datavol2 datavol3

Veritas Volume Manager 1/0 | 342
Managing application I/O workloads using maximum IOPS settings

Setting the maximum IOPS threshold on application volume groups

The maximum IOPS threshold is set on the application volume group associated
with an application. This is a group threshold that applies to all volumes in the group.
You can update the IOPS setting at any time, even when an application is running.

You can use the vxvolgrp command to set a maximum IOPS value for the group.

See the vxvolgrp(1M) manual page.

Note: You can not set a threshold for individual volumes in the group.

To set the maximum IOPS threshold on application volume groups
1 Set a maximum IOPS value for the application volume group.

For example, the following command sets a maximum IOPS threshold of 7000
on the application volume group datavol_grp:

vxvolgrp -g oradg set datavol grp maxiops=1000
2 Verify that the maximum IOPS threshold is set successfully.
For example:

vxvolgrp -g oradg list datavol_grp

Volume Group: datavol grp
volume (s) : datavoll datavol2 datavol3
volume group attributes: maxiops=1000

Viewing the IOPS statistics for application volume groups

The -G option of the vxstat command provides a detailed view of the IOPS statistics
for an application volume group. You can obtain a detailed view of the statistics per
second or an average of the accumulated statistics per second over a specified
time interval.

For clustered environments, the detailed statistics is displayed for each node in the
cluster.

See the vxstat(1M) manual page.
You can view the following information:

MaxIOPS The maximum IOPS threshold set for an application volume
group

Veritas Volume Manager 1/0
Managing application I/O workloads using maximum IOPS settings

ServicedlOPS The number of 1/0Os per second processed for an
application volume group

QueuedIOPS The number of I/Os per second throttled for an application
volume group

For example, to view the IOPS statistics per second for existing application volume
groups:

vxstat -g oradg -G <<<< average per second output
AVG PER SECOND VOLUMEGROUP STATISTICS

TYP NAME MaxIOPS IncomingIOPS ServicedIOPS QueuedIOPS (Transient)
grp datavol grp 1000 897 893 56
grp logvol grp 600 599 598 404

To view the IOPS statistics per second for the application volume group datavol_grp:

vxstat -g oradg -G datavol grp

AVG PER SECOND VOLUMEGROUP STATISTICS
TYP NAME MaxIOPS ServicedIOPS QueuedIOPS (Transient)
grp datavol grp 1000 980 360

To view the average IOPS statistics over a 3-second interval for the application
volume group datavol_grp:

vxstat -g oradg -G datavol grp -i 3
AVG PER SECOND VOLUMEGROUP STATISTICS
TYP NAME MaxIOPS ServicedIOPS QueuedIOPS (Transient)

vmr720-23 Tue 12 Jan 2016 02:42:52 PM UTC
grp datavol grp 1000 1000 386

vmr720-23 Tue 12 Jan 2016 02:42:55 PM UTC
grp datavol grp 1000 1000 393

vmr720-23 Tue 12 Jan 2016 02:42:58 PM UTC
grp datavol grp 1000 1000 393

vmr720-23 Tue 12 Jan 2016 02:43:01 PM UTC
grp datavol grp 1000 1000 391

vmr720-23 Tue 12 Jan 2016 02:43:04 PM UTC
grp datavol grp 1000 589 129

343

Veritas Volume Manager 1/0 | 344
Managing application I/O workloads using maximum IOPS settings

vimr720-23 Tue 12 Jan 2016 02:43:07 PM UTC
grp datavol grp 1000 0 0

Removing the maximum IOPS setting from application volume groups
You can use the vxvolgrp command to remove the maximum IOPS setting.
See the vxvolgrp(1M) manual page.

For example, to remove the maximum IOPS setting from application volume group
datavol_grp:

vxvolgrp -g oradg clear datavol grp maxiops

vxvolgrp -g oradg list datavol_grp

Volume Group: datavol grp

volume (s) : datavoll datavol2 datavol3

Adding volumes to an application volume group

You can add volumes to an existing application volume group. Ensure that you
select a volume from within the disk group. It must not belong to any other application
volume group. VxVM tags the new volume with the name of the application volume
group and the corresponding maximum IOPS value.

You can use the vxvolgrp command to add volumes to an application volume
group.
See the vxvolgrp(1M) manual page.

For example, to add volumes to the application volume group logvol_grp:

vxvolgrp -g oradg addvol logvol grp \
logvol3 logvol4
vxvolgrp -g oradg list logvol grp

Volume Group: logvol grp
volume (s) : logvoll logvol2 logvol3 logvol4
volume group attributes: maxiops=1200

Removing volumes from an application volume group

When you remove a volume from an application volume group, VxVM clears the
application volume group name and the IOPS threshold from the volume. When
you remove the only remaining volume in the group, the application volume group
is deleted.

You can use the vxvolgrp command to remove volumes to an application volume
group.

Veritas Volume Manager 1/0 | 345
Managing application I/O workloads using maximum IOPS settings

See the vxvolgrp(1M) manual page.

For example, to remove a volume from the application volume group datavol_grp:

vxvolgrp -g oradg rmvol datavol grp datavol3
vxvolgrp -g oradg list datavol grp

Volume Group: datavol grp
volume (s) : datavoll datavol2
volume group attributes: maxiops=1000

Removing an application volume group

Removing an application volume group frees up the volumes for use by other
application volume groups. The IOPS setting and associated tags are removed
from the volumes.

You can use the vxvolgrp command to remove an application volume group.
See the vxvolgrp(1M) manual page.

For example, to remove the application volume group logvol_grp:

vxvolgrp -g oradg remove logvol grp

Using Point-in-time copies

= Chapter 16. Understanding point-in-time copy methods
= Chapter 17. Administering volume snapshots

= Chapter 18. Administering Storage Checkpoints

= Chapter 19. Administering FileSnaps

» Chapter 20. Administering snapshot file systems

Understanding
point-in-time copy
methods

This chapter includes the following topics:

About point-in-time copies

When to use point-in-time copies

About Storage Foundation point-in-time copy technologies
Volume-level snapshots

Storage Checkpoints

About FileSnaps

About snapshot file systems

About point-in-time copies

Storage Foundation offers a flexible and efficient means of managing
business-critical data. Storage Foundation lets you capture an online image of an
actively changing database at a given instant, called a point-in-time copy.

More and more, the expectation is that the data must be continuously available
(24x7) for transaction processing, decision making, intellectual property creation,
and so forth. Protecting the data from loss or destruction is also increasingly
important. Formerly, data was taken out of service so that the data did not change
while data backups occured; however, this option does not meet the need for minimal
down time.

Understanding point-in-time copy methods | 348
When to use point-in-time copies

A point-in-time copy enables you to maximize the online availability of the data.
You can perform system backup, upgrade, or perform other maintenance tasks on
the point-in-time copies. The point-in-time copies can be processed on the same
host as the active data, or a different host. If required, you can offload processing
of the point-in-time copies onto another host to avoid contention for system resources
on your production server. This method is called off-host processing. Ifimplemented
correctly, off-host processing solutions have almost no impact on the performance
of the primary production system.

For more information about how to use point-in-time copies for particular use cases,
see the Veritas InfoScale Solutions Guide.

When to use point-in-time copies

The following typical activities are suitable for point-in-time copy solutions
implemented using Veritas InfoScale FlashSnap:

= Data backup —Many enterprises require 24 x 7 data availability. They cannot
afford the downtime involved in backing up critical data offline. By taking
snapshots of your data, and backing up from these snapshots, your
business-critical applications can continue to run without extended downtime
or impacted performance.

= Providing data continuity —To provide continuity of service in the event of primary
storage failure, you can use point-in-time copy solutions to recover application
data. In the event of server failure, you can use point-in-time copy solutions in
conjunction with the high availability cluster functionality of SFCFSHA or SFHA.

= Decision support analysis and reporting—Operations such as decision support
analysis and business reporting may not require access to real-time information.
You can direct such operations to use a replica database that you have created
from snapshots, rather than allow them to compete for access to the primary
database. When required, you can quickly resynchronize the database copy
with the data in the primary database.

= Testing and training—Development or service groups can use snapshots as
test data for new applications. Snapshot data provides developers, system
testers and QA groups with a realistic basis for testing the robustness, integrity
and performance of new applications.

= Database error recovery—Logic errors caused by an administrator or an
application program can compromise the integrity of a database. You can recover
a database more quickly by restoring the database files by using Storage
Checkpoints or a snapshot copy than by full restoration from tape or other backup
media.

Understanding point-in-time copy methods | 349
When to use point-in-time copies

Use Storage Checkpoints to quickly roll back a database instance to an earlier
point in time.

» Cloning data—You can clone your file system or application data. This
functionality enable you to quickly and efficiently provision virtual desktops.

All of the snapshot solutions mentioned above are also available on the disaster
recovery site, in conjunction with Volume Replicator.

For more information about snapshots with replication, see the Veritas InfoScale
Replication Administrator's Guide.

Storage Foundation provides several point-in-time copy solutions that support your
needs, including the following use cases:

= Creating a replica database for decision support.
= Backing up and recovering a database with snapshots.
= Backing up and recovering an off-host cluster file system

= Backing up and recovering an online database.

Implementing point-in time copy solutions on a primary host

Figure 16-1 illustrates the steps that are needed to set up the processing solution
on the primary host.

Figure 16-1

Understanding point-in-time copy methods
When to use point-in-time copies

Using snapshots and FastResync to implement point-in-time copy

solutions on a primary host

1. Prepare the volumes

If required, create a cache or empty
volume in the disk group, and use vxsnap
prepare to prepare volumes for snapshot
creation.

2. Create instant snapshot volumes
Use vxsnap make to create instant
snapshot volumes of one or more
volumes.

3. Refresh the instant snapshots

If required, use vxsnap refresh to update the
snapshot volumes and make them ready for
more processing.

4. Apply processing
Apply the desired processing application
to the snapshot volumes.

Primary host

]

™ Cache or !
Volume | empty |
L volume
Snapshot
Volume volume
Snapshot
Volume volume -+ - -~ \
|
o) |
Snapshot - — -
Volume volume Repeat steps
3and 4 as
required.

Note: The Disk Group Split/Join functionality is not used. As all processing takes

place in the same disk group, synchronization of the contents of the snapshots from

the original volumes is not usually required unless you want to prevent disk
contention. Snapshot creation and updating are practically instantaneous.

Figure 16-2 shows the suggested arrangement for implementing solutions where
the primary host is used and disk contention is to be avoided.

350

Understanding point-in-time copy methods | 351
When to use point-in-time copies

Figure 16-2 Example point-in-time copy solution on a primary host

Primary host

—

! A 2 SCSil or Fibre
+ Channel connectivity

Disks containing primary Disks containing synchronized
volumes used to hold full-sized instant snapshot
production databases or file volumes

systems

In this setup, it is recommended that separate paths (shown as 1 and 2) from
separate controllers be configured to the disks containing the primary volumes and
the snapshot volumes. This avoids contention for disk access, but the primary host’s
CPU, memory and I/O resources are more heavily utilized when the processing
application is run.

Note: For space-optimized or unsynchronized full-sized instant snapshots, it is not
possible to isolate the I/O pathways in this way. This is because such snapshots

only contain the contents of changed regions from the original volume. If applications
access data that remains in unchanged regions, this is read from the original volume.

Implementing off-host point-in-time copy solutions

Figure 16-3 illustrates that, by accessing snapshot volumes from a lightly loaded
host (shown here as the OHP host), CPU- and I/O-intensive operations for online
backup and decision support are prevented from degrading the performance of the
primary host that is performing the main production activity (such as running a
database).

Understanding point-in-time copy methods | 352
When to use point-in-time copies

Figure 16-3 Example implementation of an off-host point-in-time copy solution

Primary Host OHP host
| | ————— Network

— —

! 2 SCSI or Fibre
Channel connectivity
Disks containing primary Disks containing snapshot
volumes used to hold volumes
production databases or file
systems

Also, if you place the snapshot volumes on disks that are attached to host controllers
other than those for the disks in the primary volumes, it is possible to avoid
contending with the primary host for I/O resources. To implement this, paths 1 and
2 shown in the Figure 16-3 should be connected to different controllers.

Figure 16-4 shows an example of how you might achieve such connectivity using
Fibre Channel technology with 4 Fibre Channel controllers in the primary host.

Understanding point-in-time copy methods
When to use point-in-time copies

Figure 16-4 Example connectivity for off-host solution using redundant-loop
access
Primary host OHP host
| | ————— Network

I:.|| ———

T E]E FI=IEE:

——— Fibre Channel
hubs or switches

IR0

Disk arrays

This layout uses redundant-loop access to deal with the potential failure of any
single component in the path between a system and a disk array.

Note: On some operating systems, controller names may differ from what is shown
here.

Figure 16-5 shows how off-host processing might be implemented in a cluster by
configuring one of the cluster nodes as the OHP node.

353

Understanding point-in-time copy methods | 354
When to use point-in-time copies

Figure 16-5 Example implementation of an off-host point-in-time copy solution
using a cluster node

Cluster

L /A
[FH ™ .

| i | Cluster node configured as
[B] oene

! 2 SCSI or Fibre Channel
connectivity

R0 10

Disks containing primary Disks containing snapshot
volumes used to hold volumes used to implement
production databases or off-host processing solutions
file systems

Figure 16-6 shows an alternative arrangement, where the OHP node could be a
separate system that has a network connection to the cluster, but which is not a
cluster node and is not connected to the cluster’s private network.

Figure 16-6 Example implementation of an off-host point-in-time copy solution
using a separate OHP host
Cluster OHP host
|| || | _—_—— - Network

L Vi
|| =" = — ’
i

1 A 2 _

SCSiI or Fibre

Channel connectivity

LODLCOOTOD) ()

Disks containing primary Disks containing snapshot
volumes used to hold volumes used to implement
production databases or off-host processing solutions

file systems

Understanding point-in-time copy methods | 355
When to use point-in-time copies

Note: For off-host processing, the example scenarios in this document assume
that a separate OHP host is dedicated to the backup or decision support role. For
clusters, it may be simpler, and more efficient, to configure an OHP host that is not
a member of the cluster.

Figure 16-7 illustrates the steps that are needed to set up the processing solution
on the primary host.

Figure 16-7

1. Prepare the volumes

If required, create an empty volume
in the disk group, and use vxsnap
prepare to prepare volumes for
snapshot creation.

2. Create snapshot volumes
Use vxsnap make to create
synchronized snapshot volumes.
(Use vxsnap print to check the
status of synchronization.)

3. Refresh snapshot mirrors

If required, use vxsnap refresh to
update the snapshot volumes.
(Use vxsnap print to check the
status of synchronization.)

4. Split and deport disk group

Use vxdg split to move the disks
containing the snapshot volumes to
a separate disk group. Use vxdg
deport to deport this disk group.

5. Import disk group

Use vxdg import to import the disk
group containing the snapshot
volumes on the OHP host.

6. Apply off-host processing

Apply the desired off-host
processing application to the
snapshot volume on the OHP host.

7. Deport disk group

Use vxdg deport to deport the disk
group containing the snapshot
volumes from the OHP host.

8. Import disk group

Use vxdg import to import the disk
group containing the snapshot
volumes on the primary host.

9. Join disk groups

Use vxdg join to merge the disk
group containing the snapshot
volumes with the original volumes’
disk group.

Understanding point-in-time copy methods

356

When to use point-in-time copies

Primary host or cluster

==

Volume

r—-— "

| Empty

 volme |
Volume ?;\li;r):ehot
Volume 3;3?::(“
Volume s;if::m
Volume
Volume
Volume
Volume s;i?:: ot
Volume ?;?Jﬁqsehm

Implementing off-host processing solutions

OHP host

—]

- - - -
~
\
\
deport \
import
Snapshot
volume

Snapshot
volume

Snapshot
volume

deport

—_—— - _— — —

import
1

/

/
-

—

- —_———_— =

Repeat steps 3
through 9 as required

Disk Group Split/Join is used to split off snapshot volumes into a separate disk
group that is imported on the OHP host.

Understanding point-in-time copy methods | 357
About Storage Foundation point-in-time copy technologies

Note: As the snapshot volumes are to be moved into another disk group and then
imported on another host, their contents must first be synchronized with the parent
volumes. On reimporting the snapshot volumes, refreshing their contents from the
original volume is speeded by using FastResync.

About Storage Foundation point-in-time copy
technologies

This topic introduces the point-in-time copy solutions that you can implement using
the Veritas FlashSnap™ technology. Veritas FlashSnap technology requires a
Veritas InfoScale Enterprise or Storage licenses.

Veritas InfoScale FlashSnap offers a flexible and efficient means of managing
business critical data. It allows you to capture an online image of actively changing
data at a given instant: a point-in-time copy. You can perform system backup,
upgrade and other maintenance tasks on point-in-time copies while providing
continuous availability of your critical data. If required, you can offload processing
of the point-in-time copies onto another host to avoid contention for system resources
on your production server.

The following kinds of point-in-time copy solution are supported by the FlashSnap
license:

Volume-level solutions. There are several types of volume-level snapshots.
These features are suitable for solutions where separate storage is desirable
to create the snapshot. For example, lower-tier storage. Some of these
techniques provided exceptional offhost processing capabilities.

File system-level solutions use the Storage Checkpoint feature of Veritas File
System. Storage Checkpoints are suitable for implementing solutions where
storage space is critical for:

= File systems that contain a small number of mostly large files.

= Application workloads that change a relatively small proportion of file system
data blocks (for example, web server content and some databases).

= Applications where multiple writable copies of a file system are required for
testing or versioning.
See “Storage Checkpoints” on page 363.

File level snapshots.
The FileSnap feature provides snapshots at the level of individual files.

Understanding point-in-time copy methods
About Storage Foundation point-in-time copy technologies

Comparison of Point-in-time copy solutions

The following table shows a side-by-side comparison of the Storage Foundation

Point-in-time copy solutions.

Table 16-1 Comparison of Point-in-time copy solutions

Solution | Granularity | Location | Snapshot Internal Exported |Can be Availability

of technique content content moved

shapped off-host

data
Instant Volume Separate | Copy on write/ | Changed Read/Write | Yes, after Immediate
full-sized volume Full copy regions/ Full | volume synchronization
snapshot volume
Instant Volume Cache Copy on write | Changed Read/Write | No Immediate
space object regions volume
optimized (Separate
snapshot cache

volume)
Linked plex | Volume Separate | Copy on write/ | Changed Read/Write | Yes, after Immediate
break-off volume Full copy regions/ Full | volume synchronization

volume

Plex Volume Separate | Copy on write/ | Changed Read/Write | Yes, after Immediate
break-off volume Full copy regions/ Full | volume synchronization
using volume
vxsnap
Traditional | Volume Separate | Full copy Full volume Read/Write | Yes, after After full
plex volume volume synchronization | synch-
break-off ronization
using
vxassist
Storage File system | Space Copy on write | Changed file | Read/Write | No Immediate
Checkpoint within file system blocks | file system

system
File system | File system | Separate | Copy on write | Changed file |Read-only file | No Immediate
snapshot volume system blocks | system
FileSnap File Space Copy on Changed file | Read/Write | No Immediate

within file | write/Lazy copy | system blocks | file system

system on write

358

Understanding point-in-time copy methods | 359
Volume-level snapshots

Volume-level snapshots

A volume snapshot is an image of a Veritas Volume Manager (VxVM) volume at a
given point in time. You can also take a snapshot of a volume set.

Volume snapshots allow you to make backup copies of your volumes online with
minimal interruption to users. You can then use the backup copies to restore data
that has been lost due to disk failure, software errors or human mistakes, or to
create replica volumes for the purposes of report generation, application
development, or testing.

Volume snapshots can also be used to implement off-host online backup.

Physically, a snapshot may be a full (complete bit-for-bit) copy of the data set, or
it may contain only those elements of the data set that have been updated since
snapshot creation. The latter are sometimes referred to as allocate-on-first-write
snapshots, because space for data elements is added to the snapshot image only
when the elements are updated (overwritten) for the first time in the original data
set. Storage Foundation allocate-on-first-write snapshots are called space-optimized
snapshots.

Persistent FastResync of volume snapshots

If persistent FastResync is enabled on a volume, VxVM uses a FastResync map
to keep track of which blocks are updated in the volume and in the snapshot.

When snapshot volumes are reattached to their original volumes, persistent
FastResync allows the snapshot data to be quickly refreshed and re-used. Persistent
FastResync uses disk storage to ensure that FastResync maps survive both system
and cluster crashes. If persistent FastResync is enabled on a volume in a private
disk group, incremental resynchronization can take place even if the host is rebooted.

Persistent FastResync can track the association between volumes and their
snapshot volumes after they are moved into different disk groups. After the disk
groups are rejoined, persistent FastResync allows the snapshot plexes to be quickly
resynchronized.

Data integrity in volume snapshots

A volume snapshot captures the data that exists in a volume at a given point in
time. As such, VxVM does not have any knowledge of data that is cached in memory
by the overlying file system, or by applications such as databases that have files
open in the file system. Snapshots are always crash consistent, that is, the snapshot
can be put to use by letting the application perform its recovery. This is similar to
how the application recovery occurs after a server crash. If the fsgen volume usage
type is set on a volume that contains a mounted Veritas File System (VxFS), VxXVM

Understanding point-in-time copy methods | 360
Volume-level snapshots

coordinates with VxFS to flush data that is in the cache to the volume. Therefore,
these snapshots are always VxFS consistent and require no VxFS recovery while
mounting.

For databases, a suitable mechanism must additionally be used to ensure the
integrity of tablespace data when the volume snapshot is taken. The facility to
temporarily suspend file system I/O is provided by most modern database software.
The examples provided in this document illustrate how to perform this operation.
For ordinary files in a file system, which may be open to a wide variety of different
applications, there may be no way to ensure the complete integrity of the file data
other than by shutting down the applications and temporarily unmounting the file
system. In many cases, it may only be important to ensure the integrity of file data
that is not in active use at the time that you take the snapshot. However, in all
scenarios where application coordinate, snapshots are crash-recoverable.

Third-mirror break-off snapshots

A plex break-off snapshot uses an additional mirror to create the snapshot. Although
you can create a plex break-off snapshot for a single plex volume, typically you
take a snapshot of a mirrored volume. A mirrored volume has more than one plex
or mirror, each of which is a copy of the data. The snapshot operation "breaks off"
the plex, which becomes the snapshot volume. You can break off an existing plex
or add a new plex specifically to serve as the snapshot mirror. Generally, you want
to maintain redundancy for the original volume. If the original volume is a mirrored
volume with two plexes, you add a third mirror for the snapshot. Hence, this type
of snapshot is also known as a third-mirror snapshot.

The snapshot plex must be on a different disk from the existing plexes in the volume,
within the same disk group. The disk must have enough disk space to contain the
contents of the existing volume. If you have a one terabyte volume, you must have
an additional one terabyte of disk space.

When you create the snapshot, the plexes are separated into two volumes. The
original volume retains its original plex or plexes. The snapshot volume contains
the snapshot plex. The original volume continues to take on I/O. The snapshot
volume retains the data at the point of time when the snapshot was created, until
you choose to perform processing on that volume.

You can make multiple snapshots, so you can have multiple copies of the original
data.

Third-mirror break-off snapshots are suitable for write-intensive volumes (such as
for database redo logs) where the copy-on-write mechanism of space-optimized or
full-sized instant snapshots might degrade performance.

Understanding point-in-time copy methods | 361
Volume-level snapshots

Space-optimized instant volume snapshots

Space-optimized snapshots do not contain complete physical images of the original
data objects they represent. Space-optimized instant snapshots record changed
regions in the original volume to a storage cache. As the original volume is written
to, VXVM preserves its data in the cache before the write is committed. As the
storage cache typically requires much less storage than the original volume, it is
referred to as space-optimized. Space-optimized snapshots consume storage and
I/O bandwidth in proportion to how much data on the original volume is updated
during the life of the snapshot.

The benefits of space-optimized instant snapshots include immediate availability
for use, quick refreshment, and easier configuration and administration. Because
space-optimized snapshots consume less storage and I/0 bandwidth than full-copy
snapshots, you can take the snapshots much more frequently. This makes them
well-suited for recovering from data corruption.

Space-optimized snapshots naturally tend to grow with age, as more of the data in
the original objects changes, so they are inherently better-suited for shorter lifetimes.

Space-optimized snapshots cannot be taken off-host for auxiliary processing.

How space-optimized instant snapshots work

Space-optimized snapshots use a copy-on-write mechanism to make them
immediately available for use when they are first created, or when their data is
refreshed.

You can configure a single storage cache in a disk group that can be shared by all
the volumes in that disk group. If so, the name of the cache that is declared must
be the same for each volume’s space-optimized snapshot. The cache is stored on
disk and is persistent.

If the cache approaches full, configure VxVM to grow the cache automatically using
any available free space in the disk group.

Figure 16-8 shows the instant space-optimized snapshot model.

Understanding point-in-time copy methods | 362
Volume-level snapshots

Figure 16-8 Space-optimized instant snapshot creation and usage in a backup

cycle

K vxsnap refresh
vxsnap prepar vxsnap make

7N -~

Ve

\
Original volume Snapshot volume { Backup,

\ cycle
@Q

~ =
Back up to disk, tape or
other media

See “Creating and managing space-optimized instant snapshots” on page 396.

Choices for snapshot resynchronization

When a snapshot volume is reattached to its original volume within a shared disk
group, there are two choices for resynchronizing the data in the volume:

= Resynchronize the snapshot from the original volume—updates the snapshot
with data from the primary volume that has changed since the snapshot was
taken. The snapshot is then again ready to be taken for the purposes of backup
or decision support. This type of resynchronization is also known as refreshing
the snapshot.

= Resynchronize the original volume from the snapshot—updates the original
volume with data from the snapshot volume that has changed since the snapshot
was taken. This may be necessary to restore the state of a corrupted database
or file system, or to implement upgrades to production software, and is usually
much quicker than using alternative approaches such as full restoration from
backup media. This type of resynchronization is also known as restoring the
snapshot from the copy or replica.

Disk group split/join

One or more volumes, such as snapshot volumes, can be split off into a separate
disk group and deported. They are then ready for importing on another host that is
dedicated to off-host processing. This host need not be a member of a cluster but
it must have access to the disks on which the volumes are configured. At a later
stage, the disk group can be deported, re-imported, and joined with the original disk
group, or with a different disk group.

Understanding point-in-time copy methods | 363
Storage Checkpoints

Note: As space-optimized instant snapshots only record information about changed
regions in the original volume, they cannot be moved to a different disk group. They
are therefore unsuitable for the off-host processing applications that are described
in this document.

The contents of full-sized instant snapshots must be fully synchronized with the
unchanged regions in the original volume before such snapshots can be moved
into a different disk group and deported from a host.

Storage Checkpoints

A Storage Checkpoint is a persistent image of a file system at a given instance in
time. Storage Checkpoints use a copy-on-write technique to reduce 1/0 overhead
by identifying and maintaining only those file system blocks that have changed
since a previous Storage Checkpoint was taken. Storage Checkpoints have the
following important features:

= Storage Checkpoints persist across system reboots and crashes.

= A Storage Checkpoint can preserve not only file system metadata and the
directory hierarchy of the file system, but also user data as it existed when the
Storage Checkpoint was taken.

= After creating a Storage Checkpoint of a mounted file system, you can continue
to create, remove, and update files on the file system without affecting the image
of the Storage Checkpoint.

= Unlike file system snapshots, Storage Checkpoints are writable.

= To minimize disk space usage, Storage Checkpoints use free space in the file
system.

Storage Checkpoints and the Storage Rollback feature of Storage Foundation for
Databases enable rapid recovery of databases from logical errors such as database
corruption, missing files and dropped table spaces. You can mount successive
Storage Checkpoints of a database to locate the error, and then roll back the
database to a Storage Checkpoint before the problem occurred.

How Storage Checkpoints differ from snapshots

Storage Checkpoints differ from Veritas File System snapshots in the following
ways because they:

= Allow write operations to the Storage Checkpoint itself.

» Persist after a system reboot or failure.

Understanding point-in-time copy methods | 364
Storage Checkpoints

= Share the same pool of free space as the file system.

= Maintain a relationship with other Storage Checkpoints by identifying changed
file blocks since the last Storage Checkpoint.

= Can have multiple, read-only Storage Checkpoints that reduce 1/0 operations
and required storage space because the most recent Storage Checkpoint is the
only one that accumulates updates from the primary file system.

= Can restore the file system to its state at the time that the Storage Checkpoint
was taken.

Various backup and replication solutions can take advantage of Storage
Checkpoints. The ability of Storage Checkpoints to track the file system blocks that
have changed since the last Storage Checkpoint facilitates backup and replication
applications that only need to retrieve the changed data. Storage Checkpoints
significantly minimize data movement and may promote higher availability and data
integrity by increasing the frequency of backup and replication solutions.

Storage Checkpoints can be taken in environments with a large number of files,
such as file servers with millions of files, with little adverse impact on performance.
Because the file system does not remain frozen during Storage Checkpoint creation,
applications can access the file system even while the Storage Checkpoint is taken.
However, Storage Checkpoint creation may take several minutes to complete
depending on the number of files in the file system.

How a Storage Checkpoint works

The Storage Checkpoint facility freezes the mounted file system (known as the
primary fileset), initializes the Storage Checkpoint, and thaws the file system.
Specifically, the file system is first brought to a stable state where all of its data is
written to disk, and the freezing process momentarily blocks all I/O operations to
the file system. A Storage Checkpoint is then created without any actual data; the
Storage Checkpoint instead points to the block map of the primary fileset. The
thawing process that follows restarts 1/0 operations to the file system.

You can create a Storage Checkpoint on a single file system or a list of file systems.
A Storage Checkpoint of multiple file systems simultaneously freezes the file
systems, creates a Storage Checkpoint on all of the file systems, and thaws the
file systems. As a result, the Storage Checkpoints for multiple file systems have
the same creation timestamp. The Storage Checkpoint facility guarantees that
multiple file system Storage Checkpoints are created on all or none of the specified
file systems, unless there is a system crash while the operation is in progress.

Note: The calling application is responsible for cleaning up Storage Checkpoints
after a system crash.

Understanding point-in-time copy methods | 365
Storage Checkpoints

A Storage Checkpoint of the primary fileset initially contains only pointers to the
existing data blocks in the primary fileset, and does not contain any allocated data
blocks of its own.

Figure 16-9 shows the file system /database and its Storage Checkpoint. The
Storage Checkpoint is logically identical to the primary fileset when the Storage
Checkpoint is created, but it does not contain any actual data blocks.

Figure 16-9 Primary fileset and its Storage Checkpoint

Primary fileset Storage Checkpoint

|

|

<&
«

In Figure 16-10, a square represents each block of the file system. This figure shows
a Storage Checkpoint containing pointers to the primary fileset at the time the
Storage Checkpoint is taken, as in Figure 16-9.

Understanding point-in-time copy methods
Storage Checkpoints

Figure 16-10 Initializing a Storage Checkpoint

Primary fileset Storage Checkpoin
A < @
B < L]
Cc < L]
D < L]
E < L]

The Storage Checkpoint presents the exact image of the file system by finding the
data from the primary fileset. VxFS updates a Storage Checkpoint by using the
copy-on-write technique.

See “Copy-on-write” on page 366.

Copy-on-write

In Figure 16-11, the third data block in the primary fileset originally containing C is
updated.

Before the data block is updated with new data, the original data is copied to the
Storage Checkpoint. This is called the copy-on-write technique, which allows the
Storage Checkpoint to preserve the image of the primary fileset when the Storage
Checkpoint is taken.

Every update or write operation does not necessarily result in the process of copying
data to the Storage Checkpoint because the old data needs to be saved only once.
As blocks in the primary fileset continue to change, the Storage Checkpoint
accumulates the original data blocks. In this example, subsequent updates to the
third data block, now containing C', are not copied to the Storage Checkpoint
because the original image of the block containing C is already saved.

366

Understanding point-in-time copy methods
Storage Checkpoints

Figure 16-11 Updates to the primary fileset

Primary fileset Storage Checkpoin
A ®
B ®
C C
D ®
E ®

Storage Checkpoint visibility

With the ckptautomnt mount option, all Storage Checkpoints are made accessible
automatically through a directory in the root directory of the file system that has the
special name .checkpoint, Which does not appear in directory listings. Inside this
directory is a directory for each Storage Checkpoint in the file system. Each of these
directories behave as a mount of the corresponding Storage Checkpoint, with the
following exceptions:

» External applications, such as NFS, see the files as part of the original mount
point. Thus, no additional NFS exports are necessary.

= Inode numbers exposed to applications can be made unique, depending on a
mount option.

The Storage Checkpoints are automounted internally, but the operating system
does not know about the automounting. This means that Storage Checkpoints
cannot be mounted manually, and they do not apear in the list of mounted file
systems. When Storage Checkpoints are created or deleted, entries in the Storage
Checkpoint directory are automatically updated. If a Storage Checkpoint is removed
with the - £ option while a file in the Storage Checkpoint is still in use, the Storage
Checkpoint is force unmounted, and all operations on the file fail with the EIO error.

367

Understanding point-in-time copy methods | 368
Storage Checkpoints

If there is already a file or directory named . checkpoint in the root directory of the
file system, such as a directory created with an older version of Veritas File System
(VxFS) or when Storage Checkpoint visibility feature was disabled, the fake directory
providing access to the Storage Checkpoints is not accessible. With this feature
enabled, attempting to create a file or directory in the root directory with the name
.checkpoint fails with the EEXIST error.

Note: If an auto-mounted Storage Checkpointis in use by an NFS mount, removing
the Storage Checkpoint might succeed even without the forced (-£) option.

Storage Checkpoints and 64-bit inode numbers

The inode number of a file is the same across Storage Checkpoints. For example,
if the file fi1e1 exists in a file system and a Storage Checkpoint is taken of that file
system, running the stat command on file1 in the original file system and in the
Storage Checkpoint returns the same value in st_ino. The combination of st _ino
and st_dev should uniquely identify every file in a system. This is usually not a
problem because Storage Checkpoints get mounted separately, so st_dev is
different. When accessing files in a Storage Checkpoint through the Storage
Checkpoint visibility extension, st_dev is the same for all Storage Checkpoints as
well as for the original file system. This means files can no longer be identified
uniquely by st_ino and st_dev.

In general, uniquely identifying all files in a system is not necessary. However, there
can be some applications that rely on unique identification to function properly. For
example, a backup application might check if a file is hard-linked to another file by
calling stat on both and checking if st_ino and st_dev are the same. If a backup
application were told to back up two clones through the Storage Checkpoint visibility
extension at the same time, the application can erroneously deduce that two files
are the same even though the files contain different data.

By default, Storage Foundation (SF) does not make inode numbers unique. However,
you can specify the uniqueino mount option to enable the use of unique 64-bit
inode numbers. You cannot change this option during a remount.

Types of Storage Checkpoints
You can create the following types of Storage Checkpoints:
= Data Storage Checkpoints
= Nodata Storage Checkpoints
= Removable Storage Checkpoints

= Non-mountable Storage Checkpoints

Understanding point-in-time copy methods
Storage Checkpoints

Data Storage Checkpoints

A data Storage Checkpoint is a complete image of the file system at the time the
Storage Checkpoint is created. This type of Storage Checkpoint contains the file
system metadata and file data blocks. You can mount, access, and write to a data
Storage Checkpoint just as you would to a file system. Data Storage Checkpoints
are useful for backup applications that require a consistent and stable image of an
active file system. Data Storage Checkpoints introduce some overhead to the
system and to the application performing the write operation. For best results, limit
the life of data Storage Checkpoints to minimize the impact on system resources.

See “Showing the difference between a data and a nodata Storage Checkpoint”
on page 439.

Nodata Storage Checkpoints

A nodata Storage Checkpoint only contains file system metadata—no file data
blocks. As the original file system changes, the nodata Storage Checkpoint records
the location of every changed block. Nodata Storage Checkpoints use minimal
system resources and have little impact on the performance of the file system
because the data itself does not have to be copied.

In Figure 16-12, the first block originally containing A is updated.

The original data is not copied to the Storage Checkpoint, but the changed block
is marked in the Storage Checkpoint. The marker indicates which data has changed.

369

Understanding point-in-time copy methods
Storage Checkpoints

Figure 16-12 Updates to a nodata clone

Primary fileset Storage Checkpoint
x v
B < L]
C < @
D < L]
E < L]

See “Showing the difference between a data and a nodata Storage Checkpoint”
on page 439.

Removable Storage Checkpoints

A removable Storage Checkpoint can self-destruct under certain conditions when
the file system runs out of space.

See “Storage Checkpoint space management considerations” on page 447.

During user operations such as create or mkdir, if the file system runs out of space,
removable Storage Checkpoints are deleted, even if the Storage Checkpoints are
mounted. This ensures that applications can continue without interruptions due to
lack of disk space. Non-removable Storage Checkpoints are not automatically
removed under such Exospc conditions. Veritas recommends that you create only
removable Storage Checkpoints. However, during certain administrative operations,
such as fsadm, even if the file system runs out of space, removable Storage
Checkpoints are not deleted.

Storage Checkpoints are created as non-removable by default. The default behavior
can be changed so that VxFS creates removable Storage Checkpoints by using
the vxtunefs -D ckpt removable=1 command. With the default set to create

370

Understanding point-in-time copy methods | 371
About FileSnaps

removable Storage Checkpoints, non-removable Storage Checkpoints can be
created using fsckptadm -R create ckpt name mount point command.

See the vxtunefs(1M) and fsckptadm(1M) manual pages.

Non-mountable Storage Checkpoints

You can create Storage Checkpoints that cannot be mounted by using the fsckptadm
set nomount command. The nomount option can be cleared using the fsckptadm
clear nomount command.

Use non-mountable Storage Checkpoints as a security feature. This prevents other
applications from accessing and modifying the Storage Checkpoint.

See the fsckptadm(1M) manual page.

About FileSnaps

A FileSnap is an atomic space-optimized copy of a file in the same name space,
stored in the same file system. Veritas File System (VxFS) supports snapshots on
file system disk layout Version 8 and later.

FileSnaps provide an ability to snapshot objects that are smaller in granularity than
a file system or a volume. The ability to snapshot parts of a file system name space
is required for application-based or user-based management of data stored in a file
system. This is useful when a file system is shared by a set of users or applications
or the data is classified into different levels of importance in the same file system.

All regular file operations are supported on the FileSnap, and VxFS does not
distinguish the FileSnap in any way.

Properties of FileSnaps

FileSnaps provide non-root users the ability to snapshot data that they own, without
requiring administrator privileges. This enables users and applications to version,
backup, and restore their data by scheduling snapshots at appropriate points of
their application cycle. Restoring from a FileSnap is as simple as specifying a
snapshot as the source file and the original file as the destination file as the
arguments for the vxfilesnap command.

FileSnap creation locks the source file as read-only and locks the destination file
exclusively for the duration of the operation, thus creating the snapshots atomically.
The rest of the files in the file system can be accessed with no I/O pause while
FileSnap creation is in progress. Read access to the source file is also uninterrupted
while the snapshot creation is in progress. This allows for true sharing of a file
system by multiple users and applications in a non-intrusive fashion.

Understanding point-in-time copy methods | 372
About FileSnaps

The name space relationship between source file and destination file is defined by
the user-issued vxfilesnap command by specifying the destination file path. Veritas
File System (VxFS) neither differentiates between the source file and the destination
file, nor does it maintain any internal relationships between these two files. Once
the snapshot is completed, the only shared property between the source file and
destination file are the data blocks and block map shared by them.

The number of FileSnaps of a file is practically unlimited. The technical limit is the
maximum number of files supported by the VxFS file system, which is one billion
files per file set. When thousands of FileSnaps are created from the same file and
each of these snapshot files is simultaneously read and written to by thousands of
threads, FileSnaps scale very well due to the design that results in no contention
of the shared blocks when unsharing happens due to an overwrite. The performance
seen for the case of unsharing shared blocks due to an overwrite with FileSnaps
is closer to that of an allocating write than that of a traditional copy-on-write.

In disk layout Version 8, to support block or extent sharing between the files,
reference counts are tracked for each shared extent. VXFS processes reference
count updates due to sharing and unsharing of extents in a delayed fashion. Also,
an extent that is marked shared once will not go back to unshared until all the
references are gone. This is to improve the FileSnap creation performance and
performance of data extent unsharing. However, this in effect results in the shared
block statistics for the file system to be only accurate to the point of the processing
of delayed reclamation. In other words, the shared extent statistics on the file system
and a file could be stale, depending on the state of the file system.

Concurrent 1/0 to FileSnaps

FileSnaps design and implementation ensures that concurrent reads or writes to
different snapshots of the same file perform as if these were independent files.
Even though the extents are shared between snapshots of the same file, the sharing
has no negative impact on concurrent 1/0.

Copy-on-write and FileSnaps

Veritas File System (VxFS) supports an option to do lazy copy-on-write when a
region of a file referred to by a shared extent is overwritten. A typical copy-on-write
implementation involves reading the old data, allocating a new block, copying or
writing the old data to the new block synchronously, and writing the new data to
the new block. This results in a worst case possibility of one or more allocating
transactions, followed by a read, followed by a synchronous write and another write
that conforms to the I/O behavior requested for the overwrite. This sequence makes
typical copy-on-write a costly operation. The VxFS lazy copy-on-write implementation
does not copy the old data to the newly allocated block and hence does not have

Understanding point-in-time copy methods | 373
About FileSnaps

to read the old data either, as long as the new data covers the entire block. This
behavior combined with delayed processing of shared extent accounting makes
the lazy copy-on-write complete in times comparable to that of an allocating write.
However, in the event of a server crash, when the server has not flushed the new
data to the newly allocated blocks, the data seen on the overwritten region would
be similar to what you would find in the case of an allocating write where the server
has crashed before the data is flushed. This is not the default behavior and with
the default behavior the data that you find in the overwritten region will be either
the new data or the old data.

Reading from FileSnaps

For regular read requests, Veritas File System (VxFS) only caches a single copy
of a data page in the page cache for a given shared data block, even though the
shared data block could be accessed from any of the FileSnaps or the source file.
Once the shared data page is cached, any subsequent requests via any of the
FileSnaps or the source file is serviced from the page cache. This eliminates
duplicate read requests to the disk, which results in lower I/O load on the array.
This also reduces the page cache duplication, which results in efficient usage of
system page cache with very little cache churning when thousands of FileSnaps
are accessed.

Block map fragmentation and FileSnaps

The block map of the source file is shared by the snapshot file. When data is
overwritten on a previously shared region, the block map of the file to which the
write happens gets changed. In cases where the shared data extent of a source
file is larger than the size of the overwrite request to the same region, the block
map of the file that is written to becomes more fragmented.

Backup and FileSnaps

A full backup of a VxFS file system that has shared blocks may require as much
space in the target as the number of total logical references to the physical blocks
in the source file system. For example, if you have a 20 GB file from which one
thousand FileSnaps were created, the total number of logical block references is
approximately 20 TB. While the VxFS file system only requires a little over 20 GB
of physical blocks to store the file and the file's one thousand snapshots, the file
system requires over 20 TB of space on the backup target to back up the file system,
assuming the backup target does not have deduplication support.

Understanding point-in-time copy methods | 374
About snapshot file systems

About snapshot file systems

A snapshot file system is an exact image of a VxFS file system, referred to as the
snapped file system, that provides a mechanism for making backups. The snapshot
is a consistent view of the file system “snapped" at the point in time the snapshot
is made. You can select files to back up from the snapshot using a standard utility
such as cpio or cp, or back up the entire file system image using the vxdump or
fscat utilities.

You use the mount command to create a snapshot file system; the mkfs command
is not required. A snapshot file system is always read-only. A snapshot file system
exists only as long as the snapped file system is mounted, and the snapshot file
system ceases to exist when unmounted. A snapped file system cannot be
unmounted until all of its snapshots are unmounted. Although it is possible to have
multiple snapshots of a file system made at different times, it is not possible to make
a snapshot of a snapshot.

Note: A snapshot file system ceases to exist when unmounted. If mounted again,
it is actually a fresh snapshot of the snapped file system. A snapshot file system
must be unmounted before its dependent snapped file system can be unmounted.
Neither the fuser command nor the mount command will indicate that a snapped
file system cannot be unmounted because a snapshot of it exists.

On cluster file systems, snapshots can be created on any node in the cluster, and
backup operations can be performed from that node. The snapshot of a cluster file
system is accessible only on the node where it is created, that is, the snapshot file
system itself cannot be cluster mounted.

See the Storage Foundation Cluster File System High Availability Administrator's
Guide.

How a snapshot file system works

A snapshot file system is created by mounting an empty disk slice as a snapshot
of a currently mounted file system. The bitmap, blockmap and super-block are
initialized and then the currently mounted file system is frozen. After the file system
to be snapped is frozen, the snapshot is enabled and mounted and the snapped
file system is thawed. The snapshot appears as an exact image of the snapped file
system at the time the snapshot was made.

See “Freezing and thawing a file system” on page 334.

Initially, the snapshot file system satisfies read requests by finding the data on the
snapped file system and returning it to the requesting process. When an inode

Understanding point-in-time copy methods
About snapshot file systems

update or a write changes the data in block n of the snapped file system, the old
data is first read and copied to the snapshot before the snapped file system is
updated. The bitmap entry for block n is changed from 0 to 1, indicating that the
data for block n can be found on the snapshot file system. The blockmap entry for
block n is changed from 0 to the block number on the snapshot file system containing
the old data.

A subsequent read request for block n on the snapshot file system will be satisfied
by checking the bitmap entry for block n and reading the data from the indicated
block on the snapshot file system, instead of from block n on the snapped file
system. This technique is called copy-on-write. Subsequent writes to block n on
the snapped file system do not result in additional copies to the snapshot file system,
since the old data only needs to be saved once.

All updates to the snapped file system for inodes, directories, data in files, extent
maps, and so forth, are handled in this fashion so that the snapshot can present a
consistent view of all file system structures on the snapped file system for the time
when the snapshot was created. As data blocks are changed on the snapped file
system, the snapshot gradually fills with data copied from the snapped file system.

The amount of disk space required for the snapshot depends on the rate of change
of the snapped file system and the amount of time the snapshot is maintained. In
the worst case, the snapped file system is completely full and every file is removed
and rewritten. The snapshot file system would need enough blocks to hold a copy
of every block on the snapped file system, plus additional blocks for the data
structures that make up the snapshot file system. This is approximately 101 percent
of the size of the snapped file system. Normally, most file systems do not undergo
changes at this extreme rate. During periods of low activity, the snapshot should
only require two to six percent of the blocks of the snapped file system. During
periods of high activity, the snapshot might require 15 percent of the blocks of the
snapped file system. These percentages tend to be lower for larger file systems
and higher for smaller ones.

Warning: If a snapshot file system runs out of space for changed data blocks, it is
disabled and all further attempts to access it fails. This does not affect the snapped
file system.

375

Administering volume
snapshots

This chapter includes the following topics:

About volume snapshots

Traditional third-mirror break-off snapshots
Full-sized instant snapshots

Linked break-off snapshots

Cascaded snapshots

Creating multiple snapshots

Restoring the original volume from a snapshot

Adding a version 0 DCO and DCO volume

About volume snapshots

VxVM can take an image of a volume at a given point in time. This image is called
a volume snapshot.

See “Volume-level snapshots” on page 359.

You can also take a snapshot of a volume set.

Snapshot creation using the vxsnap command is the preferred mechanism for
implementing point-in-time copy solutions in VxVM. Support for traditional third-mirror
snapshots that are created using the vxassist command may be removed in a
future release.

Administering volume snapshots | 377
Traditional third-mirror break-off snapshots

To recover from the failure of instant snapshot commands, see the Veritas InfoScale
Troubleshooting Guide.

Traditional third-mirror break-off snapshots

The recommended approach to performing volume backup from the command line,
or from a script, is to use the vxsnap command. The vxassist snapstart,
snapwait, and snapshot commands are supported for backward compatibility.

The use of the vxassist command to administer traditional (third-mirror break-off)
snapshots is not supported for volumes that are prepared for instant snapshot
creation. Use the vxsnap command instead.

Figure 17-1 shows the traditional third-mirror break-off volume snapshot model that
is supported by the vxassist command.

Figure 17-1 Third-mirror snapshot creation and usage

vxassist
Start \ snapstart

o vxassist
_ Original volume snapshot
/
p /\
Original volume | Backup
\ q
- Snapshot mirror cycle Snapshot volume
Refresh on snapback v
vxsassist
snapback

Independent volume < -
vxsassist snapclear

Back up to disk, tape or
other media, or use to
replicate database or file

The vxassist snapstart command creates a mirror to be used for the snapshot,
and attaches it to the volume as a snapshot mirror. As is usual when creating a
mirror, the process of copying the volume’s contents to the new snapshot plexes
can take some time to complete. (The vxassist snapabort command cancels this
operation and removes the snapshot mirror.)

When the attachment is complete, the vxassist snapshot command is used to
create a new snapshot volume by taking one or more snapshot mirrors to use as
its data plexes. The snapshot volume contains a copy of the original volume’s data
at the time that you took the snapshot. If more than one snapshot mirror is used,
the snapshot volume is itself mirrored.

Administering volume snapshots | 378
Traditional third-mirror break-off snapshots

The command, vxassist snapback, can be used to return snapshot plexes to the
original volume from which they were snapped, and to resynchronize the data in
the snapshot mirrors from the data in the original volume. This enables you to
refresh the data in a snapshot after you use it to make a backup. You can use a
variation of the same command to restore the contents of the original volume from
a snapshot previously taken.

The FastResync feature minimizes the time and 1/O needed to resynchronize the
data in the snapshot. If FastResync is not enabled, a full resynchronization of the
data is required.

Finally, you can use the vxassist snapclear command to break the association
between the original volume and the snapshot volume. Because the snapshot
relationship is broken, no change tracking occurs. Use this command if you do not
need to reuse the snapshot volume to create a new point-in-time copy.

Creating traditional third-mirror break-off snapshots

VxVM provides third-mirror break-off snapshot images of volume devices using
vxassist and other commands.

To enhance the efficiency and usability of volume snapshots, turn on FastResync.

If Persistent FastResync is required, you must associate a version 0 DCO with the
volume.

See “Adding a version 0 DCO and DCO volume” on page 428.

A plex is required that is large enough to store the complete contents of the volume.
Alternatively, you can use space-optimized instant snapshots.

The recommended approach to performing volume backup from the command line,
or from a script, is to use the vxsnap command. The vxassist snapstart,
snapwait, and snapshot commands are supported for backward compatibility.

The vxassist snapshot procedure consists of two steps:
» Runvxassist snapstart to create a snapshot mirror.
s Runvxassist snapshot to create a snapshot volume.

The vxassist snapstart step creates a write-only backup plex which gets attached
to and synchronized with the volume.

If the volume is encrypted with a password or passphrase, you will prompted to
enter the password or passphrase.

When synchronized with the volume, the backup plex is ready to be used as a
snapshot mirror. The end of the update procedure is indicated by the new snapshot
mirror changing its state to SNAPDONE. This change can be tracked by the

Administering volume snapshots
Traditional third-mirror break-off snapshots

vxassist snapwait task, which waits until at least one of the mirrors changes its
state to SNAPDONE. If the attach process fails, the snapshot mirror is removed
and its space is released.

Note: If the snapstart procedure is interrupted, the snapshot mirror is automatically
removed when the volume is started.

Once the snapshot mirror is synchronized, it continues being updated until it is
detached. You can then select a convenient time at which to create a snapshot
volume as an image of the existing volume. You can also ask users to refrain from
using the system during the brief time required to perform the snapshot (typically
less than a minute). The amount of time involved in creating the snapshot mirror
is long in contrast to the brief amount of time that it takes to create the snapshot
volume.

The online backup procedure is completed by running the vxassist snapshot
command on a volume with a SNAPDONE mirror. This task detaches the finished
snapshot (Which becomes a normal mirror), creates a new normal volume and
attaches the snapshot mirror to the snapshot volume. The snapshot then becomes
a normal, functioning volume and the state of the snapshot is set to ACTIVE.

Administering volume snapshots
Traditional third-mirror break-off snapshots

To back up a volume using the vxassist command

1

Create a snapshot mirror for a volume using the following command:
vxassist [-b] [-g diskgroup] snapstart [nmirror=N] volume

For example, to create a snapshot mirror of a volume called voldef, use the
following command:

vxassist [-g diskgroup] snapstart voldef

The vxassist snapstart task creates a write-only mirror, which is attached
to and synchronized from the volume to be backed up.

By default, VxVM attempts to avoid placing snapshot mirrors on a disk that
already holds any plexes of a data volume. However, this may be impossible
if insufficient space is available in the disk group. In this case, VXVM uses any
available space on other disks in the disk group. If the snapshot plexes are
placed on disks which are used to hold the plexes of other volumes, this may
cause problems when you subsequently attempt to move a snapshot volume
into another disk group.

See “Moving DCO volumes between disk groups” on page 642.

To override the default storage allocation policy, you can use storage attributes
to specify explicitly which disks to use for the snapshot plexes.

See “Creating a volume on specific disks” on page 150.

If you start vxassist snapstart in the background using the -b option, you
canuse the vxassist snapwait command to wait for the creation of the mirror
to complete as shown here:

vxassist [-g diskgroup] snapwait volume

If vxassist snapstart is not run in the background, it does not exit until the
mirror has been synchronized with the volume. The mirror is then ready to be
used as a plex of a snapshot volume. While attached to the original volume,
its contents continue to be updated until you take the snapshot.

Use the nmirror attribute to create as many snapshot mirrors as you need for
the snapshot volume. For a backup, you should usually only require the default
of one.

It is also possible to make a snapshot plex from an existing plex in a volume.
See “Converting a plex into a snapshot plex” on page 382.

Choose a suitable time to create a snapshot. If possible, plan to take the
snapshot at a time when users are accessing the volume as little as possible.

380

Administering volume snapshots
Traditional third-mirror break-off snapshots

Create a snapshot volume using the following command:
vxassist [-g diskgroup] snapshot [nmirror=N] volume snapshot

If required, use the nmirror attribute to specify the number of mirrors in the
snapshot volume.

For example, to create a snapshot of voldef, use the following command:
vxassist -g mydg snapshot voldef snapvoldef

The vxassist snapshot task detaches the finished snapshot mirror, creates
a new volume, and attaches the snapshot mirror to it. This step should only
take a few minutes. The snapshot volume, which reflects the original volume
at the time of the snapshot, is now available for backing up, while the original
volume continues to be available for applications and users.

If required, you can make snapshot volumes for several volumes in a disk
group at the same time.

See “Creating multiple snapshots with the vxassist command” on page 383.

Clean the temporary volume's contents using an appropriate utility such as
fsck for non-VxVM file systems and log replay for databases. Because VxVM
calls VxFS and places VxFS file systems in a constant state immediately before
taking a snapshot, it is not usually necessary to run £sck on a VxFS file system
on the temporary volume. If a VxFS file system contains a database, it will still
be necessary to perform database log replay.

If you require a backup of the data in the snapshot, use an appropriate utility
or operating system command to copy the contents of the snapshot to tape,
or to some other backup medium.

When the backup is complete, you have the following choices for what to do
with the snapshot volume:

» Reattach some or all of the plexes of the snapshot volume with the original
volume.
See “Reattaching a snapshot volume” on page 384.

» [f FastResync was enabled on the volume before the snapshot was taken,
this speeds resynchronization of the snapshot plexes before the backup
cycle starts again at step 3.

= Dissociate the snapshot volume entirely from the original volume
See “Dissociating a snapshot volume” on page 385.

= This may be useful if you want to use the copy for other purposes such as
testing or report generation.

381

Administering volume snapshots
Traditional third-mirror break-off snapshots

= Remove the snapshot volume to save space with this command:

vxedit [-g diskgroup] -rf rm snapshot

Dissociating or removing the snapshot volume loses the advantage of fast
resynchronization if FastResync was enabled. If there are no further snapshot
plexes available, any subsequent snapshots that you take require another
complete copy of the original volume to be made.

Converting a plex into a snapshot plex

For a traditional, third-mirror break-off snapshot, you can convert an existing plex
in a volume into a snapshot plex. Veritas recommends using the instant snapshot
feature rather than converting a plex into a snapshot plex.

Note: A plex cannot be converted into a snapshot plex for layered volumes or for
any volume that has an associated instant snap DCO volume.

In some circumstances, you may find it more convenient to convert an existing plex
in a volume into a snapshot plex rather than running vxassist snapstart. For
example, you may want to do this if you are short of disk space for creating the
snapshot plex and the volume that you want to snapshot contains more than two
plexes.

The procedure can also be used to speed up the creation of a snapshot volume
when a mirrored volume is created with more than two plexes and init=active is
specified.

Itis advisable to retain at least two plexes in a volume to maintain data redundancy.

To convert an existing plex into a snapshot plex for a volume on which Persistent
FastResync is enabled, use the following command:

vxplex [-g diskgroup] -o dcoplex=dcologplex convert \
state=SNAPDONE plex

dcologplex is the name of an existing DCO plex that is to be associated with the
new snapshot plex. You can use the vxprint command to find out the name of the
DCO volume.

See “Adding a version 0 DCO and DCO volume” on page 428.

For example, to make a snapshot plex from the plex trivo1-03 in the 3-plex volume
trivol, you would use the following command:

382

Administering volume snapshots | 383
Traditional third-mirror break-off snapshots

vxplex -o dcoplex=trivol dco-03 convert state=SNAPDONE \
trivol-03

Here the DCO plex trivol dco 03 is specified as the DCO plex for the new
snapshot plex.

To convert an existing plex into a snapshot plex in the SNAPDONE state for a
volume on which Non-Persistent FastResync is enabled, use the following command:

vxplex [-g diskgroup] convert state=SNAPDONE plex

A converted plex is in the SNAPDONE state, and can be used immediately to create
a snapshot volume.

Note: The last complete regular plex in a volume, an incomplete regular plex, or a
dirty region logging (DRL) log plex cannot be converted into a snapshot plex.

See “Third-mirror break-off snapshots” on page 360.

Creating multiple snapshots with the vxassist command

To make it easier to create snapshots of several volumes at the same time, the
snapshot option accepts more than one volume name as its argument, for example:

vxassist [-g diskgroup] snapshot volumel

volume2 ...

By default, the first snapshot volume is named SNAP-volume, and each subsequent
snapshot is named SNAPnumber-volume, where number is a unique serial number,
and volume is the name of the volume for which the snapshot is being taken. This
default pattern can be overridden by using the option -0 name=pattern, as
described on the vxassist(1M) manual page. For example, the pattern sNapsv-%d
reverses the order of the number and volume components in the name.

To snapshot all the volumes in a single disk group, specify the option -o allvols
to vxassist:

vxassist -g diskgroup -o allvols snapshot

This operation requires that all snapstart operations are complete on the volumes.
It fails if any of the volumes in the disk group do not have a complete snapshot plex
in the SNAPDONE state.

Note: The vxsnap command provides similiar functionality for creating multiple
snapshots.

Administering volume snapshots | 384
Traditional third-mirror break-off snapshots

Reattaching a snapshot volume

The snapback operation merges a snapshot copy of a volume with the original
volume. One or more snapshot plexes are detached from the snapshot volume and
re-attached to the original volume. The snapshot volume is removed if all its snapshot
plexes are snapped back. This task resynchronizes the data in the volume so that
the plexes are consistent.

The snapback operation cannot be applied to RAID-5 volumes unless they have
been converted to a special layered volume layout by the addition of a DCO and
DCO volume.

See “Adding a version 0 DCO and DCO volume” on page 428.

To enhance the efficiency of the snapback operation, enable FastResync on the
volume before taking the snapshot

To merge one snapshot plex with the original volume, use the following command:
vxassist [-g diskgroup] snapback snapshot

where snapshot is the snapshot copy of the volume.

To merge all snapshot plexes in the snapshot volume with the original volume, use
the following command:

vxassist [-g diskgroup] -o allplexes snapback snapshot

To merge a specified number of plexes from the snapshot volume with the original
volume, use the following command:

vxassist [-g diskgroup] snapback nmirror=number snapshot

Here the nmirror attribute specifies the number of mirrors in the snapshot volume
that are to be re-attached.

Once the snapshot plexes have been reattached and their data resynchronized,
they are ready to be used in another snapshot operation.

By default, the data in the original volume is used to update the snapshot plexes
that have been re-attached. To copy the data from the replica volume instead, use
the following command:

vxassist [-g diskgroup] -o resyncfromreplica snapback snapshot

Warning: Always unmount the snapshot volume (if this is mounted) before
performing a snapback. In addition, you must unmount the file system corresponding
to the primary volume before using the resyncfromreplica option.

Administering volume snapshots
Traditional third-mirror break-off snapshots

Adding plexes to a snapshot volume

If you want to retain the existing plexes in a snapshot volume after a snapback
operation, you can create additional snapshot plexes that are to be used for the
snapback.

To add plexes to a snapshot volume

1 Use the following vxprint commands to discover the names of the snapshot
volume’s data change object (DCO) and DCO volume:

DCONAME='vxprint [-g diskgroup] -F%dco_name snapshot’
DCOVOL="vxprint [-g diskgroup] -F%log vol $DCONAME "
2 Usethevxassist mirror command to create mirrors of the existing snapshot

volume and its DCO volume:

vxassist -g diskgroup mirror snapshot

vxassist -g diskgroup mirror $DCOVOL

The new plex in the DCO volume is required for use with the new data plex in
the snapshot.

3 Use the vxprint command to find out the name of the additional snapshot
plex:

vxprint -g diskgroup snapshot

4 Use the vxprint command to find out the record ID of the additional DCO
plex:
vxprint -g diskgroup -F%$rid $DCOVOL

5 Use the vxedit command to set the dco plex rid field of the new data plex
to the name of the new DCO plex:
vxedit -g diskgroup set dco_plex_rid=dco plex rid new plex

The new data plex is now ready to be used to perform a snapback operation.

Dissociating a snhapshot volume

The link between a snapshot and its original volume can be permanently broken
so that the snapshot volume becomes an independent volume. Use the following
command to dissociate the snapshot volume, snapshot:

vxassist snapclear snapshot

385

Administering volume snapshots
Traditional third-mirror break-off snapshots

Displaying snapshot information

The vxassist snapprintcommand displays the associations between the original
volumes and their respective replicas (snapshot copies):

vxassist snapprint [volume]
Output from this command is shown in the following examples:

vxassist -g mydg snapprint vl

V NAME USETYPE LENGTH

SS SNAPOBJ NAME LENGTH SDIRTY
DP NAME VOLUME LENGTH SDIRTY
v vl fsgen 20480

ss SNAP-vl snp SNAP-vl 20480 4

dp v1-01 vl 20480 0

dp v1-02 vl 20480 0

v SNAP-v1 fsgen 20480

ss vl snp vl 20480 0

vxassist -g mydg snapprint v2

vV NAME USETYPE LENGTH

SS SNAPOBJ NAME LENGTH SDIRTY
DP NAME VOLUME LENGTH SDIRTY
v ov2 fsgen 20480

ss —-— SNAP-v2 20480 0

dp v2-01 v2 20480 0

v SNAP-v2 fsgen 20480

ss —--— v2 20480 0

In this example, Persistent FastResync is enabled on volume v1, and Non-Persistent
FastResync on volume v2. Lines beginning with v, dp and ss indicate a volume,
detached plex and snapshot plex respectively. The spIRTY field indicates the
percentage of a snapshot plex or detached plex that is dirty with respect to the
original volume. Notice that no snap objects are associated with volume v2 or with
its snapshot volume sNapP-v2.

If a volume is specified, the snapprint command displays an error message if no
FastResync maps are enabled for that volume.

386

Administering volume snapshots | 387
Full-sized instant snapshots

Full-sized instant snapshots

Full-sized instant snapshots are a variation on the third-mirror volume snapshot
model that make a snapshot volume available for I1/0O access as soon as the
snapshot plexes have been created.

Figure 17-2 shows the full-sized instant volume snapshot model.

Figure 17-2 Full-sized instant snapshot creation and usage in a backup cycle

vxsnhap make
vxsnap refresh
vxsnap prepar /_\

Ve

\
Original volume Snapshot volume Backup
\ cycle
| N / -_7
\ /
N e

~ - H
— vxsnap dis
vxsnap reattach P

or
@ vxsnap split
Back up to disk, tape or other media

The snapshot volume can also be used to create a repli Independent volume
database or file system when synchronization is complete.

To create an instant snapshot, use the vxsnap make command. This command can
either be applied to a suitably prepared empty volume that is to be used as the
snapshot volume, or it can be used to break off one or more synchronized plexes
from the original volume.

You can make a backup of a full-sized instant snapshot, instantly refresh its contents
from the original volume, or attach its plexes to the original volume, without
completely synchronizing the snapshot plexes from the original volume.

VxVM uses a copy-on-write mechanism to ensure that the snapshot volume
preserves the contents of the original volume at the time that the snapshot is taken.
Any time that the original contents of the volume are about to be overwritten, the
original data in the volume is moved to the snapshot volume before the write
proceeds. As time goes by, and the contents of the volume are updated, its original
contents are gradually relocated to the snapshot volume.

If a read request comes to the snapshot volume, yet the data resides on the original
volume (because it has not yet been changed), VxVM automatically and
transparently reads the data from the original volume.

If desired, you can perform either a background (non-blocking) or foreground
(blocking) synchronization of the snapshot volume. This is useful if you intend to

Administering volume snapshots | 388
Full-sized instant snapshots

move the snapshot volume into a separate disk group for off-host processing, or
you want to turn the snapshot volume into an independent volume.

The vxsnap refresh command allows you to update the data in a snapshot, for
example, before taking a backup.

The command vxsnap reattach attaches snapshot plexes to the original volume,
and resynchronizes the data in these plexes from the original volume. Alternatively,
you can use the vxsnap restore command to restore the contents of the original
volume from a snapshot that you took at an earlier point in time. You can also
choose whether or not to keep the snapshot volume after restoration of the original
volume is complete.

By default, the FastResync feature of VxVM is used to minimize the time and 1/O
needed to resynchronize the data in the snapshot mirror. FastResync must be
enabled to create instant snapshots.

See “Creating and managing full-sized instant snapshots” on page 399.

An empty volume must be prepared for use by full-sized instant snapshots and
linked break-off snapshots.

See “Creating a volume for use as a full-sized instant or linked break-off snapshot”
on page 394.

Creating instant snapshots

Note: You need a Veritas InfoScale Storage or Veritas InfoScale Enterprise license
to use this feature.

VxVM allows you to make instant snapshots by using the vxsnap command.

You can also take instant snapshots of RAID-5 volumes that have been converted
to a special layered volume layout by the addition of a DCO and DCO volume.

A plex in a full-sized instant snapshot requires as much space as the original volume.
If you instead make a space-optimized instant snapshot of a volume, this only
requires enough storage to record the original contents of the parent volume as
they are changed during the life of the snapshot.

The recommended approach to perform volume backup from the command line,
or from a script, is to use the vxsnap command. The vxsnap prepare and make
tasks allow you to back up volumes online with minimal disruption to users.

vxsnap prepare creates a DCO and DCO volume and associates this with the
original volume. It also enables Persistent FastResync.

Administering volume snapshots
Full-sized instant snapshots

vxsnap make creates an instant snapshot that is immediately available for making
a backup. After the snapshot has been taken, read requests for data in the instant
snapshot volume are satisfied by reading either from a non-updated region of the
original volume, or from the copy of the original contents of an updated region that
have been recorded by the snapshot.

Note: Synchronization of a full-sized instant snapshot from the original volume is
enabled by default. If you specify the syncing=no attribute to vxsnap make, this
disables synchronization, and the contents of the instant snapshot are unlikely ever
to become fully synchronized with the contents of the original volume at the point
in time that the snapshot was taken. In such a case, the snapshot cannot be used
for off-host processing, nor can it become an independent volume.

You can immediately retake a full-sized or space-optimized instant snapshot at any
time by using the vxsnap refresh command. If a fully synchronized instant snapshot
is required, the new resynchronization must first complete.

To create instant snapshots of volume sets, use volume set names in place of
volume names in the vxsnap command.

See “Creating instant snapshots of volume sets” on page 407.

When using the vxsnap prepare Or vxassist make commands to make a volume
ready for instant snapshot operations, if the specified region size exceeds half the
value of the tunable voliomem maxpool sz, the operation succeeds but gives a
warning such as the following (for a system where voliomem maxpool sz is setto
12MB):

VxVM vxassist WARNING V-5-1-0 Specified regionsize is
larger than the limit on the system
(voliomem maxpool sz/2=6144k).

If this message is displayed, vxsnap make, refresh and restore operations on
such volumes fail as they might potentially hang the system. Such volumes can be
used only for break-off snapshot operations using the reat tach and make operations.

To make the volumes usable for instant snapshot operations, use vxsnap unprepare
on the volume, and then use vxsnap prepare to re-prepare the volume with a
region size that is less than half the size of voliomem maxpool sz (in this example,
1MB):

vxsnap -g mydg -f unprepare voll

vxsnap -g mydg prepare voll regionsize=1M

See “Creating instant snapshots of volume sets” on page 407.

389

Administering volume snapshots
Full-sized instant snapshots

See “Creating and managing space-optimized instant snapshots” on page 396.
See “Creating and managing full-sized instant snapshots” on page 399.
See “Creating and managing third-mirror break-off snapshots” on page 401.

See “Creating and managing linked break-off snapshot volumes” on page 404.

Adding an instant snap DCO and DCO volume

To prepare a volume for instant snapshots, an instant snap data change object
(DCO) and DCO volume must be associated with that volume. This procedure also
enables Persistent FastResync on the volume.

The following procedure is required only if the volume does not have an instant
snap DCO volume.

By default, volumes on thin provisioning LUNs are created with an instant snap
DCO volume.

390

Administering volume snapshots
Full-sized instant snapshots

To add an instant snap DCO and DCO volume

1

Verify that the volume has an instant snap data change object (DCO) and DCO
volume, and that FastResync is enabled on the volume:

vxprint -g volumedg -F%$instant volume

vxprint -g volumedg -F%$fastresync volume

If both commands return a value of on, skip to step 3. Otherwise continue with
step 2.

To prepare a volume for instant snapshots, use the following command:

vxsnap [-g diskgroup] prepare volume [regionsize=size] \

[ndcomirs=number] [alloc=storage attributes]

Run the vxsnap prepare command on a volume only if it does not have an
instant snap DCO volume.

For example, to prepare the volume, myvo1l, in the disk group, mydg, use the
following command:

vxsnap -g mydg prepare myvol regionsize=128k ndcomirs=2 \

alloc=mydglO,mydgll

This example creates a DCO object and redundant DCO volume with two
plexes located on disks mydg10 and mydg11, and associates them with myvol.
The region size is also increased to 128KB from the default size of 64KB. The
region size must be a power of 2, and be greater than or equal to 16KB. A
smaller value requires more disk space for the change maps, but the finer
granularity provides faster resynchronization.

If you need several space-optimized instant snapshots for the volumes in a
disk group, you may find it convenient to create a single shared cache object
in the disk group rather than a separate cache object for each snapshot.

See “Creating a shared cache object” on page 392.

For full-sized instant snapshots and linked break-off snapshots, you must
prepare a volume that is to be used as the snapshot volume. This volume must
be the same size as the data volume for which the snapshot is being created,
and it must also have the same region size.

See “Creating a volume for use as a full-sized instant or linked break-off
snapshot” on page 394.

391

Administering volume snapshots
Full-sized instant snapshots

Creating a shared cache object

If you need several space-optimized instant snapshots for the volumes in a disk
group, you can create a single shared cache object in the disk group rather than a
separate cache object for each snapshot.

To create a shared cache object

1 Decide on the following characteristics that you want to allocate to the cache
volume that underlies the cache object:

= The cache volume size should be sufficient to record changes to the parent
volumes during the interval between snapshot refreshes. A suggested value
is 10% of the total size of the parent volumes for a refresh interval of 24
hours.

= The cache volume can be mirrored for redundancy.

= Ifthe cache volume is mirrored, space is required on at least as many disks
as it has mirrors. These disks should not be shared with the disks used for
the parent volumes. The disks should not be shared with disks used by
critical volumes to avoid impacting I/O performance for critical volumes, or
hindering disk group split and join operations.

2 Having decided on its characteristics, use the vxassist command to create
the cache volume. The following example creates a mirrored cache volume,
cachevol, with size 1GB in the disk group, mydg, on the disks mydg16 and
mydgl7:

vxassist -g mydg make cachevol 1g layout=mirror \

init=active mydglé mydgl?7

The attribute init=active makes the cache volume immediately available for
use.

392

Administering volume snapshots
Full-sized instant snapshots

Use the vxmake cache command to create a cache object on top of the cache
volume that you created in the previous step:

vxmake [-g diskgroup] cache cache object \
cachevolname=volume [regionsize=size] [autogrow=on] \
[highwatermark=hwmk] [autogrowby=agbvalue] \

[maxautogrow=maxagbvalue]]

If the region size, regionsize, is specified, it must be a power of 2, and be
greater than or equal to 16KB (16k). If not specified, the region size of the
cache is set to 64KB.

All space-optimized snapshots that share the cache must have a region size
that is equal to or an integer multiple of the region size set on the cache.
Snapshot creation also fails if the original volume’s region size is smaller than
the cache’s region size.

If the region size of a space-optimized snapshot differs from the region size of
the cache, this can degrade the system’s performance compared to the case
where the region sizes are the same.

To prevent the cache from growing automatically, specify autogrow=off. By
default, autogrow=on.

In the following example, the cache object, cobjmydg, is created over the cache
volume, cachevol, the region size of the cache is set to 32KB, and the autogrow
feature is enabled:

vxmake -g mydg cache cobjmydg cachevolname=cachevol \

regionsize=32k autogrow=on

Enable the cache object using the following command:
vxcache [-g diskgroup] start cache object
For example to start the cache object, cobjmydg:

vxcache -g mydg start cobjmydg

See “Removing a cache” on page 421.

393

Administering volume snapshots | 394
Full-sized instant snapshots

Creating a volume for use as a full-sized instant or linked break-off
snhapshot

To create an empty volume for use by a full-sized instant snapshot or a linked
break-off snapshot

1 Use the vxprint command on the original volume to find the required size for
the snapshot volume.

LEN='vxprint [-g diskgroup] -F%len volume’

The command as shown assumes a Bourne-type shell such as sh, ksh or bash.
You may need to modify the command for other shells such as csh or tcsh.

2 Use the vxprint command on the original volume to discover the name of its
DCO:

DCONAME='vxprint [-g diskgroup] -F%dco_name volume’

Administering volume snapshots
Full-sized instant snapshots

3 Use the vxprint command on the DCO to discover its region size (in blocks):

RSZ='vxprint [-g diskgroup] -F%$regionsz $DCONAME "

4 Use the vxassist command to create a volume, snapvol, of the required size
and redundancy, together with an instant snap DCO volume with the correct
region size:

vxassist [-g diskgroup] make snapvol $LEN \
[layout=mirror nmirror=number] logtype=dco drl=off \
dcoversion=20 [ndcomirror=number] regionsz=$RSZ \

init=active [storage attributes]

Storage attributes give you control over the devices, including disks and
controllers, which vxassist uses to configure a volume.

See “Creating a volume on specific disks” on page 150.

Specify the same number of DCO mirrors (ndcomirror) as the number of
mirrors in the volume (nmirror). The init=active attribute makes the volume
available immediately. You can use storage attributes to specify which disks
should be used for the volume.

As an alternative to creating the snapshot volume and its DCO volume in a
single step, you can first create the volume, and then prepare it for instant
snapshot operations as shown here:

vxassist [-g diskgroup] make snapvol $LEN \
[layout=mirror nmirror=number] init=active \
[storage attributes]

vxsnap [-g diskgroup] prepare snapvol [ndcomirs=number] \

regionsize=$RSZ [storage attributes]

Upgrading the instant snap Data Change Objects (DCOs) and DCO
volumes for a VxVM volume

Instant snap DCOs, formerly known as version 20 DCOs, support the creation of
instant snapshots for VxVM volumes. Upgrade the instant snap DCOS and DCO
volumes to ensure compatability with the latest version of VxVM. The upgrade
operation can be performed while the volumes are online.

The upgrade operation does not support upgrade from version 0 DCOs.

Administering volume snapshots | 396
Full-sized instant snapshots

To upgrade the instant snap DCOs for all volumes in the disk group
1 Make sure that the disk group is at least version 180. To upgrade the disk
group:

vxdg upgrade diskgroup

2 Use the following command to upgrade the instant snap DCOs for all volumes
in the disk group:

vxsnap -g diskgroup upgradeall

Where:diskgroup is the disk group that contains the volumes to be upgraded.

For additional options to the upgradeall operation, see the vxsnap(1M) manual
page.

To upgrade the instant snap DCOs for specified volumes

1 Make sure that the disk group is at least version 180. To upgrade the disk
group:

vxdg upgrade diskgroup

2 To upgrade the DCOs, specify one or more volumes or volume sets to the
following command:

vxsnap [-g diskgroup] upgrade

[volumel|volsetl] [volume2|volset2...]

Where:diskgroup is the disk group that contains the volumes to be upgraded.

For additional options to the upgrade operation, see the vxsnap(1M) manual
page.

Creating and managing space-optimized instant snapshots

Space-optimized instant snapshots are not suitable for write-intensive volumes
(such as for database redo logs) because the copy-on-write mechanism may
degrade performance.

To split the volume and snapshot into separate disk groups (for example, to perform
off-host processing), you must use a fully synchronized full-sized instant, third-mirror
break-off or linked break-off snapshot (which do not require a cache object). You
cannot use a space-optimized instant snapshot.

Creation of space-optimized snapshots that use a shared cache fails if the region
size specified for the volume is smaller than the region size set on the cache.

Administering volume snapshots
Full-sized instant snapshots

If the region size of a space-optimized snapshot differs from the region size of the
cache, this can degrade the system’s performance compared to the case where
the region sizes are the same.

See “Creating a shared cache object” on page 392.

The attributes for a snapshot are specified as a tuple to the vxsnap make command.
This command accepts multiple tuples. One tuple is required for each snapshot
that is being created. Each element of a tuple is separated from the next by a slash
character (/). Tuples are separated by white space.

To create and manage a space-optimized instant snapshot

1

Use the vxsnap make command to create a space-optimized instant snapshot.
This snapshot can be created by using an existing cache object in the disk
group, or a new cache object can be created.

To create a space-optimized instant snapshot, snapvo1, that uses a named
shared cache object:

vxsnap [-g diskgroup] make source=vol/newvol=snapvol\

/cache=cacheobject [alloc=storage attributes]

For example, to create the space-optimized instant snapshot, snap3myvo1,
of the volume, myvo1, in the disk group, mydg, on the disk mydg14, and which
uses the shared cache object, cobjmydg, use the following command:

vxsnap -g mydg make source=myvol/newvol=snap3myvol\

/cache=cobjmydg alloc=mydgl4

The DCO is created on the specified allocation.

To create a space-optimized instant snapshot, snapvol, and also create a
cache object for it to use:

vxsnap [-g diskgroup] make source=vol/newvol=snapvol\
[/cachesize=size] [/autogrow=yes] [/ncachemirror=number]\

[alloc=storage attributes]

The cachesize attribute determines the size of the cache relative to the
size of the volume. The autogrow attribute determines whether VxVM will
automatically enlarge the cache if it is in danger of overflowing. By default,
autogrow=on and the cache is automatically grown.

If autogrow is enabled, but the cache cannot be grown, VxVM disables the
oldest and largest snapshot that is using the same cache, and releases its
cache space for use.

397

Administering volume snapshots
Full-sized instant snapshots

The ncachemirror attribute specifies the number of mirrors to create in the
cache volume. For backup purposes, the default value of 1 should be
sufficient.

For example, to create the space-optimized instant snapshot, snap4myvol,
of the volume, myvo1, in the disk group, mydg, on the disk mydg15, and which
uses a newly allocated cache object that is 1GB in size, but which can
automatically grow in size, use the following command:

vxsnap -g mydg make source=myvol/new=snap4dmyvol\

/cachesize=1g/autogrow=yes alloc=mydgl5

If a cache is created implicitly by specifying cachesize, and ncachemirror
is specified to be greater than 1, a DCO is attached to the cache volume
to enable dirty region logging (DRL). DRL allows fast recovery of the cache
backing store after a system crash. The DCO is allocated on the same disks
as those that are occupied by the DCO of the source volume. This is done
to allow the cache and the source volume to remain in the same disk group
for disk group move, split and join operations.

Clean the temporary volume's contents using an appropriate utility such as
fsck for non-VxVM file systems and log replay for databases. Because VxVM
calls VXFS and places VxFS file systems in a constant state immediately before
taking a snapshot, it is not usually necessary to run £sck on a VxFS file system
on the temporary volume. If a VxFS file system contains a database, it will still
be necessary to perform database log replay.

To backup the data in the snapshot, use an appropriate utility or operating
system command to copy the contents of the snapshot to tape, or to some
other backup medium.

You now have the following options:

» Refresh the contents of the snapshot. This creates a new point-in-time
image of the original volume ready for another backup. If synchronization
was already in progress on the snapshot, this operation may result in large
portions of the snapshot having to be resynchronized.

See “Refreshing an instant space-optimized snapshot” on page 411.

» Restore the contents of the original volume from the snapshot volume. The
space-optimized instant snapshot remains intact at the end of the operation.
See “Restoring a volume from an instant space-optimized snapshot”
on page 413.

= Destroy the snapshot.
See “Removing an instant snapshot” on page 414.

398

Administering volume snapshots
Full-sized instant snapshots

Creating and managing full-sized instant snapshots

Full-sized instant snapshots are not suitable for write-intensive volumes (such as
for database redo logs) because the copy-on-write mechanism may degrade the
performance of the volume.

For full-sized instant snapshots, you must prepare a volume that is to be used as
the snapshot volume. This must be the same size as the volume for which the
snapshot is being created, and it must also have the same region size.

See “Creating a volume for use as a full-sized instant or linked break-off snapshot”
on page 394.

The attributes for a snapshot are specified as a tuple to the vxsnap make command.
This command accepts multiple tuples. One tuple is required for each snapshot
that is being created. Each element of a tuple is separated from the next by a slash
character (/). Tuples are separated by white space.

To create and manage a full-sized instant snapshot

1 To create a full-sized instant snapshot, use the following form of the vxsnap
make command:

vxsnap [-g diskgroup] make source=volume/snapvol=snapvol\
[/snapdg=snapdiskgroup] [/syncing=off]
The command specifies the volume, snapvol, that you prepared earlier.

For example, to use the prepared volume, snapimyvol, as the snapshot for
the volume, myvo1, in the disk group, mydg, use the following command:

vxsnap -g mydg make source=myvol/snapvol=snaplmyvol

For full-sized instant snapshots that are created from an empty volume,
background synchronization is enabled by default (equivalent to specifying the
syncing=on attribute). To move a snapshot into a separate disk group, or to
turn it into an independent volume, you must wait for its contents to be
synchronized with those of its parent volume.

You can use the vxsnap syncwait command to wait for the synchronization
of the snapshot volume to be completed, as shown here:

vxsnap [-g diskgroup] syncwait snapvol

For example, you would use the following command to wait for synchronization
to finish on the snapshot volume, snap2myvol:

vxsnap -g mydg syncwait snap2myvol

399

Administering volume snapshots | 400
Full-sized instant snapshots

This command exits (with a return code of zero) when synchronization of the
snapshot volume is complete. The snapshot volume may then be moved to
another disk group or turned into an independent volume.

See “Controlling instant snapshot synchronization” on page 417.

If required, you can use the following command to test if the synchronization
of a volume is complete:

vxprint [-g diskgroup] -F%incomplete snapvol

This command returns the value of £ if synchronization of the volume, snapvol,
is complete; otherwise, it returns the value on.

You can also use the vxsnap print command to check on the progress of
synchronization.

See “Displaying snapshot information” on page 386.

If you do not want to move the snapshot into a separate disk group, or to turn
it into an independent volume, specify the syncing=off attribute. This avoids
unnecessary system overhead. For example, to turn off synchronization when
creating the snapshot of the volume, myvo1, you would use the following form
of the vxsnap make command:

vxsnap -g mydg make source=myvol/snapvol=snaplmyvol\

/syncing=off

Clean the temporary volume's contents using an appropriate utility such as
fsck for non-VxVM file systems and log replay for databases. Because VxVM
calls VxFS and places VxFS file systems in a constant state immediately before
taking a snapshot, it is not usually necessary to run £sck on a VxFS file system
on the temporary volume. If a VxFS file system contains a database, it will still
be necessary to perform database log replay.

To backup the data in the snapshot, use an appropriate utility or operating
system command to copy the contents of the snapshot to tape, or to some
other backup medium.

You now have the following options:

Refresh the contents of the snapshot. This creates a new point-in-time
image of the original volume ready for another backup. If synchronization
was already in progress on the snapshot, this operation may result in large
portions of the snapshot having to be resynchronized.

See “Refreshing an instant space-optimized snapshot” on page 411.

Reattach some or all of the plexes of the snapshot volume with the original
volume.

Administering volume snapshots | 401
Full-sized instant snapshots

See “Reattaching an instant full-sized or plex break-off snapshot”
on page 411.

= Restore the contents of the original volume from the snapshot volume. You
can choose whether none, a subset, or all of the plexes of the snapshot
volume are returned to the original volume as a result of the operation.
See “Restoring a volume from an instant space-optimized snapshot”
on page 413.

» Dissociate the snapshot volume entirely from the original volume. This may
be useful if you want to use the copy for other purposes such as testing or
report generation. If desired, you can delete the dissociated volume.

See “Dissociating an instant snapshot” on page 413.

= Ifthe snapshot is part of a snapshot hierarchy, you can also choose to split
this hierarchy from its parent volumes.
See “Splitting an instant snapshot hierarchy” on page 414.

Creating and managing third-mirror break-off snapshots

Break-off snapshots are suitable for write-intensive volumes, such as database
redo logs.

To turn one or more existing plexes in a volume into a break-off instant snapshot
volume, the volume must be a non-layered volume with @mirror Ormirror-stripe
layout, or a RAID-5 volume that you have converted to a special layered volume
and then mirrored. The plexes in a volume with a st ripe-mirror layout are mirrored
at the subvolume level, and cannot be broken off.

The attributes for a snapshot are specified as a tuple to the vxsnap make command.
This command accepts multiple tuples. One tuple is required for each snapshot
that is being created. Each element of a tuple is separated from the next by a slash
character (/). Tuples are separated by white space.

Administering volume snapshots | 402
Full-sized instant snapshots

To create and manage a third-mirror break-off snapshot

1

To create the snapshot, you can either take some of the existing acT1vE plexes
in the volume, or you can use the following command to add new snapshot
mirrors to the volume:

vxsnap [-b] [-g diskgroup] addmir volume [nmirror=N] \

[alloc=storage attributes]

By default, the vxsnap addmir command adds one snapshot mirror to a volume
unless you use the nmirror attribute to specify a different number of mirrors.
The mirrors remain in the snapaTT state until they are fully synchronized. The
-b option can be used to perform the synchronization in the background. Once
synchronized, the mirrors are placed in the sNapDONE state.

For example, the following command adds 2 mirrors to the volume, vo11, on
disks mydg10 and mydg11:

vxsnap -g mydg addmir voll nmirror=2 alloc=mydglO,mydgll

If you specify the -b option to the vxsnap addmir command, you can use the
vxsnap snapwait command to wait for synchronization of the snapshot plexes
to complete, as shown in this example:

vxsnap -g mydg snapwait voll nmirror=2

Administering volume snapshots
Full-sized instant snapshots

2 Tocreate a third-mirror break-off snapshot, use the following form of the vxsnap

make command.

vxsnap [-g diskgroup] make source=volume[/newvol=snapvol]\

{/plex=plexl1[,plex2,...]|/nmirror=number}

Either of the following attributes may be specified to create the new snapshot
volume, snapvol, by breaking off one or more existing plexes in the original
volume:

plex Specifies the plexes in the existing volume that are to be broken
off.
nmirror Specifies how many plexes are to be broken off. This attribute can

only be used with plexes that are in the SNAPDONE state. (Such
plexes could have been added to the volume by using the vxsnap
addmir command.)

Snapshots that are created from one or more ACTIVE or SNAPDONE plexes in
the volume are already synchronized by definition.

For backup purposes, a snapshot volume with one plex should be sufficient.

For example, to create the instant snapshot volume, snap2myvo1, of the volume,
myvol, in the disk group, mydg, from a single existing plex in the volume, use
the following command:

vxsnap -g mydg make source=myvol/newvol=snap2myvol/nmirror=1

The next example shows how to create a mirrored snapshot from two existing
plexes in the volume:

vxsnap -g mydg make source=myvol/newvol=snap2myvol/plex=myvol-03, myvol-04

3

Clean the temporary volume's contents using an appropriate utility such as
£sck for non-VxVM file systems and log replay for databases. Because VxVM
calls VXFS and places VxFS file systems in a constant state immediately before
taking a snapshot, it is not usually necessary to run £sck on a VxFS file system
on the temporary volume. If a VxFS file system contains a database, it will still
be necessary to perform database log replay.

To backup the data in the snapshot, use an appropriate utility or operating
system command to copy the contents of the snapshot to tape, or to some
other backup medium.

You now have the following options:

403

Administering volume snapshots | 404
Full-sized instant snapshots

= Refresh the contents of the snapshot. This creates a new point-in-time
image of the original volume ready for another backup. If synchronization
was already in progress on the snapshot, this operation may result in large
portions of the snapshot having to be resynchronized.
See “Refreshing an instant space-optimized snapshot” on page 411.

» Reattach some or all of the plexes of the snapshot volume with the original
volume.
See “Reattaching an instant full-sized or plex break-off snapshot”
on page 411.

= Restore the contents of the original volume from the snapshot volume. You
can choose whether none, a subset, or all of the plexes of the snapshot
volume are returned to the original volume as a result of the operation.
See “Restoring a volume from an instant space-optimized snapshot”
on page 413.

= Dissociate the snapshot volume entirely from the original volume. This may
be useful if you want to use the copy for other purposes such as testing or
report generation. If desired, you can delete the dissociated volume.
See “Dissociating an instant snapshot” on page 413.

= If the snapshot is part of a snapshot hierarchy, you can also choose to split
this hierarchy from its parent volumes.
See “Splitting an instant snapshot hierarchy” on page 414.

Creating and managing linked break-off snapshot volumes

Linked break-off snapshots are suitable for write-intensive volumes. Specifically,
they are used for off-host processing, because the snapshot could be in a different
disk group to start with and could avoid disk group split/join operations

For linked break-off snapshots, you must prepare a volume that is to be used as
the snapshot volume. This must be the same size as the volume for which the
snapshot is being created, and it must also have the same region size.

See “Creating a volume for use as a full-sized instant or linked break-off snapshot”
on page 394.

The attributes for a snapshot are specified as a tuple to the vxsnap make command.
This command accepts multiple tuples. One tuple is required for each snapshot
that is being created. Each element of a tuple is separated from the next by a slash
character (/). Tuples are separated by white space.

Administering volume snapshots | 405
Full-sized instant snapshots

To create and manage a linked break-off snapshot

1

Use the following command to link the prepared snapshot volume, snapvol, to
the data volume:

vxsnap [-g diskgroup] [-b] addmir volume mirvol=snapvol \

[mirdg=snapdg]

The optional mirdg attribute can be used to specify the snapshot volume’s
current disk group, snapdg. The -b option can be used to perform the
synchronization in the background. If the -b option is not specified, the
command does not return until the link becomes ACTIVE.

For example, the following command links the prepared volume, prepsnap, in
the disk group, mysnapdg, to the volume, vo1l1, in the disk group, mydg:

vxsnap -g mydg -b addmir voll mirvol=prepsnap mirdg=mysnapdg

If the -b option is specified, you can use the vxsnap snapwait command to
wait for the synchronization of the linked snapshot volume to complete, as
shown in this example:

vxsnap -g mydg snapwait voll mirvol=prepsnap mirdg=mysnapvoldg

To create a linked break-off snapshot, use the following form of the vxsnap
make command.

vxsnap [-g diskgroup] make source=volume/snapvol=snapvol\

[/ snapdg=snapdiskgroup]

The snapdg attribute must be used to specify the snapshot volume’s disk group
if this is different from that of the data volume.

For example, to use the prepared volume, prepsnap, as the snapshot for the
volume, vol1, in the disk group, mydg, use the following command:

vxsnap -g mydg make source=voll/snapvol=prepsnap/snapdg=mysnapdg

Clean the temporary volume's contents using an appropriate utility such as
£sck for non-VxVM file systems and log replay for databases. Because VxVM
calls VxFS and places VxFS file systems in a constant state immediately before
taking a snapshot, it is not usually necessary to run £sck on a VxFS file system
on the temporary volume. If a VxFS file system contains a database, it will still
be necessary to perform database log replay.

Administering volume snapshots
Full-sized instant snapshots

4 To backup the data in the snapshot, use an appropriate utility or operating
system command to copy the contents of the snapshot to tape, or to some
other backup medium.

5 You now have the following options:

= Refresh the contents of the snapshot. This creates a new point-in-time
image of the original volume ready for another backup. If synchronization
was already in progress on the snapshot, this operation may result in large
portions of the snapshot having to be resynchronized.
See “Refreshing an instant space-optimized snapshot” on page 411.

= Reattach the snapshot volume with the original volume.
See “Reattaching a linked break-off snapshot volume” on page 412.

= Dissociate the snapshot volume entirely from the original volume. This may
be useful if you want to use the copy for other purposes such as testing or
report generation. If desired, you can delete the dissociated volume.
See “Dissociating an instant snapshot” on page 413.

= If the snapshot is part of a snapshot hierarchy, you can also choose to split
this hierarchy from its parent volumes.
See “Splitting an instant snapshot hierarchy” on page 414.

Creating multiple instant snapshots

You can create multiple instant snapshots for all volumes that form a consistent
group. The vxsnap make command accepts multiple tuples that define the source
and snapshot volumes names as their arguments. For example, to create three
instant snapshots, each with the same redundancy, from specified storage, the
following form of the command can be used:

vxsnap [-g diskgroup] make source=voll/snapvol=snapvoll\

source=vol2/snapvol=snapvol2 source=vol3/snapvol=snapvol3
The snapshot volumes (snapvol1, snapvol2 and so on) must have been prepared
in advance.

See “Creating a volume for use as a full-sized instant or linked break-off snapshot”
on page 394.

The specified source volumes (vol/1, vol2 and so on) may be the same volume or
they can be different volumes.

If all the snapshots are to be space-optimized and to share the same cache, the
following form of the command can be used:

406

Administering volume snapshots | 407
Full-sized instant snapshots

vxsnap [-g diskgroup] make \
source=voll/newvol=snapvoll/cache=cacheobj \
source=vol2/newvol=snapvol2/cache=cacheobj \
source=vol3/newvol=snapvol3/cache=cacheobj \

[alloc=storage attributes]

The vxsnap make command also allows the snapshots to be of different types, have
different redundancy, and be configured from different storage, as shown here:

vxsnap [-g diskgroup] make source=voll/snapvol=snapvoll \
source=vol2[/newvol=snapvol2] /cache=cacheobj\

[/alloc=storage attributes2] [/nmirror=number?2]
source=vol3[/newvol=snapvol3] [/alloc=storage attributes3]\

/nmirror=number3

In this example, snapvol1 is a full-sized snapshot that uses a prepared volume,
snapvol2 is a space-optimized snapshot that uses a prepared cache, and snapvol3
is a break-off full-sized snapshot that is formed from plexes of the original volume.

An example of where you might want to create mixed types of snapshots at the
same time is when taking snapshots of volumes containing database redo logs and
database tables:

vxsnap -g mydg make \
source=logvl/newvol=snplogvl/drl=sequential/nmirror=1 \
source=logv2/newvol=snplogv2/drl=sequential/nmirror=1 \
source=datavl/newvol=snpdatavl/cache=mydgcobj/drl=on \

source=datav2/newvol=snpdatav2/cache=mydgcobj/drl=on

In this example, sequential DRL is enabled for the snapshots of the redo log
volumes, and normal DRL is applied to the snapshots of the volumes that contain
the database tables. The two space-optimized snapshots are configured to share
the same cache object in the disk group. Also note that break-off snapshots are
used for the redo logs as such volumes are write intensive.

Creating instant snapshots of volume sets

Volume set names can be used in place of volume names with the following vxsnap
operations on instant snapshots: addmir, dis, make, prepare, reattach, refresh,
restore, rmmir, split, syncpause, syncresume, syncstart, syncstop, syncwait,

and unprepare.

The procedure for creating an instant snapshot of a volume set is the same as that
for a standalone volume. However, there are certain restrictions if a full-sized instant
snapshot is to be created from a prepared volume set. A full-sized instant snapshot

Administering volume snapshots | 408
Full-sized instant snapshots

of a volume set must itself be a volume set with the same number of volumes, and
the same volume sizes and index numbers as the parent. For example, if a volume
set contains three volumes with sizes 1GB, 2GB and 3GB, and indexes 0, 1 and 2
respectively, then the snapshot volume set must have three volumes with the same
sizes matched to the same set of index numbers. The corresponding volumes in
the parent and snapshot volume sets are also subject to the same restrictions as
apply between standalone volumes and their snapshots.

You can use the vxvset 1ist command to verify that the volume sets have identical
characteristics as shown in this example:

vxvset -g mydg list vsetl

VOLUME INDEX LENGTH KSTATE CONTEXT
vol 0 0 204800 ENABLED -
vol 1 1 409600 ENABLED -
vol 2 2 614400 ENABLED -

vxvset -g mydg list snapvsetl

VOLUME INDEX LENGTH KSTATE CONTEXT
svol 0 0 204800 ENABLED -
svol 1 1 409600 ENABLED -
svol 2 2 614400 ENABLED -

A full-sized instant snapshot of a volume set can be created using a prepared
volume set in which each volume is the same size as the corresponding volume in
the parent volume set. Alternatively, you can use the nmirrors attribute to specify
the number of plexes that are to be broken off provided that sufficient plexes exist
for each volume in the volume set.

The following example shows how to prepare a source volume set, vset1, and an
identical volume set, snapvset1, which is then used to create the snapshot:

vxsnap -g mydg prepare vsetl
vxsnap -g mydg prepare snapvsetl

vxsnap -g mydg make source=vsetl/snapvol=snapvsetl

To create a full-sized third-mirror break-off snapshot, you must ensure that each
volume in the source volume set contains sufficient plexes. The following example
shows how to achieve this by using the vxsnap command to add the required
number of plexes before breaking off the snapshot:

Administering volume snapshots | 409
Full-sized instant snapshots

vxsnap -g mydg prepare vset2
vxsnap -g mydg addmir vset2 nmirror=1

vxsnap -g mydg make source=vset2/newvol=snapvset2/nmirror=1

See “Adding snapshot mirrors to a volume” on page 409.

To create a space-optimized instant snapshot of a volume set, the commands are
again identical to those for a standalone volume as shown in these examples:

vxsnap -g mydg prepare vset3

vxsnap -g mydg make source=vset3/newvol=snapvset3/cachesize=20m

vxsnap -g mydg prepare vset4

vxsnap -g mydg make source=vsetd/newvol=snapvset4/cache=mycobj

Here a new cache object is created for the volume set, vset 3, and an existing cache
object, mycobj, is used for vset4.

Adding snapshot mirrors to a volume

If you are going to create a full-sized break-off snapshot volume, you can use the
following command to add new snapshot mirrors to a volume:

vxsnap [-b] [-g diskgroup] addmir volume|volume set \

[nmirror=N] [alloc=storage attributes]

The volume must have been prepared using the vxsnap prepare command.

If a volume set name is specified instead of a volume, the specified number of
plexes is added to each volume in the volume set.

By default, the vxsnap addmir command adds one snapshot mirror to a volume
unless you use the nmirror attribute to specify a different number of mirrors. The
mirrors remain in the sNapATT state until they are fully synchronized. The -b option
can be used to perform the synchronization in the background. Once synchronized,
the mirrors are placed in the snapDONE state.

For example, the following command adds 2 mirrors to the volume, vo11, on disks
mydg10 and mydg11:

vxsnap -g mydg addmir voll nmirror=2 alloc=mydglO,mydgll

This command is similar in usage to the vxassist snapstart command, and
supports the traditional third-mirror break-off snapshot model. As such, it does not
provide an instant snapshot capability.

Administering volume snapshots | 410
Full-sized instant snapshots

Once you have added one or more snapshot mirrors to a volume, you can use the
vxsnap make command with either the nmirror attribute or the piex attribute to
create the snapshot volumes.

Removing a snapshot mirror

To remove a single snapshot mirror from a volume, use this command:

vxsnap [-g diskgroup] rmmir volume|volume set

For example, the following command removes a snapshot mirror from the volume,
voll:

vxsnap -g mydg rmmir voll

This command is similar in usage to the vxassist snapabort command.

If a volume set name is specified instead of a volume, a mirror is removed from
each volume in the volume set.

Removing a linked break-off snapshot volume

To remove a linked break-off snapshot volume from a volume, use this command:

vxsnap [-g diskgroup] rmmir volume|volume set mirvol=snapvol \

[mirdg=snapdiskgroup]

The mirvol and optional mirdg attributes specify the snapshot volume, snapvol,
and its disk group, snapdiskgroup. For example, the following command removes
a linked snapshot volume, prepsnap, from the volume, vo11:

vxsnap -g mydg rmmir voll mirvol=prepsnap mirdg=mysnapdg

Adding a snapshot to a cascaded snapshot hierarchy

To create a snapshot and push it onto a snapshot hierarchy between the original
volume and an existing snapshot volume, specify the name of the existing snapshot
volume as the value of the infrontof attribute to the vxsnap make command. The
following example shows how to place the space-optimized snapshot, thurs bu,
of the volume, dbvol, in front of the earlier snapshot, wed bu:

vxsnap -g dbdg make source=dbvol/newvol=thurs bu/\

infrontof=wed bu/cache=dbdgcache

Similarly, the next snapshot that is taken, fri_bu, is placed in front of thurs bu:

Administering volume snapshots
Full-sized instant snapshots

vxsnap -g dbdg make source=dbvol/newvol=fri bu/\

infrontof=thurs_bu/cache=dbdgcache

See “Controlling instant snapshot synchronization” on page 417.

Refreshing an instant space-optimized snapshot

Refreshing an instant snapshot replaces it with another point-in-time copy of a
parent volume. To refresh one or more snapshots and make them immediately
available for use, use the following command:

vxsnap [-g diskgroup] refresh snapvolume|snapvolume set \

[source=volume|volume set] [snapvol2 [source=vol2]...] \

If the source volume is not specified, the immediate parent of the snapshot is used.

Warning: The snapshot that is being refreshed must not be open to any application.
For example, any file system configured on the volume must first be unmounted.

Reattaching an instant full-sized or plex break-off snapshot

Using the following command, some or all plexes of an instant snapshot may be
reattached to the specified original volume, or to a source volume in the snapshot
hierarchy above the snapshot volume:

vxsnap [-g diskgroup] reattach snapvolume|snapvolume_ set \

source=volume|volume set [nmirror=number]

By default, all the plexes are reattached, which results in the removal of the
snapshot. If required, the number of plexes to be reattached may be specified as
the value assigned to the nmirror attribute.

Warning: The snapshot that is being reattached must not be open to any application.
For example, any file system configured on the snapshot volume must first be
unmounted.

Itis possible to reattach a volume to an unrelated volume provided that their volume
sizes and region sizes are compatible.

For example the following command reattaches one plex from the snapshot volume,
snapmyvol, to the volume, myvol:

vxsnap -g mydg reattach snapmyvol source=myvol nmirror=1

41

Administering volume snapshots | 412
Full-sized instant snapshots

While the reattached plexes are being resynchronized from the data in the parent
volume, they remain in the snapTmp state. After resynchronization is complete, the
plexes are placed in the sNAPDONE state. You can use the vxsnap snapwait
command (but not vxsnap syncwait) to wait for the resynchronization of the
reattached plexes to complete, as shown here:

vxsnap -g mydg snapwait myvol nmirror=1l

If the volume and its snapshot have both been resized (to an identical smaller or
larger size) before performing the reattachment, a fast resynchronization can still
be performed. A full resynchronization is not required. Instant snap DCO volumes
are resized proportionately when the associated data volume is resized. For version
0 DCO volumes, the FastResync maps stay the same size, but the region size is
recalculated, and the locations of the dirty bits in the existing maps are adjusted.
In both cases, new regions are marked as dirty in the maps.

Reattaching a linked break-off snapshot volume

Unlike other types of snapshot, the reattachment operation for linked break-off

snapshot volumes does not return the plexes of the snapshot volume to the parent
volume. The link relationship is re-established that makes the snapshot volume a
mirror of the parent volume, and this allows the snapshot data to be resynchronized.

To reattach a linked break-off snapshot volume, use the following form of the vxsnap
reattach command:

vxsnap [-g snapdiskgroup] reattach snapvolume|snapvolume set \

source=volume|volume set [sourcedg=diskgroup]

The sourcedg attribute must be used to specify the data volume’s disk group if this
is different from the snapshot volume’s disk group, snapdiskgroup.

Warning: The snapshot that is being reattached must not be open to any application.
For example, any file system configured on the snapshot volume must first be
unmounted.

It is possible to reattach a volume to an unrelated volume provided that their sizes
and region sizes are compatible.

For example the following command reattaches the snapshot volume, prepsnap,
in the disk group, snapdg, to the volume, myvo1, in the disk group, mydg:

vxsnap -g snapdg reattach prepsnap source=myvol sourcedg=mydg

Administering volume snapshots | 413
Full-sized instant snapshots

After resynchronization of the snapshot volume is complete, the link is placed in
the acT1VE state. You can use the vxsnap snapwait command (but not vxsnap
syncwait) to wait for the resynchronization of the reattached volume to complete,
as shown here:

vxsnap -g snapdg snapwait myvol mirvol=prepsnap

Restoring a volume from an instant space-optimized
snapshot

It may sometimes be desirable to reinstate the contents of a volume from a backup
or modified replica in a snapshot volume. The following command may be used to
restore one or more volumes from the specified snapshots:

vxsnap [-g diskgroup] restore volume|volume set \
source=snapvolume|snapvolume set \
[[volume2|volume_set2 \
source=snapvolume?2|snapvolume_set2]...]\

[syncing=yes|no]

For a space-optimized instant snapshot, the cached data is used to recreate the
contents of the specified volume. The space-optimized instant snapshot remains
unchanged by the restore operation.

Warning: For this operation to succeed, the volume that is being restored and the
snapshot volume must not be open to any application. For example, any file systems
that are configured on either volume must first be unmounted.

It is not possible to restore a volume from an unrelated volume.

The following example demonstrates how to restore the volume, myvo1, from the
space-optimized snapshot, snap3myvol.

vxsnap -g mydg restore myvol source=snap3myvol

Dissociating an instant snapshot

The following command breaks the association between a full-sized instant snapshot
volume, snapvol, and its parent volume, so that the snapshot may be used as an
independent volume:

vxsnap [-f] [-g diskgroup] dis snapvolume|snapvolume set

This operation fails if the snapshot, snapvol, has unsynchronized snapshots. If this
happens, the dependent snapshots must be fully synchronized from snapvol. When

Administering volume snapshots
Full-sized instant snapshots

no dependent snapshots remain, snapvol may be dissociated. The snapshot
hierarchy is then adopted by the parent volume of snapvol.

See “Controlling instant snapshot synchronization” on page 417.
See “Removing an instant snapshot” on page 414.

The following command dissociates the snapshot, snap2myvo1, from its parent
volume:

vxsnap -g mydg dis snap2myvol

Warning: When applied to a volume set or to a component volume of a volume
set, this operation can result in inconsistencies in the snapshot hierarchy in the
case of a system crash or hardware failure. If the operation is applied to a volume
set, the - (force) option must be specified.

Removing an instant snapshot

When you have dissociated a full-sized instant snapshot, you can use the vxedit
command to delete it altogether, as shown in this example:

vxedit -g mydg -r rm snap2myvol

You can also use this command to remove a space-optimized instant snapshot
from its cache.

See “Removing a cache” on page 421.

Splitting an instant snapshot hierarchy

Note: This operation is not supported for space-optimized instant snapshots.

The following command breaks the association between a snapshot hierarchy that
has the snapshot volume, snapvol, at its head, and its parent volume, so that the
snapshot hierarchy may be used independently of the parent volume:

vxsnap [-f] [-g diskgroup] split snapvolume|snapvolume set

The topmost snapshot volume in the hierarchy must have been fully synchronized
for this command to succeed. Snapshots that are lower down in the hierarchy need
not have been fully resynchronized.

See “Controlling instant snapshot synchronization” on page 417.

414

Administering volume snapshots
Full-sized instant snapshots

The following command splits the snapshot hierarchy under snap2myvo1l from its
parent volume:

vxsnap -g mydg split snap2myvol

Warning: When applied to a volume set or to a component volume of a volume
set, this operation can result in inconsistencies in the snapshot hierarchy in the
case of a system crash or hardware failure. If the operation is applied to a volume
set, the - (force) option must be specified.

Displaying instant snapshot information

The vxsnap print command may be used to display information about the
snapshots that are associated with a volume.

vxsnap [-g diskgroup] print [vol]

This command shows the percentage progress of the synchronization of a snapshot
or volume. If no volume is specified, information about the snapshots for all the
volumes in a disk group is displayed. The following example shows a volume, vo11,
which has a full-sized snapshot, snapvo11 whose contents have not been
synchronized with vo11:

vxsnap -g mydg print

NAME SNAPOBJECT TYPE PARENT SNAPSHOT SDIRTY SVALID

voll - volume -- - - 100
snapvoll snpl volume -- snapvoll 1.30 -

snapvoll voll snpl volume voll - 1.30 1.30

The $DIRTY value for snapvoll shows that its contents have changed by 1.30%
when compared with the contents of vo11. As snapvol1 has not been synchronized
with vo11, the svaL1D value is the same as the $pIRTY value. If the snapshot were
partly synchronized, the svar1Dp value would lie between the ¢pIRrTY Value and
100%. If the snapshot were fully synchronized, the svar1p value would be 100%.
The snapshot could then be made independent or moved into another disk group.

Additional information about the snapshots of volumes and volume sets can be
obtained by using the -n option with the vxsnap print command:

vxsnap [-g diskgroup] -n [-1] [-v] [-x] print [vol]

Alternatively, you can use the vxsnap 1ist command, which is an alias for the
vxsnap -n print command:

415

vxsnap -g dg -vx list

NAME
vol
svoll
svol2
svol3
svol2l
vol-02
mvol
vsetl
vl

v2
svsetl
svl
sv2
vol-03

mvol2

DG

dgl
dg2
dgl
dg2
dgl
dgl
dg2
dgl
dgl
dgl
dgl
dgl
dgl
dgl
dg2

Administering volume snapshots | 416
Full-sized instant snapshots

vxsnap [-g diskgroup] [-1] [-v] [-x] list [vol]

The following output is an example of using this command on the disk group dg1:
OBJTYPE SNAPTYPE PARENT PARENTDG SNAPDATE CHANGE_DATA SYNCED DATA
vol - - - - - 10G (100%)
vol fullinst wvol dgl 2006/2/1 12:29 20M (0.2%) 60M (0.6%)
vol mirbrk vol dgl 2006/2/1 12:29 120M (1.2%) 10G (100%)
vol volbrk vol dgl 2006/2/1 12:29 105M (1.1%) 10G (100%)
vol spaceopt svol2 dgl 2006/2/1 12:29 52M (0.5%) 52M (0.5%)
plex snapmir vol dgl - - 56M (0.6%)
vol mirvol vol dgl - - 58M (0.6%)
vset - - - - - 2G (100%)
compvol - - - - - 1G (100%)
compvol - - - - - 1G (100%)
vset mirbrk vset dgl 2006/2/1 12:29 1G (50%) 2G (100%)
compvol mirbrk vl dgl 2006/2/1 12:29 512M (50%) 1G (100%)
compvol mirbrk v2 dgl 2006/2/1 12:29 512M (50%) 1G (100%)
plex detmir vol dgl - 20M (0.2%) -
vol detvol vol dgl - 20M (0.2%) -

This shows that the volume vo1 has three full-sized snapshots, svol1, svo12 and
svol3, which are of types full-sized instant (ful1linst), mirror break-off (mirbrk)
and linked break-off (volbrk). It also has one snapshot plex (snapmir), vol-02,
and one linked mirror volume (mirvol), mvol. The snapshot svolz2 itself has a
space-optimized instant snapshot (spaceopt), svo121. There is also a volume set,
vset1, with component volumes v1 and v2. This volume set has a mirror break-off
snapshot, svset1, with component volumes sv1 and sv2. The last two entries show
a detached plex, vo1-03, and a detached mirror volume, mvo12, which have vol
as their parent volume. These snapshot objects may have become detached due
to an I/O error, or, in the case of the plex, by running the vxplex det command.

The cranGE DaTA column shows the approximate difference between the current
contents of the snapshot and its parent volume. This corresponds to the amount
of data that would have to be resynchronized to make the contents the same again.

The syNCED_DaTa column shows the approximate progress of synchronization since
the snapshot was taken.

The -1 option can be used to obtain a longer form of the output listing instead of
the tabular form.

The -x option expands the output to include the component volumes of volume
sets.

Administering volume snapshots
Full-sized instant snapshots

See the vxsnap(1M) manual page for more information about using the vxsnap

print and vxsnap list commands.

Controlling instant snapshot synchronization

Synchronization of the contents of a snapshot with its original volume is not possible

for space-optimized instant snapshots.

By default, synchronization is enabled for the vxsnap reattach, refresh and

restore operations on instant snapshots. Otherwise, synchronization is disabled

unless you specify the syncing=yes attribute to the vxsnap command.

Table 17-1 shows the commands that are provided for controlling the synchronization

manually.

Table 171 Commands for controlling instant snapshot synchronization
Command Description

vxsnap [-g diskgroup] syncpause \ Pause synchronization of a

vol|vol set

volume.

vxsnap [-g diskgroup] syncresume \

vol|vol set

Resume synchronization of a
volume.

vxsnap [-b] [-g diskgroup] syncstart \

vol|vol set

Start synchronization of a volume.

The -b option puts the operation
in the background.

vxsnap [-g diskgroup] syncstop \

vol|vol set

Stop synchronization of a volume.

vxsnap [-g diskgroup] syncwait \

vol|vol set

Exit when synchronization of a
volume is complete. An error is
returned if the vol or vol_set is
invalid (for example, it is a
space-optimized snapshot), or if
the vol or vol_set is not being
synchronized.

Note: You cannot use this
command to wait for
synchronization of reattached
plexes to complete.

The commands that are shown in Table 17-1 cannot be used to control the

synchronization of linked break-off snapshots.

417

Administering volume snapshots | 418
Full-sized instant snapshots

The vxsnap snapwait command is provided to wait for the link between new linked
break-off snapshots to become ACTIVE, or for reattached snapshot plexes to reach
the SNAPDONE state following resynchronization.

See “Creating and managing linked break-off snapshot volumes” on page 404.
See “Reattaching an instant full-sized or plex break-off snapshot” on page 411.

See “Reattaching a linked break-off snapshot volume” on page 412.

Improving the performance of snapshot synchronization

The following optional arguments to the -o option are provided to help optimize the
performance of synchronization when using the make, refresh, restore and
syncstart operations with full-sized instant snapshots:

iosize=size Specifies the size of each I/0 request that is used when
synchronizing the regions of a volume. Specifying a larger size
causes synchronization to complete sooner, but with greater impact
on the performance of other processes that are accessing the
volume. The default size of 1m (1MB) is suggested as the minimum
value for high-performance array and controller hardware. The
specified value is rounded to a multiple of the volume’s region size.

slow=iodelay Specifies the delay in milliseconds between synchronizing
successive sets of regions as specified by the value of iosize.
This can be used to change the impact of synchronization on system
performance. The default value of iodelay is 0 milliseconds (no
delay). Increasing this value slows down synchronization, and
reduces the competition for I/O bandwidth with other processes
that may be accessing the volume.

Options may be combined as shown in the following examples:

vxsnap -g mydg -o iosize=2m,slow=100 make \

source=myvol/snapvol=snap2myvol/syncing=on

vxsnap -g mydg -o iosize=10m,slow=250 syncstart snap2myvol

Note: The iosize and slow parameters are not supported for space-optimized
snapshots.

Listing the snapshots created on a cache

To list the space-optimized instant snapshots that have been created on a cache
object, use the following command:

Administering volume snapshots
Full-sized instant snapshots

vxcache [-g diskgroup] listvol cache object

The snapshot names are printed as a space-separated list ordered by timestamp.
If two or more snapshots have the same timestamp, these snapshots are sorted in
order of decreasing size.

Tuning the autogrow attributes of a cache

The highwatermark, autogrowby and maxautogrow attributes determine how the
VxVM cache daemon (vxcached) maintains the cache if the autogrow feature has
been enabled and vxcached is running:

= When cache usage reaches the high watermark value, highwatermark (default
value is 90 percent), vxcached grows the size of the cache volume by the value
of autogrowby (default value is 20% of the size of the cache volume in blocks).
The new required cache size cannot exceed the value of maxautogrow (default
value is twice the size of the cache volume in blocks).

= When cache usage reaches the high watermark value, and the new required
cache size would exceed the value of maxautogrow, vxcached deletes the oldest
snhapshot in the cache. If there are several snapshots with the same age, the
largest of these is deleted.

If the autogrow feature has been disabled:

= When cache usage reaches the high watermark value, vxcached deletes the
oldest snapshot in the cache. If there are several snapshots with the same age,
the largest of these is deleted. If there is only a single snapshot, this snapshot
is detached and marked as invalid.

Note: The vxcached daemon does not remove snapshots that are currently open,
and it does not remove the last or only snapshot in the cache.

If the cache space becomes exhausted, the snapshot is detached and marked as
invalid. If this happens, the snapshot is unrecoverable and must be removed.
Enabling the autogrow feature on the cache helps to avoid this situation occurring.
However, for very small caches (of the order of a few megabytes), it is possible for
the cache to become exhausted before the system has time to respond and grow
the cache. In such cases, you can increase the size of the cache manually.

Alternatively, you can use the vxcache set command to reduce the value of
highwatermark as shown in this example:

vxcache -g mydg set highwatermark=60 cobjmydg

419

Administering volume snapshots
Full-sized instant snapshots

You can use the maxautogrow attribute to limit the maximum size to which a cache
can grow. To estimate this size, consider how much the contents of each source
volume are likely to change between snapshot refreshes, and allow some additional
space for contingency.

If necessary, you can use the vxcache set command to change other autogrow
attribute values for a cache.

See the vxcache(1M) manual page.

Monitoring and displaying cache usage

You can use the vxcache stat command to display cache usage. For example,
to see how much space is used and how much remains available in all cache objects
in the diskgroup mydg, enter the following:

vxcache -g mydg stat

Growing and shrinking a cache

You can use the vxcache command to increase the size of the cache volume that
is associated with a cache object:

vxcache [-g diskgroup] growcacheto cache object

size

For example, to increase the size of the cache volume associated with the cache
object, mycache, to 2GB, you would use the following command:

vxcache -g mydg growcacheto mycache 2g

To grow a cache by a specified amount, use the following form of the command
shown here:

vxcache [-g diskgroup] growcacheby cache object

size
For example, the following command increases the size of mycache by 1GB:
vxcache -g mydg growcacheby mycache lg

You can similarly use the shrinkcacheby and shrinkcacheto operations to reduce
the size of a cache.

See the vxcache(1M) manual page.

420

Administering volume snapshots | 421
Linked break-off snapshots

Removing a cache

To remove a cache completely, including the cache object, its cache volume
and all space-optimized snapshots that use the cache:

1 Run the following command to find out the names of the top-level snapshot
volumes that are configured on the cache object:

vxprint -g diskgroup -vne \
"v_plex.pl subdisk.sd dm name ~ /cache object/"

where cache_object is the name of the cache object.

2 Remove all the top-level snapshots and their dependent snapshots (this can
be done with a single command):

vxedit -g diskgroup -r rm snapvol ...

where snapvol is the name of a top-level snapshot volume.

3 Stop the cache object:

vxcache -g diskgroup stop cache object

4 Finally, remove the cache object and its cache volume:

vxedit -g diskgroup -r rm cache object

Linked break-off snapshots

A variant of third-mirror break-off snapshots are linked break-off snapshots, which
use the vxsnap addmir command to link a specially prepared volume with the data
volume. The volume that is used for the snapshot is prepared in the same way as
for full-sized instant snapshots. However, unlike full-sized instant snapshots, this
volume can be set up in a different disk group from the data volume. This makes
linked break-off snapshots especially suitable for recurring off-host processing
applications as it avoids the disk group split/join administrative step. As with
third-mirror break-off snapshots, you must wait for the contents of the snapshot
volume to be synchronized with the data volume before you can use the vxsnap
make command to take the snapshot.

When a link is created between a volume and the mirror that will become the
snapshot, separate link objects (similar to snap objects) are associated with the
volume and with its mirror. The link object for the original volume points to the mirror
volume, and the link object for the mirror volume points to the original volume. All

Administering volume snapshots | 422
Cascaded snapshots

I/O is directed to both the original volume and its mirror, and a synchronization of
the mirror from the data in the original volume is started.

You can use the vxprint command to display the state of link objects, which appear
as type 1n. Link objects can have the following states:

ACTIVE The mirror volume has been fully synchronized from the original volume.
The vxsnap make command can be run to create a snapshot.

ATTACHING Synchronization of the mirror volume is in progress. The vxsnap make
command cannot be used to create a snapshot until the state changes
to ACTIVE. The vxsnap snapwait command can be used to wait for
the synchronization to complete.

BROKEN The mirror volume has been detached from the original volume because
of an I/O error or an unsuccessful attempt to grow the mirror volume.
The vxrecover command can be used to recover the mirror volume in
the same way as for a DISABLED volume.

If you resize (grow or shrink) a volume, all its acT1VE linked mirror volumes are also
resized at the same time. The volume and its mirrors can be in the same disk group
or in different disk groups. If the operation is successful, the volume and its mirrors
will have the same size.

If a volume has been grown, a resynchronization of the grown regions in its linked
mirror volumes is started, and the links remain in the ATTACHING state until
resynchronization is complete. The vxsnap snapwait command can be used to
wait for the state to become acTIvE.

When you use the vxsnap make command to create the snapshot volume, this
removes the link, and establishes a snapshot relationship between the snapshot
volume and the original volume.

The vxsnap reattach operation re-establishes the link relationship between the
two volumes, and starts a resynchronization of the mirror volume.

See “Creating and managing linked break-off snapshot volumes” on page 404.
An empty volume must be prepared for use by linked break-off snapshots.

See “Creating a volume for use as a full-sized instant or linked break-off snapshot”
on page 394.

Cascaded snapshots

Figure 17-3 shows a snapshot hierarchy, known as a snapshot cascade, that can
improve write performance for some applications.

Administering volume snapshots
Cascaded snapshots

Figure 17-3 Snapshot cascade

Most recent Oldest
N shapshot N 7T~ shapshot
Original volume Snapshot volume Snapshot volume __ Snapshot volume
\Y Sn Sn-1 S1

Instead of having several independent snapshots of the volume, it is more efficient
to make the older snapshots into children of the latest snapshot.

A snapshot cascade is most likely to be used for regular online backup of a volume
where space-optimized snapshots are written to disk but not to tape.

A snapshot cascade improves write performance over the alternative of several
independent snapshots, and also requires less disk space if the snapshots are
space-optimized. Only the latest snapshot needs to be updated when the original
volume is updated. If and when required, the older snapshots can obtain the changed
data from the most recent snapshot.

A snapshot may be added to a cascade by specifying the infrontof attribute to
the vxsnap make command when the second and subsequent snapshots in the
cascade are created. Changes to blocks in the original volume are only written to
the most recently created snapshot volume in the cascade. If an attempt is made
to read data from an older snapshot that does not exist in that snapshoat, it is obtained
by searching recursively up the hierarchy of more recent snapshots.

The following points determine whether it is appropriate to use a snapshot cascade:

= Deletion of a snapshot in the cascade takes time to copy the snapshot’s data
to the next snapshot in the cascade.

= The reliability of a snapshot in the cascade depends on all the newer snapshots
in the chain. Thus the oldest snapshot in the cascade is the most vulnerable.

= Reading from a snapshot in the cascade may require data to be fetched from
one or more other snapshots in the cascade.

For these reasons, it is recommended that you do not attempt to use a snapshot
cascade with applications that need to remove or split snapshots from the cascade.
In such cases, it may be more appropriate to create a snapshot of a snapshot as
described in the following section.

See “Adding a snapshot to a cascaded snapshot hierarchy” on page 410.

423

Administering volume snapshots | 424
Cascaded snapshots

Note: Only unsynchronized full-sized or space-optimized instant snapshots are
usually cascaded. It is of little utility to create cascaded snapshots if the infrontof
snapshot volume is fully synchronized (as, for example, with break-off type
snapshots).

Creating a snapshot of a snapshot

Figure 17-4 creation of a snapshot of an existing snapshot.

Figure 17-4 Creating a snapshot of a snapshot

vxsnap make source=V vxsnap make source=S1

SN TN

Original volume Snapshot volume Snapshot volume
Y S1 S2

Even though the arrangement of the snapshots in this figure appears similar to a
snapshot cascade, the relationship between the snapshots is not recursive. When
reading from the snapshot s2, data is obtained directly from the original volume, v,
if it does not exist in s1 itself.

See Figure 17-3 on page 423.

Such an arrangement may be useful if the snapshot volume, s1, is critical to the
operation. For example, s1 could be used as a stable copy of the original volume,
v. The additional snapshot volume, s2, can be used to restore the original volume
if that volume becomes corrupted. For a database, you might need to replay a redo
log on s2 before you could use it to restore v.

Figure 17-5 shows the sequence of steps that would be required to restore a
database.

Administering volume snapshots | 425
Cascaded snapshots

Figure 17-5 Using a snapshot of a snapshot to restore a database

n Create instant snapshot S1 of volume V

N

Original volume Snapshot volume of V:
\Y S1

E Create instant snapshot S2 of S1

vxsnap make source=S1

N

Original volume Snapshot volume of V: Snapshot volume of S1:
\Y S1 S2

After contents of V have gone bad, apply the database to redo logs to S2
Apply redo logs

Original volume Snapshot volume of V: Snapshot volume of S1:
Vv S1 S2

n Restore contents of V instantly from snapshot S2 and keep S1 as a

stable co
Py vxsnap restore V source=S2

—

Original volume Snapshot volume of V: Snapshot volume of S1:
Vv S1 S2

If you have configured snapshots in this way, you may wish to make one or more
of the snapshots into independent volumes. There are two vxsnap commands that
you can use to do this:

m vxsnap dis dissociates a snapshot and turns it into an independent volume.
The snapshot to be dissociated must have been fully synchronized from its
parent. If a snapshot volume has a child snapshot volume, the child must also
have been fully synchronized. If the command succeeds, the child snapshot
becomes a snapshot of the original volume.

Figure 17-6 shows the effect of applying the vxsnap dis command to snapshots
with and without dependent snapshots.

Administering volume snapshots
Creating multiple snapshots

Figure 17-6 Dissociating a snapshot volume

vxsnap dis is applied to snapshot S2, which has no snapshots of its own

Original volume Snapshot volume of V: Snapshot volume of S1:
\Y S1 S2
vxsnap dis S2
Original volume Snapshot volume of V: Volume
Y S1 S2
S1 remains owned by V S2 is independent

vxsnap dis is applied to snapshot S1, which has one snapshot S2

Original volume Snapshot volume of V: Snapshot volume of S1:

Vv S1 S2

vxsnap dis S1

Original volume Volume Snapshot volume of V:
\Y S1 S2
S1 is independent S2 is adopted by V

m vxsnap split dissociates a snapshot and its dependent snapshots from its
parent volume. The snapshot that is to be split must have been fully synchronized
from its parent volume.

Figure 17-7 shows the operation of the vxsnap split command.
Figure 17-7 Splitting snapshots

Original volume Snapshot volume of V: Snapshot volume of S1:
Vv S1 S2

vxsnap split S1

Original volume Volume Snapshot volume of S1:
Vv S1 S2
S1is independent S2 continues to be a
snapshot of S1

Creating multiple snapshots

To make it easier to create snapshots of several volumes at the same time, both
the vxsnap make and vxassist snapshot commands accept more than one volume
name as their argument.

426

Administering volume snapshots | 427
Restoring the original volume from a snapshot

For traditional snapshots, you can create snapshots of all the volumes in a single
disk group by specifying the option -o allvols to the vxassist snapshot
command.

By default, each replica volume is named snaPnumber-volume, where number is
a unique serial number, and volume is the name of the volume for which a snapshot
is being taken. This default can be overridden by using the option -o name=pattern.

See the vxassist(1M) manual page.
See the vxsnap(1M) manual page.

You can create a snapshot of all volumes that form a logical group; for example,
all the volumes that conform to a database instance.

Restoring the original volume from a snapshot

For traditional snapshots, the snapshot plex is resynchronized from the data in the
original volume during a vxassist snapback operation.

Figure 17-8 shows an alternative where the snapshot overwrites the original volume.

Figure 17-8 Resynchronizing an original volume from a snapshot

Refresh on snapback

Pt Original volume
[

\
~ Snapshot mirror Snapshot volume

7N
_/
-o resyncfromreplica snapback

Specifying the option -0 resyncfromreplica {0 vxassist resynchronizes the
original volume from the data in the snapshot.

Warning: The original volume must not be in use during a snapback operation that
specifies the option -0 resyncfromreplica to resynchronize the volume from a
snapshot. Stop any application, such as a database, and unmount any file systems
that are configured to use the volume.

For instant snapshots, the vxsnap restore command may be used to restore the
contents of the original volume from an instant snapshot or from a volume derived
from an instant snapshot. The volume that is used to restore the original volume

can either be a true backup of the contents of the original volume at some point in
time, or it may have been modified in some way (for example, by applying a database

Administering volume snapshots | 428
Adding a version 0 DCO and DCO volume

log replay or by running a file system checking utility such as fsck). All
synchronization of the contents of this backup must have been completed before
the original volume can be restored from it. The original volume is immediately
available for use while its contents are being restored.

See “Restoring a volume from an instant space-optimized snapshot” on page 413.

Adding a version 0 DCO and DCO volume

To put Persistent FastResync into effect for a volume, a data change object (DCO)
and DCO volume must be associated with that volume. After you add a DCO object
and DCO volume to a volume, you can enable Persistent FastResync on the volume.

Note: You need a FastResync license key to use the FastResync feature. Even if
you do not have a license, you can configure a DCO object and DCO volume so
that snap objects are associated with the original and snapshot volumes.

The procedure in this section describes adding a version 0 layout DCO. A version
0 DCO layout supports traditional (third-mirror break-off) snapshots that are
administered with the vxassist command. A version 0 DCO layout does not support
full-sized or space-optimized instant snapshots.

To add a DCO object and DCO volume to an existing volume

1 Ensure that the disk group containing the existing volume has at least disk
group version 90. To check the version of a disk group:

vxdg list diskgroup
If required, upgrade the disk group to the latest version:

vxdg upgrade diskgroup

Administering volume snapshots
Adding a version 0 DCO and DCO volume

2 Turn off Non-Persistent FastResync on the original volume if it is currently
enabled:

vxvol [-g diskgroup] set fastresync=off volume

If you are uncertain about which volumes have Non-Persistent FastResync
enabled, use the following command to obtain a listing of such volumes.

Note: The ! character is a special character in some shells. The following
example shows how to escape it in a bash shell.

vxprint [-g diskgroup] -F "%$name" \

-e "v_fastresync=on && \!v_hasdcolog"

3 Add aDCO and DCO volume to the existing volume (which may already have
dirty region logging (DRL) enabled):

vxassist [-g diskgroup] addlog volume logtype=dco \

[ndcomirror=number] [dcolen=size] [storage attributes]

For non-layered volumes, the default number of plexes in the mirrored DCO
volume is equal to the lesser of the number of plexes in the data volume or 2.
For layered volumes, the default number of DCO plexes is always 2. If required,
use the ndcomirror attribute to specify a different number. It is recommended
that you configure as many DCO plexes as there are existing data and snapshot
plexes in the volume. For example, specify ndcomirror=3 when addinga DCO
to a 3-way mirrored volume.

The default size of each plex is 132 blocks. You can use the dcolen attribute
to specify a different size. If specified, the size of the plex must be an integer
multiple of 33 blocks from 33 up to a maximum of 2112 blocks.

You can specify vxassist-style storage attributes to define the disks that can
or cannot be used for the plexes of the DCO volume.

See “Specifying storage for version 0 DCO plexes” on page 429.

Specifying storage for version 0 DCO plexes

If the disks that contain volumes and their snapshots are to be moved or split into
different disk groups, the disks that contain their respective DCO plexes must be
able to accompany them. By default, VxVM attempts to place version 0 DCO plexes
on the same disks as the data plexes of the parent volume. However, this may be
impossible if there is insufficient space available on those disks. In this case, VxXVM
uses any available space on other disks in the disk group. If the DCO plexes are

429

Administering volume snapshots | 430
Adding a version 0 DCO and DCO volume

placed on disks which are used to hold the plexes of other volumes, this may cause
problems when you subsequently attempt to move volumes into other disk groups.

You can use storage attributes to specify explicitly which disks to use for the DCO
plexes. If possible, specify the same disks as those on which the volume is
configured.

For example, to add a DCO object and DCO volume with plexes on mydg05 and
mydg06, and a plex size of 264 blocks to the volume, myvo1, in the disk group, mydg,
use the following command:

vxassist -g mydg addlog myvol logtype=dco dcolen=264 mydg05 mydg06

To view the details of the DCO object and DCO volume that are associated with a
volume, use the vxprint command. The following is partial vxprint output for the
volume named vo11 (the TUTILO and PUTILO columns are omitted for clarity):

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE
v voll fsgen ENABLED 1024 - ACTIVE
pl voll-01 voll ENABLED 1024 - ACTIVE
sd disk01-01 voll-01 ENABLED 1024 0 -

pl voll-02 voll ENABLED 1024 - ACTIVE
sd disk02-01 voll-02 ENABLED 1024 0 -

dc voll dco voll - - - -

v voll dcl gen ENABLED 132 - ACTIVE
pl wvoll dcl-01 wvoll dcl ENABLED 132 - ACTIVE
sd disk03-01 voll dcl-01 ENABLED 132 0 -

pl wvoll dcl-02 wvoll dcl ENABLED 132 - ACTIVE
sd disk04-01 voll dcl-02 ENABLED 132 0 -

In this output, the DCO object is shown as vol1 dco, and the DCO volume as
voll dcl with 2 plexes, voll dcl1-01 and voll dcl-02.

If required, you can use the vxassist move command to relocate DCO plexes to
different disks. For example, the following command moves the plexes of the DCO
volume, voll dcl, for volume vol1l from disk03 and disk04 to disk07 and disk08.

Note: The ! character is a special character in some shells. The following example
shows how to escape it in a bash shell.

vxassist -g mydg move voll dcl \!disk03 \'disk04 disk07 disk08

See “Moving DCO volumes between disk groups” on page 642.

See the vxassist(1M) manual page.

Administering volume snapshots | 431
Adding a version 0 DCO and DCO volume

Removing a version 0 DCO and DCO volume

To dissociate a version 0 DCO object, DCO volume and any snap objects from a
volume, use the following command:

vxassist [-g diskgroup] remove log volume logtype=dco

This completely removes the DCO object, DCO volume and any snap objects. It
also has the effect of disabling FastResync for the volume.

Alternatively, you can use the vxdco command to the same effect:
vxdco [-g diskgroup] [-o rm] dis dco_obj

The default name of the DCO object, dco_obj, for a volume is usually formed by
appending the string _dco to the name of the parent volume. To find out the name
of the associated DCO object, use the vxprint command on the volume.

To dissociate, but not remove, the DCO object, DCO volume and any snap objects
from the volume, myvo1, in the disk group, mydg, use the following command:

vxdco -g mydg dis myvol dco

This form of the command dissociates the DCO object from the volume but does
not destroy it or the DCO volume. If the -0 rm option is specified, the DCO object,
DCO volume and its plexes, and any snap objects are also removed.

Warning: Dissociating a DCO and DCO volume disables Persistent FastResync
on the volume. A full resynchronization of any remaining snapshots is required
when they are snapped back.

See the vxassist(1M) manual page.

See the vxdco(1M) manual pages.

Reattaching a version 0 DCO and DCO volume

If a version 0 DCO object and DCO volume are not removed by specifying the -o
rm option to vxdco, they can be reattached to the parent volume using the following
command:

vxdco [-g diskgroup] att volume dco obj

For example, to reattach the DCO object, myvol dco, to the volume, myvo1l, use
the following command:

vxdco -g mydg att myvol myvol dco

Administering volume snapshots | 432
Adding a version 0 DCO and DCO volume

See the vxdco(1M) manual page.

Administering Storage
Checkpoints

This chapter includes the following topics:

= About Storage Checkpoints

» Storage Checkpoint administration

= Storage Checkpoint space management considerations
= Restoring from a Storage Checkpoint

» Storage Checkpoint quotas

About Storage Checkpoints

Veritas File System (VxFS) provides a Storage Checkpoint feature that quickly
creates a persistent image of a file system at an exact point in time. Storage
Checkpoints significantly reduce 1/0 overhead by identifying and maintaining only
the file system blocks that have changed since the last Storage Checkpoint or
backup via a copy-on-write technique.

See “Copy-on-write” on page 366.
Storage Checkpoints provide:
= Persistence through reboots and crashes.

= The ability for data to be immediately writeable by preserving the file system
metadata, the directory hierarchy, and user data.

Storage Checkpoints are actually data objects that are managed and controlled by
the file system. You can create, remove, and rename Storage Checkpoints because
they are data objects with associated names.

Administering Storage Checkpoints | 434
Storage Checkpoint administration

See “How a Storage Checkpoint works” on page 364.

Unlike a disk-based mirroring technology that requires a separate storage space,
Storage Checkpoints minimize the use of disk space by using a Storage Checkpoint
within the same free space available to the file system.

After you create a Storage Checkpoint of a mounted file system, you can also
continue to create, remove, and update files on the file system without affecting the
logical image of the Storage Checkpoint. A Storage Checkpoint preserves not only
the name space (directory hierarchy) of the file system, but also the user data as
it existed at the moment the file system image was captured.

You can use a Storage Checkpoint in many ways. For example, you can use them
to:

= Create a stable image of the file system that can be backed up to tape.

= Provide a mounted, on-disk backup of the file system so that end users can
restore their own files in the event of accidental deletion. This is especially useful
in a home directory, engineering, or email environment.

= Create a copy of an application's binaries before installing a patch to allow for
rollback in case of problems.

= Create an on-disk backup of the file system in that can be used in addition to a
traditional tape-based backup to provide faster backup and restore capabilities.

= Test new software on a point-in-time image of the primary fileset without
jeopardizing the live data in the current primary fileset by mounting the Storage
Checkpoints as writable.

Storage Checkpoint administration

Storage Checkpoint administrative operations require the fsckptadm utility.
See the fsckptadm(1M) manual page.

You can use the £sckptadm utility to create and remove Storage Checkpoints,
change attributes, and ascertain statistical data. Every Storage Checkpoint has an
associated name, which allows you to manage Storage Checkpoints; this name is
limited to 127 characters and cannot contain a colon (:).

See “Creating a Storage Checkpoint” on page 435.
See “Removing a Storage Checkpoint” on page 436.

Storage Checkpoints require some space for metadata on the volume or set of
volumes specified by the file system allocation policy or Storage Checkpoint
allocation policy. The £sckptadm utility displays an error if the volume or set of
volumes does not have enough free space to contain the metadata. You can roughly

Administering Storage Checkpoints | 435
Storage Checkpoint administration

approximate the amount of space required by the metadata using a method that
depends on the disk layout version of the file system.

For disk layout Version 7, multiply the number of inodes by 1 byte, and add 1 or 2
megabytes to get the approximate amount of space required. You can determine
the number of inodes with the £sckptadm utility.

Use the fsvoladm command to determine if the volume set has enough free space.
See the fsvoladm(1M) manual page.

The following example lists the volume sets and displays the storage sizes in
human-friendly units:

fsvoladm -H list /mntO

devid size used avail name
0 20 GB 10 GB 10 GB voll
1 30 TB 10 TB 20 TB vol2

Creating a Storage Checkpoint

The following example shows the creation of a nodata Storage Checkpoint named
thu_7pmon /mnt0 and lists all Storage Checkpoints of the /mnt0 file system:

fsckptadm -n create thu 7pm /mnt0
fsckptadm list /mntO

/mnt0
thu 7pm:

ctime = Thu 3 Mar 2005 7:00:17 PM PST
mtime = Thu 3 Mar 2005 7:00:17 PM PST
flags = nodata, largefiles

The following example shows the creation of a removable Storage Checkpoint
named thu 8pmon /mnt0 and lists all Storage Checkpoints of the /mnt0 file system:

fsckptadm -r create thu 8pm /mnt0
fsckptadm list /mntO

/mnt0

thu 8pm:

ctime = Thu 3 Mar 2005 8:00:19 PM PST
mtime = Thu 3 Mar 2005 8:00:19 PM PST
flags = largefiles, removable
thu 7pm:

ctime = Thu 3 Mar 2005 7:00:17 PM PST
mtime = Thu 3 Mar 2005 7:00:17 PM PST

flags = nodata, largefiles

Administering Storage Checkpoints | 436
Storage Checkpoint administration

Removing a Storage Checkpoint

You can delete a Storage Checkpoint by specifying the remove keyword of the
fsckptadm command. Specifically, you can use either the synchronous or
asynchronous method of removing a Storage Checkpoint; the asynchronous method
is the default method. The synchronous method entirely removes the Storage
Checkpoint and returns all of the blocks to the file system before completing the
fsckptadm operation. The asynchronous method simply marks the Storage
Checkpoint for removal and causes fsckptadm to return immediately. At a later
time, an independent kernel thread completes the removal operation and releases
the space used by the Storage Checkpoint.

In this example, /mnt0 is @ mounted VxFS file system with a Version 9 disk layout.
This example shows the asynchronous removal of the Storage Checkpoint named
thu_8pm and synchronous removal of the Storage Checkpoint named thu_7pm.
This example also lists all the Storage Checkpoints remaining on the /mnto file
system after the specified Storage Checkpoint is removed:

fsckptadm remove thu 8pm /mnt0
fsckptadm list /mntO

/mnt0
thu 7pm:

ctime = Thu 3 Mar 2005 7:00:17 PM PST
mtime = Thu 3 Mar 2005 7:00:17 PM PST
flags = nodata, largefiles

fsckptadm -s remove thu_ 7pm /mnt0
fsckptadm list /mntO
/mnt0

Accessing a Storage Checkpoint

You can mount Storage Checkpoints using the mount command with the mount
option -o ckpt=ckpt name.

See the mount vxfs(1M) manual page.
Observe the following rules when mounting Storage Checkpoints:
= Storage Checkpoints are mounted as read/write Storage Checkpoints by default.

» [fa Storage Checkpointis currently mounted as a read-only Storage Checkpoint,
you can remount it as a writable Storage Checkpoint using the -o remount
option.

= To mount a Storage Checkpoint of a file system, first mount the file system itself.

= To unmount a file system, first unmount all of its Storage Checkpoints.

Administering Storage Checkpoints
Storage Checkpoint administration

Warning: If you create a Storage Checkpoint for backup purposes, do not mount
it as a writable Storage Checkpoint. You will lose the point-in-time image if you
accidently write to the Storage Checkpoint.

If older Storage Checkpoints already exist, write activity to a writable Storage
Checkpoint can generate copy operations and increased space usage in the older
Storage Checkpoints.

A Storage Checkpoint is mounted on a special pseudo device. This pseudo device
does not exist in the system name space; the device is internally created by the
system and used while the Storage Checkpoint is mounted. The pseudo device is
removed after you unmount the Storage Checkpoint. A pseudo device name is
formed by appending the Storage Checkpoint name to the file system device name
using the colon character (:) as the separator.

For example, if a Storage Checkpoint named may 23 belongs to the file system
residing on the special device /dev/vx/dsk/fsvol/voll, the Storage Checkpoint
pseudo device name is:

/dev/vx/dsk/fsvol/voll:may 23

= To mount the Storage Checkpoint named may_ 23 as a read-only Storage
Checkpoint on directory /fsvol may 23, type:

mount -t vxfs -o ckpt=may 23 /dev/vx/dsk/fsvol/voll:may 23 \
/fsvol _may 23

Note: The vo11 file system must already be mounted before the Storage
Checkpoint can be mounted.

= To remount the Storage Checkpoint named may 23 as a writable Storage
Checkpoint, type:

mount -t vxfs -o ckpt=may 23,remount,rw \
/dev/vx/dsk/fsvol/voll:may 23 /fsvol may 23

= To mount this Storage Checkpoint automatically when the system starts up, put
the following entries in the /etc/fstab file:

Device-Special-File Mount-Point fstype options backup- pass-—

frequency number

/dev/vx/dsk/fsvol/ /fsvol vxfs defaults 0 0

voll

437

Administering Storage Checkpoints
Storage Checkpoint administration

/dev/vx/dsk/fsvol/ /fsvol may 23 vxfs ckpt=may 23 0 0

voll:may 23

= To mount a Storage Checkpoint of a cluster file system, you must also use the
-o cluster option:

mount -t vxfs -o cluster,ckpt=may 23 \
/dev/vx/dsk/fsvol/voll:may 23 /fsvol may 23

You can only mount a Storage Checkpoint cluster-wide if the file system that
the Storage Checkpoint belongs to is also mounted cluster-wide. Similarly, you
can only mount a Storage Checkpoint locally if the file system that the Storage
Checkpoint belongs to is mounted locally.

You can unmount Storage Checkpoints using the umount command.
See the umount(1M) manual page.

Storage Checkpoints can be unmounted by the mount point or pseudo device name:

umount /fsvol may 23
umount /dev/vx/dsk/fsvol/voll:may 23

Note: You do not need to run the fsck utility on Storage Checkpoint pseudo devices
because pseudo devices are part of the actual file system.

Converting a data Storage Checkpoint to a nodata Storage

Checkpoint

A nodata Storage Checkpoint does not contain actual file data. Instead, this type
of Storage Checkpoint contains a collection of markers indicating the location of all
the changed blocks since the Storage Checkpoint was created.

See “Types of Storage Checkpoints” on page 368.

You can use either the synchronous or asynchronous method to convert a data
Storage Checkpoint to a nodata Storage Checkpoint; the asynchronous method is
the default method. In a synchronous conversion, fsckptadm waits for all files to
undergo the conversion process to “nodata" status before completing the operation.
In an asynchronous conversion, fsckptadm returns immediately and marks the
Storage Checkpoint as a nodata Storage Checkpoint even though the Storage
Checkpoint's data blocks are not immediately returned to the pool of free blocks in
the file system. The Storage Checkpoint deallocates all of its file data blocks in the
background and eventually returns them to the pool of free blocks in the file system.

Administering Storage Checkpoints | 439
Storage Checkpoint administration

If all of the older Storage Checkpoints in a file system are nodata Storage
Checkpoints, use the synchronous method to convert a data Storage Checkpoint
to a nodata Storage Checkpoint. If an older data Storage Checkpoint exists in the
file system, use the asynchronous method to mark the Storage Checkpoint you
want to convert for a delayed conversion. In this case, the actual conversion will
continue to be delayed until the Storage Checkpoint becomes the oldest Storage
Checkpoint in the file system, or all of the older Storage Checkpoints have been
converted to nodata Storage Checkpoints.

Note: You cannot convert a nodata Storage Checkpoint to a data Storage
Checkpoint because a nodata Storage Checkpoint only keeps track of the location
of block changes and does not save the content of file data blocks.

Showing the difference between a data and a nodata
Storage Checkpoint

The following example shows the difference between data Storage Checkpoints
and nodata Storage Checkpoints.

Note: A nodata Storage Checkpoint does not contain actual file data.

To show the difference between Storage Checkpoints

1 Create a file system and mount it on /mnt0, as in the following example:
mkfs -t vxfs /dev/vx/rdsk/dgl/test0

version 11 layout

134217728 sectors, 67108864 blocks of size 1024, log size 65536 blocks
rcq size 4096 blocks

largefiles supported

maxlink supported

size 65536 blocks, largefiles supported
mount -t vxfs /dev/vx/dsk/dgl/test0 /mnt0

2 Create a small file with a known content, as in the following example:

echo "hello, world" > /mnt0/file

Administering Storage Checkpoints | 440
Storage Checkpoint administration

Create a Storage Checkpoint and mountiton /mnt0@5 30pm, as in the following
example:

fsckptadm create ckpt@5_30pm /mnt0

mkdir /mnt0@5_30pm

mount -t vxfs -o ckpt=ckpt@5_30pm \
/dev/vx/dsk/dgl/test0:ckpt@5_30pm /mnt0@5_30pm

Examine the content of the original file and the Storage Checkpoint file:

cat /mnt0/file

hello, world

cat /mnt0@5_30pm/file
hello, world

Change the content of the original file:

echo "goodbye" > /mnt0/file

Examine the content of the original file and the Storage Checkpoint file. The
original file contains the latest data while the Storage Checkpoint file still
contains the data at the time of the Storage Checkpoint creation:

cat /mnt0/file
goodbye

cat /mnt0@5_30pm/file
hello, world

Administering Storage Checkpoints | 441
Storage Checkpoint administration

7 Unmount the Storage Checkpoint, convert the Storage Checkpoint to a nodata
Storage Checkpoint, and mount the Storage Checkpoint again:

umount /mnt0@5_30pm

fsckptadm -s set nodata ckpt@5_30pm /mnt0

mount -t vxfs -o ckpt=ckpt@5_ 30pm \
/dev/vx/dsk/dgl/test0:ckpt@5_30pm /mnt0@5_30pm

8 Examine the content of both files. The original file must contain the latest data:

cat /mnt0/file
goodbye

You can traverse and read the directories of the nodata Storage Checkpoint;
however, the files contain no data, only markers to indicate which block of the
file has been changed since the Storage Checkpoint was created:

1ls -1 /mnt0@5_30pm/file

—rw-r—--r-- 1 root other 13 Jul 13 17:13 \
cat /mnt0@5_30pm/file

cat: /mnt0@5 30pm/file: Input/output error

Converting multiple Storage Checkpoints

You can convert Storage Checkpoints to nodata Storage Checkpoints when dealing
with older Storage Checkpoints on the same file system.

Administering Storage Checkpoints | 442
Storage Checkpoint administration

To convert multiple Storage Checkpoints

1

Create a file system and mount it on /mnt0:

mkfs -t vxfs /dev/vx/rdsk/dgl/test0
version 11 layout
134217728 sectors,
rcqg size 4096 blocks

67108864 blocks of size 1024, log size 65536 blocks

largefiles supported

maxlink

supported

mount -t vxfs /dev/vx/dsk/dgl/test0 /mnt0

Create four data Storage Checkpoints on this file system, note the order of

creation, and list them:

fsckptadm
fsckptadm
fsckptadm
fsckptadm
fsckptadm
/mnt0
latest:

H oH W o

ctime
mtime
flags
old:
ctime
mtime
flags
older:
ctime
mtime
flags
oldest:
ctime
mtime

flags

create
create
create

create

oldest /mnt0
older /mnt0
old /mnt0

latest /mnt0

list /mnt0

= Mon 26 Jul
= Mon 26 Jul

= largefiles

= Mon 26 Jul
= Mon 26 Jul

= largefiles

11:

11

11:
11:

56:55 2004
:56:55 2004

56:51 2004
56:51 2004

= Mon 26 Jul 11:56:46 2004

= Mon 26 Jul

= largefiles

= Mon 26 Jul
= Mon 26 Jul

= largefiles

11

11
11

:56:46 2004

:56:41 2004
:56:41 2004

Administering Storage Checkpoints | 443
Storage Checkpoint administration

3 Try to convert synchronously the 1atest Storage Checkpoint to a nodata
Storage Checkpoint. The attempt will fail because the Storage Checkpoints
older than the 1atest Storage Checkpoint are data Storage Checkpoints,
namely the Storage Checkpoints o1d, older, and oldest:

fsckptadm -s set nodata latest /mnt0
UX:vxfs fsckptadm: ERROR: V-3-24632: Storage Checkpoint
set failed on latest. File exists (17)

4 You can instead convert the 1atest Storage Checkpoint to a nodata Storage
Checkpoint in a delayed or asynchronous manner.

fsckptadm set nodata latest /mntO

5 List the Storage Checkpoints, as in the following example. You will see that
the 1atest Storage Checkpoint is marked for conversion in the future.

fsckptadm list /mntO

/mnt0

latest:
ctime = Mon 26 Jul 11:56:55 2004
mtime = Mon 26 Jul 11:56:55
flags = nodata, largefiles, delayed

old:
ctime = Mon 26 Jul 11:56:51 2004
mtime = Mon 26 Jul 11:56:51 2004
flags = largefiles

older:
ctime = Mon 26 Jul 11:56:46 2004
mtime = Mon 26 Jul 11:56:46 2004
flags = largefiles

oldest:
ctime = Mon 26 Jul 11:56:41 2004
mtime = Mon 26 Jul 11:56:41 2004
flags = largefiles

Creating a delayed nodata Storage Checkpoint

You can create a Storage Checkpoint as a delayed nodata Storage Checkpoint.
The creation process detects the presence of the older data Storage Checkpoints
and creates the Storage Checkpoint as a delayed nodata Storage Checkpoint. The
following example procedure removes an existing Storage Checkpoint named

Administering Storage Checkpoints | 444
Storage Checkpoint administration

latest and recreates the Storage Checkpoint as a delayed nodata Storage
Checkpoint.

To create a delayed nodata Storage Checkpoint

1 Remove the 1atest Storage Checkpoint.

fsckptadm remove latest /mnt0
fsckptadm list /mntO

/mnt0

old:
ctime = Mon 26 Jul 11:56:51 2004
mtime = Mon 26 Jul 11:56:51 2004
flags = largefiles

older:
ctime = Mon 26 Jul 11:56:46 2004
mtime = Mon 26 Jul 11:56:46 2004
flags = largefiles

oldest:
ctime = Mon 26 Jul 11:56:41 2004
mtime = Mon 26 Jul 11:56:41 2004
flags = largefiles

2 Recreate the 1atest Storage Checkpoint as a nodata Storage Checkpoint.

fsckptadm -n create latest /mnt0O
fsckptadm list /mntO

/mnt0

latest:
ctime = Mon 26 Jul 12:06:42 2004
mtime = Mon 26 Jul 12:06:42 2004
flags = nodata, largefiles, delayed

old:
ctime = Mon 26 Jul 11:56:51 2004
mtime = Mon 26 Jul 11:56:51 2004
flags = largefiles

older:
ctime = Mon 26 Jul 11:56:46 2004
mtime = Mon 26 Jul 11:56:46 2004
flags = largefiles

oldest:
ctime = Mon 26 Jul 11:56:41 2004
mtime = Mon 26 Jul 11:56:41 2004

flags = largefiles

Administering Storage Checkpoints
Storage Checkpoint administration

3 Convert the o1dest Storage Checkpoint to a nodata Storage Checkpoint

because no older Storage Checkpoints exist that contain data in the file system.

Note: This step can be done synchronously.

fsckptadm -s set nodata oldest /mnt0
fsckptadm list /mntO

/mnt0

latest:
ctime = Mon 26 Jul 12:06:42
mtime = Mon 26 Jul 12:06:42
flags = nodata, largefiles,

old:
ctime = Mon 26 Jul 11:56:51
mtime = Mon 26 Jul 11:56:51
flags = largefiles

older:
ctime = Mon 26 Jul 11:56:46
mtime = Mon 26 Jul 11:56:46
flags = largefiles

oldest:
ctime = Mon 26 Jul 11:56:41
mtime = Mon 26 Jul 11:56:41

flags = nodata, largefiles

2004
2004
delayed

2004
2004

2004
2004

2004
2004

445

Administering Storage Checkpoints | 446
Storage Checkpoint administration

4 Remove the o1der and o1d Storage Checkpoints.

fsckptadm remove older /mnt0
fsckptadm remove old /mnt0O
fsckptadm list /mntO

/mnt0

latest:
ctime = Mon 26 Jul 12:06:42 2004
mtime = Mon 26 Jul 12:06:42 2004
flags = nodata, largefiles

oldest:
ctime = Mon 26 Jul 11:56:41 2004
mtime = Mon 26 Jul 11:56:41 2004
flags = nodata, largefiles

Note: After you remove the o1der and o1d Storage Checkpoints, the 1atest
Storage Checkpoint is automatically converted to a nodata Storage Checkpoint
because the only remaining older Storage Checkpoint (o1dest) is already a
nodata Storage Checkpoint:

Enabling and disabling Storage Checkpoint visibility

You enable Storage Checkpoint visibility through the ckptautomnt mount option,
which can be set to one of three values: of £, ro, or rw. Because enabling Storage
Checkpoint visibility prevents manual mounting of clones, the default value is of £.
Setting the option to ro causes all clones to be automounted as read-only, while
rw causes all clones to be automounted as read/write.

If you take a Storage Checkpoint of an existing Storage Checkpoint (instead of the
primary file set), the directory for the source Storage Checkpoint in .checkpoint
functions as the mount point. For example, to take a Storage Checkpoint of the
Storage Checkpoint clonel in a file system mounted on /mnt, use the following
command:

fsckptadm create clone2 /mnt/.checkpoint/clonel

By default, Storage Foundation (SF) does not make inode numbers unique. However,
you can specify the uniqueino mount option to enable the use of unique 64-bit
inode numbers. You cannot change this option during a remount.

The following example enables Storage Checkpoint visibility by causing all clones
to be automounted as read/write:

Administering Storage Checkpoints
Storage Checkpoint space management considerations

mount -t vxfs -o ckptautomnt=rw /dev/vx/dsk/dgl/voll /mntl

Storage Checkpoint space management
considerations

Several operations, such as removing or overwriting a file, can fail when a file
system containing Storage Checkpoints runs out of space. If the system cannot
allocate sufficient space, the operation will fail.

Database applications usually preallocate storage for their files and may not expect
a write operation to fail. During user operations such as create or mkdir, if the file
system runs out of space, removable Storage Checkpoints are deleted. This ensures
that applications can continue without interruptions due to lack of disk space.
Non-removable Storage Checkpoints are not automatically removed under such
ENOSPC conditions. Veritas recommends that you create only removable Storage
Checkpoints. However, during certain administrative operations, such as using the
fsadm command, using the giomkfile command, and creating a Storage Checkpoint
with the £sckptadm command, even if the file system runs out of space, removable
Storage Checkpoints are not deleted.

When the kernel automatically removes the Storage Checkpoints, it applies the
following policies:

= Remove as few Storage Checkpoints as possible to complete the operation.
= Never select a non-removable Storage Checkpoint.

= Select a nodata Storage Checkpoint only when data Storage Checkpoints no
longer exist.

= Remove the oldest Storage Checkpoint first.

= Remove a Storage Checkpoint even if it is mounted. New operations on such
a removed Storage Checkpoint fail with the appropriate error codes.

» If the oldest Storage Checkpoint is non-removable, then the oldest removable
Storage Checkpoint is selected for removal. In such a case, data might be
required to be pushed to a non-removable Storage Checkpoint, which might fail
and result in the file system getting marked for a FULLFSCK. To prevent this
occurrence, Veritas recommends that you only create removable Storage
Checkpoints.

Restoring from a Storage Checkpoint

Mountable data Storage Checkpoints on a consistent and undamaged file system
can be used by backup and restore applications to restore either individual files or

447

Administering Storage Checkpoints
Restoring from a Storage Checkpoint

an entire file system. Restoration from Storage Checkpoints can also help recover
incorrectly modified files, but typically cannot recover from hardware damage or
other file system integrity problems.

Note: For hardware or other integrity problems, Storage Checkpoints must be
supplemented by backups from other media.

Files can be restored by copying the entire file from a mounted Storage Checkpoint
back to the primary fileset. To restore an entire file system, you can designate a
mountable data Storage Checkpoint as the primary fileset using the £sckpt restore
command.

See the fsckpt_restore(1M) manual page.

When using the £sckpt restore command to restore a file system from a Storage
Checkpoint, all changes made to that file system after that Storage Checkpoint's
creation date are permanently lost. The only Storage Checkpoints and data
preserved are those that were created at the same time, or before, the selected
Storage Checkpoint's creation. The file system cannot be mounted at the time that
fsckpt_restore is invoked.

Note: Individual files can also be restored very efficiently by applications using the
fsckpt_fbmap(3) library function to restore only modified portions of a files data.

You can restore from a Storage Checkpoint only to a file system that has disk layout
Version 6 or later.

The following example restores a file, filel.txt, which resides in your home
directory, from the Storage Checkpoint cxpT1 to the device
/dev/vx/dsk/dgl/vol-01. The mount point for the device is /home.

To restore a file from a Storage Checkpoint

1 Create the Storage Checkpoint ckpT1 of /home.

$ fsckptadm create CKPT1 /home

2 Mount Storage Checkpoint ckpT1 on the directory /home/checkpoints/mar_4.

$ /opt/VRTS/bin/mount -o ckpt=CKPT1l /dev/vx/dsk/dgl/vol- \
01:CKPT1 /home/checkpoints/mar_ 4

448

Administering Storage Checkpoints | 449
Restoring from a Storage Checkpoint

3 Delete the filel.txt file from your home directory.

$ ed /home/users/me
S rm filel.txt

4 Gotothe /home/checkpoints/mar_ 4/users/me directory, which contains the
image of your home directory.

$ cd /home/checkpoints/mar_4/users/me
$1s -1
-rw-r--r-- 1 me staff 14910 Mar 4 17:09 filel.txt

5 Copy thefile filel.txt to your home directory.

$ cp filel.txt /home/users/me

$ cd /home/users/me

$ 1ls -1

—rw-r—--r--— 1 me staff 14910 Mar 4 18:21 filel.txt

The following example restores a file system from the Storage Checkpoint ckpT3.
The filesets listed before the restoration show an unnamed root fileset and six
Storage Checkpoints.

omZ>»Z2zZC
®—H4TXO
AH4TXO
AH4TXO
©WATXO
NATXO
- —4TXO0O

Administering Storage Checkpoints | 450
Restoring from a Storage Checkpoint

To restore a file system from a Storage Checkpoint

1 Runthe fsckpt restore command:

fsckpt restore -1 /dev/vx/dsk/dgl/vol2

/dev/vx/dsk/dgl/vol2:

UNNAMED:
ctime = Thu 08 May 2004 06:28:26 PM PST
mtime = Thu 08 May 2004 06:28:26 PM PST
flags = largefiles, file system root

CKPT6:

ctime = Thu 08 May 2004 06:28:35 PM PST

mtime = Thu 08 May 2004 06:28:35 PM PST
flags = largefiles

CKPT5:
ctime = Thu 08 May 2004 06:28:34 PM PST
mtime = Thu 08 May 2004 06:28:34 PM PST
flags = largefiles, nomount

CKPT4:
ctime = Thu 08 May 2004 06:28:33 PM PST
mtime = Thu 08 May 2004 06:28:33 PM PST
flags = largefiles

CKPT3:
ctime = Thu 08 May 2004 06:28:36 PM PST
mtime = Thu 08 May 2004 06:28:36 PM PST
flags = largefiles

CKPT2:
ctime = Thu 08 May 2004 06:28:30 PM PST
mtime = Thu 08 May 2004 06:28:30 PM PST
flags = largefiles

CKPT1:
ctime = Thu 08 May 2004 06:28:29 PM PST
mtime = Thu 08 May 2004 06:28:29 PM PST

flags = nodata, largefiles

Administering Storage Checkpoints | 451
Restoring from a Storage Checkpoint

2 In this example, select the Storage Checkpoint ckpT3 as the new root fileset:

Select Storage Checkpoint for restore operation
or <Control/D> (EOF) to exit
or <Return> to list Storage Checkpoints: CKPT3

CKPT3:
ctime = Thu 08 May 2004 06:28:31 PM PST
mtime = Thu 08 May 2004 06:28:36 PM PST
flags = largefiles

UX:vxfs fsckpt restore: WARNING: V-3-24640: Any file system
changes or Storage Checkpoints made after
Thu 08 May 2004 06:28:31 PM PST will be lost.

Administering Storage Checkpoints
Restoring from a Storage Checkpoint

Type y to restore the file system from cxpT3:

Restore the file system from Storage Checkpoint CKPT3 ?
(yna) y

(Yes)

UX:vxfs fsckpt restore: INFO: V-3-23760: File system
restored from CKPT3

If the filesets are listed at this point, it shows that the former UNNAMED root
fileset and ckpT6, CKPT5, and ckpT4 were removed, and that ckpT3 is now the
primary fileset. ckpT3 is now the fileset that will be mounted by default.

WHTXO
A
NHTXO
A
=~ —4TXO

Run the £sckpt restore command:

fsckpt restore -1 /dev/vx/dsk/dgl/vol2

/dev/vx/dsk/dgl/vol2:

CKPT3:
ctime = Thu 08 May 2004 06:28:31 PM PST
mtime = Thu 08 May 2004 06:28:36 PM PST
flags = largefiles, file system root

CKPT2:
ctime = Thu 08 May 2004 06:28:30 PM PST
mtime = Thu 08 May 2004 06:28:30 PM PST
flags = largefiles

CKPT1:
ctime = Thu 08 May 2004 06:28:29 PM PST
mtime = Thu 08 May 2004 06:28:29 PM PST
flags = nodata, largefiles

Select Storage Checkpoint for restore operation
or <Control/D> (EOF) to exit
or <Return> to list Storage Checkpoints:

452

Administering Storage Checkpoints | 453
Storage Checkpoint quotas

Storage Checkpoint quotas

VxFS provides options to the fsckptadm command interface to administer Storage
Checkpoint quotas. Storage Checkpoint quotas set the following limits on the amount
of space used by all Storage Checkpoints of a primary file set:

hard limit An absolute limit that cannot be exceeded. If a hard limit is exceeded,
all further allocations on any of the Storage Checkpoints fail, but existing
Storage Checkpoints are preserved.

soft limit Must be lower than the hard limit. If a soft limit is exceeded, no new
Storage Checkpoints can be created. The number of blocks used must
return below the soft limit before more Storage Checkpoints can be
created. An alert and console message are generated.

In case of a hard limit violation, various solutions are possible, enacted by specifying
or not specifying the - £ option for the fsckptadm utility.

See the fsckptadm(1M) manual page.
Specifying or not specifying the -f option has the following effects:

= If the -£ option is not specified, one or many removable Storage Checkpoints
are deleted to make space for the operation to succeed. This is the default
solution.

» If the - option is specified, all further allocations on any of the Storage
Checkpoints fail, but existing Storage Checkpoints are preserved.

Note: Sometimes if a file is removed while it is opened by another process, the
removal process is deferred until the last close. Because the removal of a file
may trigger pushing data to a “downstream" Storage Checkpoint (that is, the
next older Storage Checkpoint), a fileset hard limit quota violation may occur.
In this scenario, the hard limit is relaxed to prevent an inode from being marked
bad. This is also true for some asynchronous inode operations.

Administering FileSnaps

This chapter includes the following topics:

= FileSnap creation

= Using FileSnaps

» Using FileSnaps to create point-in-time copies of files

» Comparison of the logical size output of the fsadm -S shared, du, and df
commands

FileSnap creation

A single thread creating FileSnaps of the same file can create over ten thousand
snapshots per minute. FileSnaps can be used for fast provisioning of new virtual
machines by cloning a virtual machine golden image, where the golden image is
stored as a file in a VxFS file system or Storage Foundation Cluster File System
High Availability (SFCFSHA) file system, which is used as a data store for a virtual
environment.

FileSnap creation over Network File System

You can create a FileSnap over Network File System (NFS) by creating a hard link
from an existing file to a new file with the extension “::snap:vxfs:”. For example, the
following command creates a new file named file1, but instead of making filel
a hard link of file2, filel will be a FileSnap so that the link count of £i1e2 will
not change:

1ln filel file2::snap:vxfs:
This is the equivalent of using the following command:

vxfilesnap -p filel file2

Administering FileSnaps | 455
Using FileSnaps

The new file has the same attributes as the old file and shares all of the old file's
extents.

An application that uses this namespace extension should check if the file created
has the namespace extension, such as filel: :snap:vxfs: instead of filel. This
indicates the namespace extension is not supported, either because the file system
exported over NFS is not VxFS, the file system is an older version of VxFS, or the
file system does not have a license for FileSnaps.

As with the vxfilesnap command, FileSnaps must be made within a single file set.

Using FileSnaps

Table 19-1 provides a list of Veritas File System (VxFS) commands that enable
you to administer FileSnaps.

Table 19-1

Command Functionality

fiostat The fiostat command has the -s shared option to display statistics
for each interval. Otherwise, the command displays the accumulated
statistics for the entire time interval.

fsadm The £sadm command has the - option to report shared block usage
in the file system. You can use this option to find out the storage savings
achieved through FileSnaps and how much real storage is required if
all of the files are full copies.

See the fsadm_vxfs(1M) manual page.

fsmap The £smap command has the -c option to report the count of the total
number of physical blocks consumed by a file, and how many of those
blocks might not be private to a given file.

See the £smap(1) manual page.

mkfs Use the mk fs command to make a disk layout Version 11 file system
by specifying -o version=11. VxFS internally maintains a list of
delayed operations on shared extent references and the size of this list
(rcgsize) defaults to a value that is a function of the file system size,
but can be changed when the file system is made.

See the mkfs_vxfs(1M) manual page.

Administering FileSnaps
Using FileSnaps to create point-in-time copies of files

Table 19-1 (continued)
Command Functionality
vxfilesnap Use the vxfilesnap command to create a snapshot of a file or set of

files or files in a directory. You can also use the vxfilesnap command
to restore a older version of the file to the current file.

See the vxfilesnap(1) manual page.

vxtunefs The vxtunefs command supports an option to enable lazy
copy-on-write tuneable, 1azy copyonwrite, on the file system, for
better performance.

See the vxtunefs(1M) manual page.

Using FileSnaps to create point-in-time copies of

files

The key to obtaining maximum performance with FileSnaps is to minimize the
copy-on-write overhead. You can achieved this by enabling lazy copy-on-write.
Lazy copy-on-write is easy to enable and usually results in significantly better
performance. If lazy copy-on-write is not a viable option for the use case under
consideration, an efficient allocation of the source file can reduce the need of
copy-on-write.

Using FileSnaps to provision virtual desktops

Virtual desktop infrastructure (VDI) operating system boot images are a good use
case for FileSnaps. The parts of the boot images that can change are user profile,
page files (or swap for UNIX/Linux) and application data. You should separate such
data from boot images to minimize unsharing. You should allocate a single extent
to the master boot image file.

The following example uses a 4 GB master boot image that has a single extent that
will be shared by all snapshots.

touch /vdi_images/master_image

/opt/VRTS/bin/setext -r 4g -f chgsize /vdi_images/master_ image

The master image file can be presented as a disk device to the virtual machine for
installing the operating system. Once the operating system is installed and
configured, the file is ready for snapshots.

Administering FileSnaps | 457
Using FileSnaps to create point-in-time copies of files

Using FileSnaps to optimize write intensive applications for virtual
machines

When virtual machines are spawned to perform certain tasks that are write intensive,
a significant amount of unsharing can take place. Veritas recommends that you
optimize performance by enabling lazy copy-on-write. If the use case does not allow
enabling lazy copy-on-write, with careful planning, you can reduce the occurrence
of unsharing. The easiest way to reduce unsharing is to separate the application
data to a file other than the boot image. If you cannot do this due to the nature of
your applications, then you can take actions similar to the following example.

Assume that the disk space required for a boot image and the application data is
20 GB. Out of this, only 4 GB is used by the operating system and the remaining
16 GB is the space for applications to write. Any data or binaries that are required
by each instance of the virtual machine can still be part of the first 4 GB of the
shared extent. Since most of the writes are expected to take place on the 16 GB
portion, you should allocate the master image in such a way that the 16 GB of space
is not shared, as shown in the following commands:

touch /vdi_images/master_ image

/opt/VRTS/bin/setext -r 4g -f chgsize /vdi_images/master_image

dd if=/dev/zero of=/vdi_images/master_image seek=20971520 \
bs=1024 count=1

The last command creates a 20 GB hole at the end of the file. Since holes do not
have any extents allocated, the writes to hole do not need to be unshared.

Using FileSnaps to create multiple copies of data instantly

It is common to create one or more copies of production data for the purpose of
generating reports, mining, and testing. These cases frequently update the copies
of the data with the most current data, and one or more copies of the data always
exists. FileSnaps can be used to create multiple copies instantly. The application
that uses the original data can see a slight performance hit due to the unsharing of
data that can take place during updates.

An example to perform FileSnap

An example to perform FileSnap is as follows:

vxfilesnap tfilel stfilel

1s -1ltr

total 1108

drwxr-xr-x 2 root root 96 Jul 6 00:41 lost+found
—rw-r—--r—-- 1 root root 282686 Jul 6 00:43 tfilel

Administering FileSnaps | 458
Comparison of the logical size output of the fsadm -S shared, du, and df commands

—rw-r--r-- 1 root root 282686 Jul 6 00:44 stfilel

1ls -ltri

total 1108

3 drwxr-xr-x 2 root root 96 Jul 6 00:41 lost+found
4 -rw-r--r-- 1 root root 282686 Jul 6 00:43 tfilel

5 -rw-r--r-- 1 root root 282686 Jul 6 00:44 stfilel

Comparison of the logical size output of the fsadm
-S shared, du, and df commands

The fsadm -S shared, du, and df commands report different values for the size
of a FileSnap. The fsadm -s shared command displays this size as the "logical
size," which is the logical space consumed, in kilobytes, and accounts for both
exclusive blocks and shared blocks. This value represents the actual disk space
needed if the file system did not have any shared blocks. The value from the fsadm
-S shared command differs from the output of du -sk command since the du
command does not track the blocks consumed by VxFS structural files. As a result,
the output of the du -sk command is less than the logical size output reported by
the fsadm -S shared command.

The following examples show output from the fsadm -S shared, du, and df
commands:

mkfs -t vxfs /dev/vx/rdsk/dg/vol3

version 11 layout

134217728 sectors, 67108864 blocks of size 1024, log size 65536 blocks
rcq size 4096 blocks

largefiles supported

maxlink supported
mount -t vxfs /dev/vx/dsk/dg/vol3 /mnt

df -k /mnt
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/vx/dsk/dgl/vol3 52428800 83590 49073642 1% /mnt

/opt/VRTS/bin/fsadm -S shared /mnt
Mountpoint Size (KB) Available (KB) Used (KB) Logical Size (KB) Space_ Saved(KB)
/mnt 52428800 49073642 83590 83590 0

du -sk /mnt
0 /mnt

Administering FileSnaps
Comparison of the logical size output of the fsadm -S shared, du, and df commands

dd if=/dev/zero of=/mnt/foo bs=1024 count=10

1040 records in

1040 records out

10240 bytes (10 kB) copied, 0.018901 seconds, 542 kB/s

vxfilesnap /mnt/foo /mnt/foo.snap

df -k /mnt
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/vx/dsk/dgl/vol3 52428800 83600 49073632 1% /mnt

/opt/VRTS/bin/fsadm -S shared /mnt
Mountpoint Size (KB) Available (KB) Used (KB) Logical_Size (KB) Space_Saved(KB)
/mnt 52428800 49073632 83600 83610 10

du -sk /mnt
20 /mnt

459

Administering snapshot file
systems

This chapter includes the following topics:

= Snapshot file system backups

= Snapshot file system performance

= About snapshot file system disk structure

= Differences between snapshots and Storage Checkpoints

= Creating a snapshot file system

Snapshot file system backups

After a snapshot file system is created, the snapshot maintains a consistent backup
of data in the snapped file system.

Backup programs, such as cpio, that back up a standard file system tree can be
used without modification on a snapshot file system because the snapshot presents
the same data as the snapped file system. Backup programs, such as vxdump, that
access the disk structures of a file system require some modifications to handle a
snapshot file system.

VxFS utilities recognize snapshot file systems and modify their behavior so that
they operate the same way on snapshots as they do on standard file systems. Other
backup programs that typically read the raw disk image cannot work on snapshots
without altering the backup procedure.

These other backup programs can use the £scat command to obtain a raw image
of the entire file system that is identical to an image obtainable by running a dd
command on the disk device containing the snapped file system at the exact moment

Administering snapshot file systems
Snapshot file system performance

the snapshot was created. The snapread ioctl takes arguments similar to those of
the read system call and returns the same results that are obtainable by performing
a read on the disk device containing the snapped file system at the exact time the
snapshot was created. In both cases, however, the snapshot file system provides
a consistent image of the snapped file system with all activity complete—it is an
instantaneous read of the entire file system. This is much different than the results
that would be obtained by a dd or read command on the disk device of an active
file system.

Snapshot file system performance

Snapshot file systems maximize the performance of the snapshot at the expense
of writes to the snapped file system. Reads from a snapshot file system typically
perform at nearly the throughput rates of reads from a standard VxFS file system.

The performance of reads from the snapped file system are generally not affected.
However, writes to the snapped file system, typically average two to three times as
long as without a snapshot. This is because the initial write to a data block requires
reading the old data, writing the data to the snapshot, and then writing the new data
to the snapped file system. If there are multiple snapshots of the same snapped
file system, writes are even slower. Only the initial write to a block experiences this
delay, so operations such as writes to the intent log or inode updates proceed at
normal speed after the initial write.

Reads from the snapshot file system are impacted if the snapped file system is
busy because the snapshot reads are slowed by the disk 1/O associated with the
snapped file system.

The overall impact of the snapshot is dependent on the read to write ratio of an
application and the mixing of the 1/O operations. For example, a database application
running an online transaction processing (OLTP) workload on a snapped file system
was measured at about 15 to 20 percent slower than a file system that was not
snapped.

About snapshot file system disk structure

A snapshot file system consists of:
= A super-block

= A bitmap

= A blockmap

= Data blocks copied from the snapped file system

461

Administering snapshot file systems | 462
Differences between snapshots and Storage Checkpoints

The following figure shows the disk structure of a snapshot file system.

Figure 20-1 The Snapshot Disk Structure

super-block

bitmap

blockmap

data block

The super-block is similar to the super-block of a standard VxFS file system, but
the magic number is different and many of the fields are not applicable.

The bitmap contains one bit for every block on the snapped file system. Initially, all
bitmap entries are zero. A set bit indicates that the appropriate block was copied
from the snapped file system to the snapshot. In this case, the appropriate position
in the blockmap references the copied block.

The blockmap contains one entry for each block on the snapped file system. Initially,
all entries are zero. When a block is copied from the snapped file system to the
snapshot, the appropriate entry in the blockmap is changed to contain the block
number on the snapshot file system that holds the data from the snapped file system.

The data blocks are filled by data copied from the snapped file system, starting
from the beginning of the data block area.

Differences between snapshots and Storage
Checkpoints

While snapshots and Storage Checkpoints both create a point-in-time image of a
file system and only the changed data blocks are updated, there are significant
differences between the two technologies:

Table 20-1 Differences between snapshots and Storage Checkpoints
Snapshots Storage Checkpoints
Require a separate device for storage Reside on the same device as the original file
system

Administering snapshot file systems | 463
Creating a snapshot file system

Table 20-1 Differences between snapshots and Storage Checkpoints
(continued)

Snapshots Storage Checkpoints

Are read-only Can be read-only or read-write

Are transient Are persistent

Cease to exist after being unmounted Can exist and be mounted on their own
Track changed blocks on the file system level | Track changed blocks on each file in the file

system

Storage Checkpoints also serve as the enabling technology for two other Veritas
features: Block-Level Incremental Backups and Storage Rollback, which are used
extensively for backing up databases.

See “About Storage Checkpoints” on page 433.

Creating a snapshot file system

You create a snapshot file system by using the -o snapof= option of the mount
command. The -o snapsize= option may also be required if the device you are
mounting does not identify the device size in its disk label, or if you want a size

smaller than the entire device.

You must make the snapshot file system large enough to hold any blocks on the
snapped file system that may be written to while the snapshot file system exists. If
a snapshot runs out of blocks to hold copied data, the snapshot is disabled and
further attempts to access the snapshot file system fail.

During periods of low activity (such as nights and weekends), a snapshot typically
requires about two to six percent of the blocks of the snapped file system. During
a period of high activity, the snapshot of a typical file system may require 15 percent
of the blocks of the snapped file system. Most file systems do not turn over 15
percent of data in a single day. These approximate percentages tend to be lower
for larger file systems and higher for smaller file systems. You can allocate blocks
to a snapshot based on characteristics such as file system usage and duration of
backups.

Warning: Any existing data on the device used for the snapshot is overwritten.

Administering snapshot file systems
Creating a snapshot file system

To create a snapshot file system

*

Mount the file system with the -0 snapof= option:

mount -t vxfs -o ro,snapof=/ \
snapped mount_point mnt, snapsize=snapshot size \

/dev/vx/dsk/diskgrp/volume snapshot_mount point

In the following examples, the vxdump utility is used to ascertain whether
/dev/rdsk/fsvol/voll is a snapshot mounted as /backup/home and does the
appropriate work to get the snapshot data through the mount point.

These are typical examples of making a backup of a 300,000 block file system
named /home using a snapshot file system on a Volume Manager volume with a
snapshot mount point of /backup/home.

Example of creating a backup using a snapshop file system

1

To back up files changed within the last week using cpio:

mount -t vxfs -o snapof=/home,snapsize=100000 \
/dev/vx/dsk/fsvol/voll /backup/home

cd /backup

find home -ctime -7 -depth -print | cpio -oc > /dev/stl
umount /backup/home

To do a level 3 backup of /dev/vx/rdsk/fsvol/voll and collect those files
that have changed in the current directory:

vxdump 3f - /dev/vx/rdsk/fsvol/voll | vxrestore -xf -

To do a full backup of /home, which exists on disk /dev/vx/rdsk/fsvol/voll,
and use dd to control blocking of output onto tape device using vxdump:

mount -t vxfs -o snapof=/home,snapsize=100000 \
/dev/vx/dsk/fsvol/voll /backup/home
vxdump £ - /dev/vx/rdsk/fsvol/voll | dd bs=128k > /dev/stl

464

Optimizing storage with
Storage Foundation

= Chapter 21. Understanding storage optimization solutions in Storage Foundation
= Chapter 22. Migrating data from thick storage to thin storage

= Chapter 23. Maintaining Thin Storage with Thin Reclamation

Understanding storage
optimization solutions in
Storage Foundation

This chapter includes the following topics:

= About thin provisioning

= About thin optimization solutions in Storage Foundation

= About SmartMove

= About the Thin Reclamation feature

= About reclaiming space on Solid State Devices (SSDs) with the TRIM operation
= Determining when to reclaim space on a thin reclamation LUN

» How automatic reclamation works

About thin provisioning

Thin provisioning is a storage array feature that optimizes storage use by allocating
and reclaiming the storage on demand. With thin provisioning, the array allocates
storage to applications only when the storage is needed, from a pool of free storage.
Thin provisioning solves the problem of under-utilization of available array capacity.
Administrators do not have to estimate how much storage an application requires.
Instead, thin provisioning lets administrators provision large thin or thin reclaim
capable LUNs to a host. When the application writes data, the physical storage is
allocated from the free pool on the array to the thin-provisioned LUNSs.

Understanding storage optimization solutions in Storage Foundation
About thin optimization solutions in Storage Foundation

The two types of thin provisioned LUNs are thin-capable or thin-reclaim capable.
Both types of LUNs provide the capability to allocate storage as needed from the
free pool. For example, storage is allocated when a file system creates or changes
a file. However, this storage is not released to the free pool when files get deleted.
Therefore, thin-provisioned LUNs can become 'thick' over time, as the file system
starts to include unused free space where the data was deleted. Thin-reclaim
capable LUNs address this problem with the ability to release the once-used storage
to the pool of free storage. This operation is called thin storage reclamation.

The thin-reclaim capable LUNs do not perform the reclamation automatically. The
server using the LUNs must initiate the reclamation. The administrator can initiate
a reclamation manually, or with a scheduled reclamation operation.

Storage Foundation provides several features to support thin provisioning and thin
reclamation, and to optimize storage use on thin provisioned arrays.

See “About SmartMove” on page 468.

About thin optimization solutions in Storage
Foundation

Array-based options like Thin Storage and Thin Provisioning help storage
administrators to meet the challenges in managing their storage. These challenges
include provisioning the storage, migrating data to maximize storage utilization, and
maintaining the optimum storage utilization. Several features of Storage Foundation
work together with the array functionality to solve these challenges.

Table 21-1 lists the Storage Foundation features and benefits relating to thin storage.

Table 21-1 Thin storage solutions in Storage Foundation
Feature Description Benefits
SmartMove The SmartMove feature Maximizes use of thin

moves or copies only blocks | storage.
in use by the Veritas File

See “About SmartMove”
System

on page 468.

Improves performance for
copy operations.

Enables migration from thick
LUNSs to thin provisioned
LUNs.

See “Migrating to thin
provisioning” on page 473.

467

Understanding storage optimization solutions in Storage Foundation
About SmartMove
Table 21-1 Thin storage solutions in Storage Foundation (continued)
Feature Description Benefits
Thin disk discovery Storage Foundation provides | Recognizes and displays thin
discovery for thin storage attributes for thin disks.
devices.
Thin Reclamation Thin reclamation commands | Improves storage utilization

enable you to reclaim space | and savings.
on a file system, disk, disk See “About the Thin
group, or enclosure level. Reclamation feature”

on page 469.

About SmartMove

Storage Foundation provides the SmartMove utility to optimize move and copy
operations. The SmartMove utility leverages the knowledge that Veritas File System
(VXFS) has of the Veritas Volume Manager (VxVM) storage. VxFS lets VxVM know
which blocks have data. When VxVM performs an operation that copies or moves
data, SmartMove enables the operation to only copy or move the blocks used by
the file system. This capability improves performance for synchronization, mirroring,
and copying operations because it reduces the number of blocks that are copied.
SmartMove only works with VxFS file systems that are mounted on VxVM volumes.
If a file system is not mounted, the utility has no visibility into the usage on the file
system.

SmartMove is not used for volumes that have instant snapshots.

The SmartMove operation also can be used to migrate data from thick storage to
thin-provisioned storage. Because SmartMove copies only blocks that are in use
by the file system, the migration process results in a thin-provisioned LUN.

SmartMove for thin provisioning

Storage Foundation uses the SmartMove feature for thin provisioning. SmartMove
enables you to migrate storage from thick storage to thin storage. SmartMove
provides the ability to maintain the intent of thin provisioning.

Without SmartMove, synchronization between disks copies the entire storage that
is allocated to Veritas File System (VxFS) and Veritas Volume Manager (VxVM).
Synchronizing or resynchronizing a volume, plex, or subdisk can lead to unused
space being allocated on the thin disk. Over time, normal operations cause the
storage to become thick. With SmartMove, the disk synchronization copies only
blocks that are actually in use at the file system level. This behavior prevents unused

468

Understanding storage optimization solutions in Storage Foundation | 469
About the Thin Reclamation feature

space from being allocated when a disk is synchronized or resynchronized. The
disks stay thin.

The SmartMove feature is enabled for all disks by default. To take advantage of
thin provisioning, SmartMove must be enabled at least for thin disks.

About the Thin Reclamation feature

Storage Foundation supports reclamation of the unused storage on thin-reclamation
capable arrays. Storage Foundation automatically discovers LUNs that support thin
reclamation.

A Veritas File System (VxFS) file system can be mounted on a Veritas Volume
Manager (VxVM) volume that is backed by a thin-capable array. The size of the
VxVM volume is a virtual size, that is backed by the free storage pool. When files
are created or changed, storage is physically allocated to the file system from the
array. If the files on the file system are deleted or shrunk in size, the space is freed
from the file system usage. However, the space is not removed from the physical
allocation. Over time, the physical space allocated to the file system is greater than
the actual space used by the file system. The thin LUN eventually becomes 'thick’,
as the physical space allocated nears the size of the LUN.

The Thin Reclamation feature provides the ability to release this unused space
back to the free pool. Storage Foundation uses the VxFS allocation tables to identify
unused blocks. VxVM maps this information about unused blocks down to the disk,
enabling VxVM to return those blocks to the free pool. If the VXFS file system is not
mounted, VxVM has no visibility into the file system usage. Therefore, it is critical
that the file system is mounted when you perform a reclamation. The operation of
reclamation can be done on a disk group, LUN, enclosure, or file system.

VxVM reclaims space automatically when you delete a volume or remove a plex.
The automatic reclamation is asynchronous, so that the space is not reclaimed at
the array level immediately. The disk is marked as pending reclamation. You cannot
remove a disk from VxVM until the reclamation completes. You can control the
timing and frequency of the automatic reclamation.

About reclaiming space on Solid State Devices
(SSDs) with the TRIM operation

File systems that create and remove files often reuse storage blocks by overwriting
a storage block with new contents. A Solid State Drive (SSD) device cannot overwrite
a block of storage without erasing it first. This behavior causes a performance cost
for writes to the previously used blocks, when compared to writes to unused or

erased blocks. To avoid this cost, the TRIM operation informs the SSD which blocks

Understanding storage optimization solutions in Storage Foundation | 470
Determining when to reclaim space on a thin reclamation LUN

of data are no longer in use and can be erased. The SSDs erase the unused blocks
before the blocks are required for reuse, which improves the performance of the
future write 1/0s to the SSD. The TRIM operation also reduces wear leveling and
fragmentation, because unused blocks are erased. The unused data does not get
moved during a garbage collection or a cleaning cycle.

SF provides the TRIM operation only for supported devices. For more information,
see the Veritas Hardware Compatibility List (HCL):

https://www.veritas.com/support/en_US/article.000107677

The SF components, Veritas File System (VxFS) and Veritas Volume Manager
(VxVM), use the TRIM operation to free up the blocks that do not contain valid data.
The TRIM capability is similar to thin reclamation, and is performed with the same
commands. The default SF reclamation commands perform TRIM for SSDs and
thin reclamation for Thin Reclaimable LUNSs. For file systems and volumes that use
both SSDs and Thin Reclaimable LUNs, you can choose whether SF performs only
a TRIM operation, only a thin reclamation, or both.

See “Reclaiming space on a disk, disk group, or enclosure” on page 486.
See “Reclaiming space on a file system” on page 484.

To display information about SSDs, use the vxdisk -o ssd 1ist command. SF

can also discover and display the disk space usage for Veritas File System (VxFS)
file systems on SSDs. The VxFS file systems must be mounted on Veritas Volume
Manager (VxVM) volumes. Use the vxdisk -o ssd -o fssize list command.

See the vxdisk(1M) manual page.

Determining when to reclaim space on a thin
reclamation LUN

When a thin LUN is used as a Veritas Volume Manager disk, the space is allocated
only on an application write. Storage space is allocated from the free pool when
files are created and written to in the file system. However, this storage is not
automatically released to the free pool when data is deleted from a file system. As
aresult, all thin LUNs have a tendency to become thicker over time, with increased
amounts of wasted storage (storage that is allocated but does not support application
data).

As a storage administrator, you need to determine when to trigger the thin
reclamation. The thin reclamation process can be time consuming, depending on
various factors such as the size and fragmentation of the file system. The decision
is a balance between how much space can be reclaimed, and how much time the
reclaim operation will take.

http://www.symantec.com/docs/TECH211575

Understanding storage optimization solutions in Storage Foundation
How automatic reclamation works

The following considerations may apply:

For a VxFS file system mounted on a VxVM volume, compare the file system
usage to the actual physical allocation size to determine if a reclamation is
desirable. If the file system usage is much smaller than the physical allocation
size, it indicates that a lot of space can potentially be reclaimed. You may want
to trigger a file system reclamation. If the file system usage is close to the
physical allocation size, it indicates that the physical allocation is being used
well. You may not want to trigger a reclamation.

See “Displaying VxFS file system usage on thin reclamation LUNs” on page 482.

The array may provide notification when the storage pool usage has reached a
certain threshold. You can evaluate whether you can reclaim space with Storage
Foundation to free more space in the storage pool.

Deleted volumes are reclaimed automatically. You can customize the schedule
for automatic reclamation.
See “Configuring automatic reclamation” on page 490.

How automatic reclamation works

On thin-reclamable arrays, storage that is no longer in use needs to be reclaimed
by the array. Storage Foundation automatically reclaims the space on the array for
certain admimistrative operations, as follows:

Deleting a volume.

Removing a mirror.

Shrinking a volume.
Removing a log.

Creating or growing a volume with the init=zero option.

The process of reclaiming storage on an array can be intense on the array. To avoid
any effect on regular I/O's to the array, Storage Foundation performs the reclaim
operation asynchronously. The disk is flagged as pending reclamation. The vxrelocd
(or recovery) daemon asynchronously reclaims the disks marked for reclamation
at a future time. By default, the vxrelocd daemon runs every day at 22:10 hours,
and reclaims storage on the deleted volumes or plexes that are one day old.

To display the disks that are pending reclamation, use the following command:

vxprint -z

You can configure the automatic reclamation to reclaim immediately, or to schedule
the asynchronous reclamation.

471

Understanding storage optimization solutions in Storage Foundation | 472
How automatic reclamation works

See “Configuring automatic reclamation” on page 490.

You can also trigger a reclamation manually for a disk, disk group or enclosure.
This operation also reclaims any disks flagged as pending reclamation.

See “Reclaiming space on a disk, disk group, or enclosure” on page 486.

Migrating data from thick
storage to thin storage

This chapter includes the following topics:
= About using SmartMove to migrate to Thin Storage

= Migrating to thin provisioning

About using SmartMove to migrate to Thin
Storage

If you have existing data on a thick LUN, the SmartMove feature enables you to
migrate the data to a thin LUN. The migration process copies only the blocks in use
by the Veritas File System (VxFS) to the thin LUN. The SmartMove feature leverages
the Veritas File System (VxFS) information about which blocks in a Veritas Volume
Manager (VxVM) volume contain data. Therefore, the migration functionality is
available only when a VxVM volume is on a mounted VxFS file system.

To migrate the data to the thin LUN, follow the recommended procedure.

See “Migrating to thin provisioning” on page 473.

Migrating to thin provisioning
The SmartMove™ feature enables migration from traditional LUNs to thinly
provisioned LUNs, removing unused space in the process.

Migrating data from thick storage to thin storage
Migrating to thin provisioning

To migrate to thin provisioning

1 Check if the SmartMove feature is enabled.

vxdefault list
KEYWORD CURRENT-VALUE DEFAULT-VALUE

usefssmartmove all all

If the output shows that the current value is none, configure SmartMove for all
disks or thin disks.

See “Configuring SmartMove ” on page 663.

2 Add the new, thin LUNSs to the existing disk group. Enter the following
commands:

vxdisksetup -i da name
vxdg -g datadg adddisk da name
where da_name is the disk access name in VxVM.

3 Toidentify LUNs with the thinonly or thinrclm attributes, enter:

vxdisk -o thin list

4 Add the new, thin LUNs as a new plex to the volume. On a thin LUN, when
you create a mirrored volume or add a mirror to an existing LUN, VxVM creates
a Data Change Object (DCO) by default. The DCO helps prevent the thin LUN
from becoming thick, by eliminating the need for full resynchronization of the
mirror.

NOTE: The VxFS file system must be mounted to get the benefits of the
SmartMove feature.

The following methods are available to add the LUNs:

= Use the default settings for the vxassist command:
vxassist -g datadg mirror datavol da name
= Specify the vxassist command options for faster completion. The -b option

copies blocks in the background. The following command improves /O
throughput:

vxassist -b -oiosize=1lm -t thinmig -g datadg mirror \

datavol da name

To view the status of the command, use the vxtask command:

474

vxtask list
TASKID PTID TYPE/STATE PCT PROGRESS
10.64% 0/20971520/2232320 PLXATT voll voll-02 xivdg smartmove
09.88% 0/20971520/2072576 PLXATT voll voll-03 xivdg smartmove
00.27% 0/20971520/57344 PLXATT voll voll-04 xivdg smartmove

211
212
219

ATCOPY/R
ATCOPY/R
ATCOPY/R

vxtask monitor 211

» Specify the vxassist command options to reduce the effect on system

Migrating data from thick storage to thin storage
Migrating to thin provisioning

PLXATT
PLXATT
PLXATT
PLXATT
PLXATT
PLXATT

voll
voll
voll
voll
voll
voll

voll-02 xivdg
voll-02 xivdg
voll-02 xivdg
voll-02 xivdg
voll-02 xivdg
voll-02 xivdg

smartmove
smartmove
smartmove
smartmove
smartmove

smartmove

performance. The following command takes longer to complete:

vxassist -oslow -g datadg mirror datavol da name

Optionally, test the performance of the new LUNs before removing the old

= Determine which plex corresponds to the thin LUNSs:

LENGTH
83886080
41943040

41943040
41943040
41943040
41943040

PLOFFS STATE

-OHOTUSE

ACTIVE
ACTIVE

ACTIVE

TASKID PTID TYPE/STATE PCT PROGRESS
211 ATCOPY/R 50.00% 0/20971520/10485760
211 ATCOPY/R 50.02% 0/20971520/10489856
211 ATCOPY/R 50.04% 0/20971520/10493952
211 ATCOPY/R 50.06% 0/20971520/10498048
211 ATCOPY/R 50.08% 0/20971520/10502144
211 ATCOPY/R 50.10% 0/20971520/10506240
5
LUNSs.
To test the performance, use the following steps:

vxprint -g datadg
TY NAME ASSOC KSTATE
dg datadg datadg -
dm THINARRAYO 02 THINARRAYO 02 -
dm STDARRAY1 01 STDARRAY1 01 -
v datavol fsgen ENABLED
pl datavol-01 datavol ENABLED
sd STDARRAY1 01-01 datavol-01 ENABLED
pl datavol-02 datavol ENABLED
sd THINARRAYO 02-01 datavol-02 ENABLED

41943040

475

TUTILO PUTILO

The example output indicates that the thin LUN corresponds to plex

datavol-02.

s Direct all reads to come from those LUNs:

vxvol -g datadg rdpol prefer datavol datavol-02

Migrating data from thick storage to thin storage | 476
Migrating to thin provisioning

Remove the original non-thin LUNSs.

Note: The ! character is a special character in some shells. This example
shows how to escape it in a bash shell.

vxassist -g datadg remove mirror datavol \!STDARRAY1l 01
vxdg -g datadg rmdisk STDARRAY1 01
vxdisk rm STDARRAY1l 01

Grow the file system and volume to use all of the larger thin LUN:

vxresize -g datadg -x datavol 40g da name

Maintaining Thin Storage
with Thin Reclamation

This chapter includes the following topics:

Reclamation of storage on thin reclamation arrays

Storage Foundation supports reclamation of the unused storage on thin-reclamation
capable arrays and LUNs. Storage Foundation can reclaim blocks in a Veritas File
System (VxFS) file system that is mounted on a Veritas Volume Manager (VxVM)

Reclamation of storage on thin reclamation arrays
Identifying thin and thin reclamation LUNs

Displaying VxFS file system usage on thin reclamation LUNs
Reclaiming space on a file system

Reclaiming space on a disk, disk group, or enclosure

About the reclamation log file

Monitoring Thin Reclamation using the vxtask command

Configuring automatic reclamation

volume.

The thin reclamation feature is supported only for LUNs that have the thinrcim
attribute. VxVM automatically discovers LUNs that support thin reclamation from
thin capable storage arrays. You can list devices that are known to have the thin

or thinrclm attributes on the host.

See “Identifying thin and thin reclamation LUNs ” on page 479.

Maintaining Thin Storage with Thin Reclamation | 478
Reclamation of storage on thin reclamation arrays

For a list of the storage arrays that support thin reclamation, see the Hardware
Compatibility List (HCL):

https://www.veritas.com/support/en_US/article.000107677
Thin reclamation is not supported for boot devices.
You can use the thin reclamation feature in the following ways:

» Space is reclaimed automatically when a volume is deleted. Because it is
asynchronous, you may not see the reclaimed space immediately.

» Perform the reclamation operation on a disk group, LUN, or enclosure using the
vxdisk command.

See “Reclaiming space on a disk, disk group, or enclosure” on page 486.

= Perform the reclamation operation on a Veritas File System (VxFS) file system
using the fsadm command.

See “Reclaiming space on a file system” on page 484.

About Thin Reclamation of a disk, a disk group, or an enclosure

Storage Foundation provides the ability to reclaim unused space on thin-provisioned
arrays, without needing to stop application 1/O. The Veritas File System (VxFS) file
system must be mounted.

You can trigger thin reclamation on one or more disks, disk groups, or enclosures.
The reclamation process scans the specified storage for the VxVM volumes that
have a mounted VxFS file system. Each volume is analyzed for any previously
allocated space that the VxFS file system no longer uses. The unused space is
released to the free storage pool on the thin array. The reclamation skips any
volumes that do not have a mounted VxFS file system. The reclamation process
also releases the space for any volumes or plexes that are marked as pending
reclamation.

By default, the reclamation command also performs the TRIM operation if the
specified storage is on Solid State Devices (SSDs).

See “About reclaiming space on Solid State Devices (SSDs) with the TRIM
operation” on page 469.

A full reclamation process also scans the specified storage for free space that is
outside of the VxVM volumes.

Thin reclamation does not reclaim space on a volume that is part of an instant
snapshot hierarchy.

Thin Reclamation takes a considerable amount of time when you reclaim thin storage
on a large number of LUNs or an enclosure or disk group. As with other long-running

https://www.veritas.com/support/en_US/article.000107677

Maintaining Thin Storage with Thin Reclamation | 479
Identifying thin and thin reclamation LUNs

operations, VxXVM creates a task for a reclaim operation. You can monitor the reclaim
operation with the vxtask command.

See “Monitoring Thin Reclamation using the vxtask command” on page 489.

About Thin Reclamation of a file system

Veritas File System (VxFS) supports reclamation of free storage on a Thin Storage
LUN. Free storage is reclaimed using the fsadm command. You can perform the
default reclamation or aggressive reclamation. If you used a file system for a long
time and must perform reclamation on the file system, Veritas recommends that
you run aggressive reclamation. Aggressive reclamation compacts the allocated
blocks, which creates larger free blocks that can potentially be reclaimed.

See the fsadm vxfs(1M) manual page.
Thin Reclamation is only supported on file systems mounted on a VxVM volume.
Thin Reclamation is not supported for file systems mounted on RAID5 volumes.

Veritas File System also supports reclamation of a portion of the file system using
the vxfs ts reclaim() API.

See the vxfs_ts_reclaim(3) manual page and the Veritas File System
Programmer's Reference Guide.

Note: Thin Reclamation is a slow process and may take several hours to complete,
depending on the file system size. Thin Reclamation is not guaranteed to reclaim
100% of the free space.

You can track the progress of the Thin Reclamation process by using the vxtask
1ist command when using the Veritas Volume Manager (VxVM) command vxdisk

reclaim.
See the vxtask(1M) and vxdisk(1M) manual pages.

You can administer Thin Reclamation using VxVM commands.

Identifying thin and thin reclamation LUNs

Using Dynamic Multi-Pathing (DMP), Storage Foundation automatically discovers
thin devices that have been recognized on the host as thin or thinrcim. DMP
uses the Veritas array support libraries (ASLs) to recognize vendor-specific thin
attributes and claim devices accordingly as thin or thinrclm.

Thin devices that are classified as thin are capable of thin provisioning. Veritas
Thin Reclamation only works on devices with the thinrcim attribute set. Before

Maintaining Thin Storage with Thin Reclamation
Identifying thin and thin reclamation LUNs

performing thin reclamation, determine whether the system recognizes the LUN as
a thinrclm LUN.

To identify devices on a host that are known to have the thin or thinrclm attributes,
use the vxdisk -o thin list command. The vxdisk -o thin list command
also reports on the size of the disk, and the physical space that is allocated on the
array.

To identify thin and thinrcim LUNs

¢ Toidentify all of the thin or thinrclm LUNSs that are locally known to a host,
use the following command:

vxdisk -o thin list

DEVICE SIZE(MB) PHYS ALLOC (MB) GROUP TYPE RECLAIM CMD
xiv0 6695 16384 30 dgl thinrclm WRITE SAME
xiv0 6696 16384 30 dgl thinrclm WRITE SAME
xiv0 6697 16384 30 dgl thinrclm WRITE SAME
xiv0 6698 16384 30 dgl thinrclm WRITE SAME
xiv0 6699 16384 30 dgl thinrclm WRITE SAME
3pardata0_5074 2048 2043 vvrdg thinrclm WRITE SAME
3pardata0_5075 2048 2043 vvrdg thinrclm WRITE SAME
3pardata0_5076 2048 1166 vvrdg thinrclm WRITE SAME
3pardata0O_5077 2048 2043 vvrdg thinrclm WRITE SAME
3pardata0O_5081 2048 1092 vvrdg thinrclm WRITE SAME

In the output, the SIZE column shows the size of the disk. The PHYS_ALLOC
column shows the physical allocation on the array side. The TYPE indicates
whether the array is thin or thinrclm. The RECLAIM_CMD column displays
which reclamation method that DMP uses.

See the vxdisk(1m) manual page.

Displaying detailed information about reclamation commands

Dynamic Multi-Pathing (DMP) supports several array-level reclamation commands:
UNMAP, WRITE_SAME, TRIM, and PTRIM. The Array Support Library (ASL) for
each array uses the most suitable reclamation method from those that are supported
for the array. DMP uses the preferred reclamation method that the vendor suggests
or selects a reclamation method based on performance analysis.

You cannot change the reclamation method that DMP uses. However, you can view
the information about the reclamation command that DMP has selected.

You can view information about other reclamation attributes that DMP uses to create
reclamation requests. The reclamation attributes are vendor-specific.

Maintaining Thin Storage with Thin Reclamation
Identifying thin and thin reclamation LUNs

To display information about the thin reclamation methods

*

To display detailed information about the thin reclamation methods for a device,

use the following command:

vxdisk -p list xiv0_6699

DISK
VID

UDID

TP PREF RCLMCMD
TP RECLM CMDS
TP ALLOC_UNIT
TP MAX REC SIZE
TP LUN SHIFT OF
SCSI_VERSION
SCSI3 VPD ID
REVISION

LUN_SIZE
NUM_PATHS
STATE

: xiv0_6699

IBM
IBM%5F2810XIVS5F0E95%5F1A2B

: write same

: write same, unmap

1048576

: 268435456

0

5
001738000E951A2B
10.2

33554432
4

: online

The following fields show the information about the reclamation attributes:

TP_PREF_RCLMCMD

TP_RECLM_CMDS

TP_ALLOC_UNIT

TP_MAX_REC_SIZE

TP_LUN_SHIFT_OF

The preferred reclaim method for this array.

The reclamation methods that the
underlying device supports.

The size in bytes of the allocation unit for
thin provisioning on the device.

The maximum size in bytes of the
reclamation I/O on the device.

The value in bytes by which the vendor
shifts the initial offset for the LUN. Set this
value to align the reclaim request to the
TP_ALLOC_UNIT.

481

Maintaining Thin Storage with Thin Reclamation | 482
Displaying VxFS file system usage on thin reclamation LUNs

Displaying VxFS file system usage on thin
reclamation LUNs

Storage Foundation can discover and display the disk space usage for Veritas File
System (VxFS) file systems on thin or thinrclm devices. The VxFS file systems
must be mounted on Veritas Volume Manager (VxVM) volumes. The usage

information can help you decide when to perform thin reclamation of a file system.

See “Determining when to reclaim space on a thin reclamation LUN” on page 470.

To report the per-LUN disk space usage for currently mounted VxFS file systems
on VxXVM volumes, use the vxdisk -o thin -o fssize list command. The
command displays the amount of disk space that currently contains files and is
actively in use by the VxFS file system. The usage does not include any space that
is allocated to the file system but was freed by deleting files. If more than one
mounted VxFS file system uses the device, the file system usage column displays
the consolidated space usage. The -o fssize option maps the file system space
usage to the underlying LUNs. The disk space usage statistics may differ slightly
from the usage reported by other utilities because of the base unit used for the
calculation.

The following limitations apply to the command to display file system usage:

» The -o fssize option does not display the space used by cache objects or
instant snapshots.

= RAIDS5 format is not supported.

= If the VxFS file system is not mounted, or if the device has both mounted and
unmounted VxFS file systems, no information is displayed. The file system
usage (FS_SIZE) column displays a dash (-).

You can display the size and usage for all thin or thinrclm LUNS, or specify an
enclosure name or a device name. If you specify one or more devices or enclosures,
the command displays only the space usage on the specified devices. If the specified
device is nota thin device or thinrclmdevice, the device is listed but the FS_SIZE
column displays a dash (-).

If a VXFS file system spans multiple devices, you must specify all of the devices to
display the entire file system usage. If you specify only some of the devices, the
file system usage is incomplete. The command ignores the file system usage on
any devices that are not specified.

Note: The command can potentially take a long time to complete depending on the
file system size, the level of fragmentation, and other factors. The command creates
a task that you can monitor with the vxtask command.

Maintaining Thin Storage with Thin Reclamation
Displaying VxFS file system usage on thin reclamation LUNs

The command output displays the following information.

DEVICE

SIZE

PHYS_ALLOC

FS_SIZE

GROUP

TYPE

RECLAIM_CMD

The name of the VxVM disk, in either Enclosure-based
naming (EBN) or OS-based naming (OSN).

The size of the disk; that is, the size that is presented to the
file system. This size represents the virtual size rather than
the actual physical space used on the device.

The physical allocation on the array side. This size represents
the physical space that is allocated as the application writes
to the file system. When the files are deleted or changed, the
physical space remains allocated until a reclamation is
performed. In this case, the physical size includes some
unused space.

The physical space Veritas File System (VxFS) file systems
are using. The VxFS file systems must be mounted on VxVM
volumes. The information is displayed only for thin
provisioning capable (thin) or thin reclamation capable
(thinrclm) LUNSs.

The disk group that contains the disk.

The type of thin devices — thin provisioning capable (thin) or
thin reclamation capable (thinrcim). The vxdisk -o thin
1ist command displays thick disks only if you explicitly
specify the disk name on the command line.

The reclamation method that DMP uses.

483

DEVICE SIZE

emcO_428a 16384.
emcO_428b 16384.
emcO_4287 16384.
emcO_4288 16384.
emcO_4289 16384.
xiv0_030f 16384.
xiv0_0307 16384.
xiv0_0308 16384.
xiv0_0309 16384.
xiv0_0310 16384.

Maintaining Thin Storage with Thin Reclamation

Reclaiming space on a file system

To display file system usage on all thin LUNs

¢ Todisplay the file system usage on all thin or thinrclm LUNs known locally

00m
00m
00m
00m
00m
00m
00m
00m
00m
00m

DEVICE SIZE (MB)

emcO_428a 16384
emc0_428b 16384
emc0_4287 16384
emc0_4288 16384
emc0_4289 16384

to the system, use the following command:

$ wvxdisk -o thin,fssize [-u unit] list

Where unit is a size unit for the display. For example:

$ vxdisk -o thin,fssize -u m list

PHYS ALLOC FS SIZE

6335.
3200.
6233.
1584.
2844.
2839.
666.
667.
3.
30.

00m
00m
00m
00m
00m
00m
00m
00m
00m
00m

610.
22.
617.

1417

1187.
1223.
146.
147.

00m
00m
00m
.00m
00m
00m
00m
00m

GROUP
mydg
mydg
mydg
mydg
mydg
xivdg
xivdg
xivdg

TYPE RECLAIM CMD

thinrclm
thinrclm
thinrclm
thinrclm
thinrclm
thinrclm
thinrclm
thinrclm
thinrclm

thinrclm

WRITE SAME
WRITE SAME
WRITE SAME
WRITE SAME
WRITE SAME
WRITE SAME
WRITE SAME
WRITE SAME
WRITE SAME
WRITE SAME

Or, to display the file system usage on a specific LUN or enclosure, use the
following form of the command:

S vxdisk -o thin,fssize list [-u unit] disk|enclosure

For example:

S vxdisk -o thin,fssize list emcO

PHYS ALLOC (MB)

6335
6335
6335
1584
2844

FS_SIZE (MB)

610
624
617
617
1187

GROUP TYPE
mydg thin
mydg thin
mydg thin
mydg thin
mydg thin

RECLAIM CMD
rclm WRITE SAME
rclm WRITE SAME
rclm WRITE SAME
rclm WRITE SAME
rclm WRITE SAME

Reclaiming space on a file system

Table 23-1 lists the £fsadm command options that administer thin reclamation.

484

Table 23-1

Maintaining Thin Storage with Thin Reclamation

Reclaiming space on a file system

fsadm options for administering thin reclamation

Option

Description

-0

aggressive | -A

Initiates Thin Storage aggressive reclamation.
Aggressive reclamation is not supported on
SSD devices.

analyse|analyze

Initiates the analyze reclaim option.

-0 auto Initiates the auto reclaim option.

-0 ssd Initiates the TRIM command on an underlying
SSD trim-capable device.

-o thin Initiates thin reclamation on the underlying

Thin Reclaim-capable device.

Performs multi-threaded Thin Storage
reclamation. By default, the £sadm command
performs single-threaded Thin Storage
reclamation. To use multi-threaded Thin
Storage Reclamation, the array must support
multiple concurrent reclaim operations.

Performs reclamation of free storage to the
Thin Storage LUN on a VxFS file system .

See the fsadm vxfs(1M) manual page.

To perform aggressive space reclamation

1

Ensure you mounted the VxFS file system.

See the mount(1M) manual page.

If you must mount the VxFS file system, see the mount_vx£s(1M) manual page.

Perform aggressive reclamation of free storage to the Thin Storage LUN on
the VxFS file system that is mounted at /mnt1:

/opt/VRTS/bin/fsadm -R -o aggressive /mntl

485

Maintaining Thin Storage with Thin Reclamation
Reclaiming space on a disk, disk group, or enclosure

To perform space reclamation
1 Ensure you mounted the VxFS file system.
See the mount(1M) manual page.
If you must mount the VxFS file system, see the mount vx£s(1M) manual page.

2 Perform space reclamation on the VxFS file system that is mounted at /mnt1:

/opt/VRTS/bin/fsadm -R /mntl

Reclaiming space on a disk, disk group, or

enclosure

Use the vxdisk reclaim command to trigger online Thin Reclamation on one or
more disks, disk groups, or enclosures. By default, the vxdisk reclaim command
performs Thin Reclamation on the disks where the VxVM volume is on a “mounted”
VxFS file system. The reclamation skips disks that do not have a VxFS file system
mounted. Thin reclamation is not supported for RAID-5 volumes, or for instant
snapshots.

Storage Foundation logs the statistics for reclamation events in the
/etc/vx/log/reclaim log file.

See “About the reclamation log file” on page 488.

By default, the commands below also perform TRIM reclamation if the specified
disks are supported Solid State Devices (SSDs).

Reclaiming space on a disk

& Use the following command to trigger reclamation:
vxdisk reclaim [disk...]

For example, to trigger reclamation on LUNs hitachi_usp0_065a and
hitachi_usp0_065b:

vxdisk reclaim hitachi_usp0_065a hitachi_usp0_065b

In the above example, suppose the hitachi_usp0_065a contains a VxVM volume
vol1 with a VxFS file system. If the VxFS file system is not mounted, the
command skips reclamation for hitachi_usp0_065a. The command scans
hitachi_usp0_065b, and reclaims any unused space.

486

Maintaining Thin Storage with Thin Reclamation | 487
Reclaiming space on a disk, disk group, or enclosure

Performing an aggressive space reclamation on a disk

*

Use the following command to trigger reclamation:

vxdisk -o full reclaim [disk...]

For example, to trigger reclamation on LUNSs hitachi_usp0_065a:
vxdisk -o full reclaim hitachi_usp0_065a

In the above example, suppose the hitachi_usp0_065a contains a VxVM volume
vol1 with a VxFS file system mounted. With the -o full option, the above
command scans hitachi_usp0_065a for unused space outside of the vol1, and
reclaims any unused space found. For example, if there is space between
subdisks, it is reclaimed.

Reclaiming space on an SSD disk

*

Use the following command to trigger TRIM operation:
vxdisk [-o ssd] reclaim [disk...]
For example, to trigger TRIM on fiodrive0_0 and fiodriveQ_1:

vxdisk reclaim fiodrive0 0 fiodriveO_1

Reclaiming space on a disk group

¢ Use the following command to trigger reclamation:

vxdisk [-o ssd | -o thin] reclaim diskgroup
For example, to trigger reclamation on the disk group oradg:
vxdisk reclaim oradg

If the disk group contains both SSDs and Thin Reclamation LUNs, you can
use the -o ssd option to perform only the TRIM operation. Use the -0 thin
option to perform only the thin reclamation.

Reclaiming space on an enclosure

¢ Use the following command to trigger reclamation:

vxdisk reclaim enclosure
For example, to trigger reclamation on the enclosure=EMC_CLARIiiONO:

vxdisk reclaim EMC_CLARiiONO

About the

Maintaining Thin Storage with Thin Reclamation
About the reclamation log file

You can turn off TRIM functionalty or thin reclamation for a specific device with the
following command:

vxdisk set reclaim=off disk

See the vxdisk(1M) manual page.

reclamation log file

Storage Foundation logs the statistics for reclamation events in the
/etc/vx/log/reclaim_log file. Table 23-2 describes the fields in the reclamation

log file.
For Veritas Volume Replicator (VVR), reclamation logging only happens for the
local node.
Table 23-2 The reclamation log file fields
LOG fields Description
START_TIME The start time of the reclamation task.
DURATION The time taken to complete the reclamation task.
DISKGROUP The disk group name associated with the subdisk. For TYPE=GAP, the
disk group value may be NULL value.
VOLUME The volume associated with the subdisk. If a volume is not associated
with the subdisk, the value is NULL.
DISK The disk associated with the subdisk.
SUBDISK The subdisk name for which the reclamation operation is performed.
OFFSET The starting offset of the subdisk.
LEN The total length of the subdisk.
PA_BEFORE The physical allocation before the reclamation task.
PA_AFTER The physical allocation after the reclamation task.
TYPE The type for the reclamation operation. The value is one of the following:

s GAP: reclaim the gap between the subdisks

» SD: reclaim the subdisk

s FULL: reclaim the full LUN on disk with no DG present
s VXFS: reclaim a mounted VxFS file system.

Maintaining Thin Storage with Thin Reclamation
Monitoring Thin Reclamation using the vxtask command

Table 23-2 The reclamation log file fields (continued)
LOG fields Description
STATUS Whether the reclamation operation succeeded or not.

In case of failure, the STATUS also displays the error code.

When an object such as a volume or plex is removed, the status is
logged as "Pending."

Monitoring Thin Reclamation using the vxtask
command

TASKID
1258
1259
1263
1258
1258
1263
1259

PTID TYPE/STATE

The thin reclamation can be an intensive operation that may be time consuming,
depending on the size of the disk and the amount of space to be reclaimed. As with
other long-running tasks, you can monitor the operation with the vxtask command.

To monitor thin reclamation

1 Initiate the thin reclamation as usual, for a disk, disk group, or enclosure.

vxdisk reclaim diskgroup| disk| enclosure

For example:

vxdisk reclaim dgl00

2 To monitor the reclamation status, run the following command in another

session

vxtask monitor

RECLAIM/R 17.28%
RECLAIM/R 25.98%
RECLAIM/R 25.21%
RECLAIM/R 25.49%
RECLAIM/R 27.51%
RECLAIM/R 25.23%
RECLAIM/R 26.00%

PCT

PROGRESS
65792/33447328/5834752 RECLAIM vol4 dglO00
0/20971520/5447680 RECLAIM vol2 dgl00
0/20971520/5287936 RECLAIM vol3 dgl00
0/20971520/3248128 RECLAIM vol4 dgl00
0/20971520/3252224 RECLAIM vol4 dgl00
0/20971520/5292032 RECLAIM vol3 dgl00

0/20971520/5451776 RECLAIM vol2 dgl00

489

Maintaining Thin Storage with Thin Reclamation
Configuring automatic reclamation

3 If you have multiple tasks, you can use the following command to display the

tasks
vxtask list
TASKID PTID TYPE/STATE PCT PROGRESS
1258 - RECLAIM/R 17.28% 65792/33447328/5834752 RECLAIM vol4 dgl00
1259 - RECLAIM/R 25.98% 0/20971520/5447680 RECLAIM vol2 dgl00
1263 - RECLAIM/R 25.21% 0/20971520/5287936 RECLAIM vol3 dgl00

4 Use the task id from the above output to monitor the task:

vxtask monitor 1258
TASKID PTID TYPE/STATE PCT PROGRESS
1258 - RECLAIM/R 17.28% 65792/33447328/5834752 RECLAIM vol4 dgl00
1258 - RECLAIM/R 32.99% 65792/33447328/11077632 RECLAIM vol4 dgl00
1258 - RECLAIM/R 45.55% 65792/33447328/15271936 RECLAIM vol4 dgl00
1258 - RECLAIM/R 50.00% 0/20971520/10485760 RECLAIM vol4 dgl00

The vxdisk reclaim command runs in another session while you run the
vxtask list command.

See the vxtask(1m) manual page.

Configuring automatic reclamation

The vxrelocd daemon tracks the disks that require reclamation. By default, the
vxrelocd daemon runs everyday at 22:10 hours and reclaims storage on the deleted
volumes that are one day old.

To control the schedule for reclamation, use the following tunable parameters:

490

reclaim on delete wait period

reclaim on delete start time

Maintaining Thin Storage with Thin Reclamation

Configuring automatic reclamation

Specifies the number of days after a volume
or plex is deleted when VxVM reclaims the
storage space. The value is an integer
between -1 and 367.

The default value is 1, which means the
space is reclaimed the next day.

A value of -1 indicates that the storage is
reclaimed immediately.

A value of 367 indicates that the storage
space is not reclaimed automatically. Storage
space can only be reclaimed manually using
the vxdisk reclaim command.

The time of day when VxVM starts the
reclamation for deleted volumes. The value
is any time of day in 24 hour format. (hh:mm)

The default time is 22:10.

Change the tunables using the vxdefault command. See the vxdefault(1m)

manual page.

491

Maximizing storage
utilization

= Chapter 24. Understanding storage tiering with SmartTier
= Chapter 25. Creating and administering volume sets

» Chapter 26. Multi-volume file systems

= Chapter 27. Administering SmartTier

= Chapter 28. Administering hot-relocation

» Chapter 29. Deduplicating data

= Chapter 30. Compressing files

Understanding storage
tiering with SmartTier

This chapter includes the following topics:
= About SmartTier
= How the SmartTier policy works with the shared extents

= SmartTier in a High Availability (HA) environment

About SmartTier

SmartTier matches data storage with data usage requirements. After data matching,
the data can then be relocated based upon data usage and other requirements
determined by the storage or database administrator (DBA).

As more and more data is retained over a period of time, eventually, some of that
data is needed less frequently. The data that is needed less frequently still requires
a large amount of disk space. SmartTier enables the database administrator to
manage data so that less frequently used data can be moved to slower, less
expensive disks. This also permits the frequently accessed data to be stored on
faster disks for quicker retrieval.

Tiered storage is the assignment of different types of data to different storage types
to improve performance and reduce costs. With SmartTier, storage classes are
used to designate which disks make up a particular tier. There are two common
ways of defining storage classes:

» Performance, or storage, cost class: The most-used class consists of fast,
expensive disks. When data is no longer needed on a regular basis, the data
can be moved to a different class that is made up of slower, less expensive
disks.

Understanding storage tiering with SmartTier
About SmartTier

= Resilience class: Each class consists of non-mirrored volumes, mirrored volumes,
and n-way mirrored volumes.
For example, a database is usually made up of data, an index, and logs. The
data could be set up with a three-way mirror because data is critical. The index
could be set up with a two-way mirror because the index is important, but can
be recreated. The redo and archive logs are not required on a daily basis but
are vital to database recovery and should also be mirrored.

SmartTier is a VXFS feature that enables you to allocate file storage space from
different storage tiers according to rules you create. SmartTier provides a more
flexible alternative compared to current approaches for tiered storage. Static storage
tiering involves a manual one- time assignment of application files to a storage
class, which is inflexible over a long term. Hierarchical Storage Management
solutions typically require files to be migrated back into a file system name space
before an application access request can be fulfilled, leading to latency and run-time
overhead. In contrast, SmartTier allows organizations to:

= Optimize storage assets by dynamically moving a file to its optimal storage tier
as the value of the file changes over time

= Automate the movement of data between storage tiers without changing the
way users or applications access the files

= Migrate data automatically based on policies set up by administrators, eliminating
operational requirements for tiered storage and downtime commonly associated
with data movement

Note: SmartTier is the expanded and renamed feature previously known as Dynamic
Storage Tiering (DST).

SmartTier policies control initial file location and the circumstances under which
existing files are relocated. These policies cause the files to which they apply to be
created and extended on specific subsets of a file systems's volume set, known as
placement classes. The files are relocated to volumes in other placement classes
when they meet specified naming, timing, access rate, and storage capacity-related
conditions.

In addition to preset policies, you can manually move files to faster or slower storage
with SmartTier, when necessary. You can also run reports that list active policies,
display file activity, display volume usage, or show file statistics.

SmartTier leverages two key technologies included with Storage Foundation: support
for multi-volume file systems and automatic policy-based placement of files within
the storage managed by a file system. A multi-volume file system occupies two or
more virtual storage volumes and thereby enables a single file system to span
across multiple, possibly heterogeneous, physical storage devices. For example

494

Understanding storage tiering with SmartTier | 495
About SmartTier

the first volume could reside on EMC Symmetrix DMX spindles, and the second
volume could reside on EMC CLARIiON spindles. By presenting a single name
space, multi-volumes are transparent to users and applications. This multi-volume
file system remains aware of each volume’s identity, making it possible to control
the locations at which individual files are stored. When combined with the automatic
policy-based placement of files, the multi-volume file system provides an ideal
storage tiering facility, which moves data automatically without any downtime
requirements for applications and users alike.

In a database environment, the access age rule can be applied to some files.
However, some data files, for instance are updated every time they are accessed
and hence access age rules cannot be used. SmartTier provides mechanisms to
relocate portions of files as well as entire files to a secondary tier.

To use SmartTier, your storage must be managed using the following features:
= VXFS multi-volume file system

» VXVM volume set

= Volume tags

= SmartTier management at the file level

= SmartTier management at the sub-file level

About VxFS multi-volume file systems

Multi-volume file systems are file systems that occupy two or more virtual volumes.
The collection of volumes is known as a volume set, and is made up of disks or
disk array LUNs belonging to a single Veritas Volume Manager (VxVM) disk group.
A multi-volume file system presents a single name space, making the existence of
multiple volumes transparent to users and applications. Each volume retains a
separate identity for administrative purposes, making it possible to control the
locations to which individual files are directed.

See “About multi-volume file systems” on page 507.
This feature is available only on file systems meeting the following requirements:

= The minimum disk group version is 140.
See “Disk group versions” on page 666.

= The minimum file system layout version is 7 for file level SmartTier.
= The minimum file system layout version is 8 for sub-file level SmartTier.

To convert your existing VxFS system to a VxFS multi-volume file system, you must
convert a single volume to a volume set.

Understanding storage tiering with SmartTier | 496
About SmartTier

See “Converting a single volume file system to a multi-volume file system”
on page 511.

The VxFS volume administration utility (fsvoladm utility) can be used to administer
VxFS volumes. The fsvoladm utility performs administrative tasks, such as adding,
removing, resizing, encapsulating volumes, and setting, clearing, or querying flags
on volumes in a specified Veritas File System.

See the fsvoladm (1M) manual page for additional information about using this
utility.

About VxVM volume sets

Volume sets allow several volumes to be represented by a single logical object.
Volume sets cannot be empty. All I/O from and to the underlying volumes is directed
via the I/O interfaces of the volume set. The volume set feature supports the
multi-volume enhancement to Veritas File System (VxFS). This feature allows file
systems to make best use of the different performance and availability characteristics
of the underlying volumes. For example, file system metadata could be stored on
volumes with higher redundancy, and user data on volumes with better performance.

About volume tags

You make a VxVM volume part of a placement class by associating a volume tag
with it. For file placement purposes, VxFS treats all of the volumes in a placement
class as equivalent, and balances space allocation across them. A volume may
have more than one tag associated with it. If a volume has multiple tags, the volume
belongs to multiple placement classes and is subject to allocation and relocation
policies that relate to any of the placement classes.

Warning: Multiple tagging should be used carefully.

A placement class is a SmartTier attribute of a given volume in a volume set of a
multi-volume file system. This attribute is a character string, and is known as a
volume tag.

SmartTier file management

SmartTier enables administrators of multi-volume VxFS file systems to manage the
placement of files on individual volumes in a volume set by defining placement
policies that control both initial file location and the circumstances under which
existing files are relocated. These placement policies cause the files to which they
apply to be created and extended on specific subsets of a file system's volume set,

Understanding storage tiering with SmartTier | 497
How the SmartTier policy works with the shared extents

known as placement classes. The files are relocated to volumes in other placement
classes when they meet the specified naming, timing, access rate, and storage
capacity-related conditions.

File-based movement:

= The administrator can create a file allocation policy based on filename extension
before new files are created, which will create the datafiles on the appropriate
tier during database creation.

= The administrator can also create a file relocation policy for database files or
any types of files, which would relocate files based on how frequently a file is
used.

SmartTier sub-file object management

SmartTier enables administrators of multi-volume VxFS file systems to manage the
placement of file objects as well as entire files on individual volumes.

Using sub-file based movement you can:

= Move a set of ranges of a specified set of files of a specified set of mounts to a
desired set of tiers on command.

= Move segments of files using automation to:
= Monitor a set of files for collecting 1/O statistics
= Periodically collect and persist the statistics, cluster-wide if applicable

= Periodically enforce the ranges of the registered sets of files based on their
relative frequency of access to a desired set of tiers

= Track the historical movements of those ranges

How the SmartTier policy works with the shared

extents

The SmartTier enforcement operation ignores moving the shared extents. For
example, consider a file A that contains some shared and private extents that belong
to device 1. If the user sets a policy that states that all the extents of the file A must
be allocated to device 2, the SmartTier enforcement operation moves all the
non-shared extents from device 1 to device 2. However, the SmartTier enforcement
operation ignores moving the shared extents. As a result, the file A still contains
shared extents that belong to device 1. This occurs even after the successful
execution of the SmartTier enforcement operation.

Understanding storage tiering with SmartTier | 498
SmartTier in a High Availability (HA) environment

On the other hand, any subsequent new allocation on behalf of the file A adheres
to the preset SmartTier policy. Since the copy-on-write or unshare operation requires
a new allocation, the SmartTier enforcement operation complies with the preset
policy. If a write operation on the file A writes to shared extents, new allocations as
part of copy-on-write operation is done from device 2. This behaviour adheres to
the preset SmartTier policy.

SmartTier in a High Availability (HA) environment

Cluster Server does not provide a bundled agent for volume sets. If issues arise
with volumes or volume sets, the issues can only be detected at the DiskGroup and
Mount resource levels.

The DiskGroup agent brings online, takes offline, and monitors a Veritas Volume
Manager (VxVM) disk group. This agent uses VxVM commands. When the value
of the StartVolumes and StopVolumes attributes are both 1, the DiskGroup agent
onlines and offlines the volumes during the import and deport operations of the disk
group. When using volume sets, set StartVolumes and StopVolumes attributes of
the DiskGroup resource that contains the volume are set to 1. If a file system is
created on t