

Test report

PRJ0029749-7TRFEMC SABS UIN 003803

Date of issue: May 7, 2023

Applicant: Network Engines, Inc.

Product:

Veritas Server System

Model:

VER5000CYP (Veritas Server), DCS0010 (Western Digital Data Storage Enclosure)

Specifications:

SANS 2332:2017 / CISPR 32:2015

Electromagnetic compatibility of multimedia equipment - Emission requirements

SANS 2335:2018/CISPR 35:2016

Electromagnetic compatibility of multimedia equipment — Immunity requirements

SANS 61000-3-2 2009 (Ed. 3.02)

Electromagnetic compatibility (EMC) Part 3-2: Limits - Limits for harmonic current emissions (equipment input current <= 16 A per phase)

SANS 61000-3-3 2009 (Ed. 2.00)

Electromagnetic compatibility (EMC) Part 3-3: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current <= 16 A per phase and not subject to conditional connection

Nemko USA Inc., a testing laboratory, is accredited by ANAB. The tests included in this report are within the scope of this accreditation.

Lab and test locations

Company name	Nemko USA, Inc.
Address	2210 Faraday Ave, Suite 150
City	Carlsbad
State	California
Postal code	92008
Country	USA
Telephone	+1 760 444 3500

Tested by	Greg Woelke, EMC Test Engineer
Reviewed by	James Cunningham, EMC/MIL/WL Supervisor
Review date	May 7, 2023
Reviewer signature	281

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko USA's ISO/IEC 17025 accreditation.

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Copyright notification

Nemko USA Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko USA Inc.

Page 2 of 69

Table of Contents

Table of	Contents	3
Section 1	Report summary	4
1.1	Test specifications	4
1.2	Exclusions	4
1.3	Statement of compliance	4
1.4	Test report revision history	4
Section 2	2 Summary of test results	5
2.1	Radiated emissions	5
2.2	Conducted emissions	5
2.3	Immunity Test Results	7
Section 3	B Equipment under test (EUT) details	9
3.1	Applicant	9
3.2	Manufacturer	9
3.3	Sample information	9
3.4	EUT information	9
3.5	EUT exercise and monitoring details	9
3.6	EUT setup details	10
Section 4	Engineering considerations	12
4.1	Modifications incorporated in the EUT	12
4.2	Technical judgment	12
4.3	Deviations from laboratory tests procedures	12
Section 5	Test conditions	13
5.1	Atmospheric conditions	13
5.2	Power supply range	13
Section 6	6 Measurement uncertainty	14
6.1	Uncertainty of measurement	14
Section 7	7 Terms and definitions	15
7.1	Equipment classification	15
7.2	Performance terms and definitions	15
7.3	General definitions	16
Section 8	B Emissions Testing data	19
8.1	Radiated emissions	19
8.2	Conducted emissions – from AC mains power ports	25
8.3	Conducted emissions – Asymmetric mode	31
8.4	Harmonic current emissions	35
8.5	Voltage fluctuations and flicker	43
Section 9) Immunity Testing data	47
9.1	Radio-frequency electromagnetic field amplitude modulated	47
9.2	Radio-frequency continuous conducted	50
9.3	Electrostatic discharge	53
9.4	Surge	57
9.5	Fast transients	59
9.6	Voltage dips and voltage interruptions	62
9.7	Power-frequency magnetic field	64
Section 1	LO EUT photos	66
10.1	External photos	66

Page 3 of 69

Section 1 Report summary

1.1 Test specifications

SANS 2332:2017 / CISPR 32:2015	Electromagnetic compatibility of multimedia equipment – Emission requirements
SANS 2335:2018/CISPR 35:2016	Electromagnetic compatibility of multimedia equipment — Immunity requirements
SANS 61000-3-2 2009 (Ed. 3.02)	Electromagnetic compatibility (EMC) Part 3-2: Limits - Limits for harmonic current emissions (equipment input current <= 16 A per phase)
SANS 61000-3-3 2009 (Ed. 2.00)	Electromagnetic compatibility (EMC) Part 3-3: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current <= 16 A per phase and not subject to conditional connection

1.2 Exclusions

None

1.3 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.2 above. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.4 Test report revision history

Table 1.4-1: Test report revision history

Rev	ision #	Details of changes made to test report
PRJ00297	49-7TRFEMC	Original report issued
Notes:	None	

Section 2 Summary of test results

Radiated emissions 2.1

Table	Frequency range	Measurement		Class A limits dB(µV/m)	Verdict
clause	[MHz]	Distance [m]	Detector type/ bandwidth	OATS/SAC (See table A.1 ¹)	verdict
AD 1	30 – 230	10	Quasi Dook /120 kl la	40	Daga
A2.1	230 - 1000	10	Quasi Peak/120 kHz	47	Pass
42.2	30 – 230	C	Quasi Dook /120 kt la	50	Not applicable
A2.2	230 - 1000	3	Quasi Peak/120 kHz	57	Not applicable

Table 2.1-1: Requirements for radiated emissions at the frequencies up to 1 GHz for Class A equipment

Notes: SAC – Semi Anechoic Chamber

¹ With reference to SANS 2332:2017 / CISPR 32:2015.

Table 2.1-2: Requirements for radiated emissions at the frequencies above 1 GHz for Class A equipment

Table	Frequency range		Measurement	Class A limits dB(µV/m)	Verdict
clause	[MHz]	Distance [m]	Detector type/ bandwidth	FSOATS (See table A.1 ¹)	verdict
A3.1	1000 - 3000	2		56	Pass
A3.1	3000 - 6000	3	3 CAverage/1 MHz	60	PdSS
42.2	1000 - 3000			76	Dana
A3.2	3000 - 6000	3	Peak/1 MHz	80	Pass
Notes:	SAC – Semi Anechoic Cham	ber			

¹ With reference to SANS 2332:2017 / CISPR 32:2015.

Conducted emissions 2.2

Table 2.2-1: Requirements	for conducted emissions	from the AC mains n	nower ports of	f Class A equipment
	joi conducted chillissions	ji oni the ne mans p		ciuss i cquipinent

Table clause	Frequency range [MHz]	Coupling device (See table A.7 ¹)	Detector type/ bandwidth	Class A limits dB(µV/m)	Verdict
A8.1	0.15 – 0.5	AMN	Quasi Peak/9 kHz	79	Pass
7.0.1	0.5 – 30			73	1 000
A8.2	0.15 - 0.5	AMN	CAverage/9 kHz	66	Pass
A8.2	0.5 – 30	Alvin	CAVE age/ 9 KHZ	60	F 855

 $^{\rm 1}$ With reference to SANS 2332:2017 / CISPR 32:2015. Notes:

Table clause	Frequency range [MHz]	Coupling device (See table A.7 ¹)	Detector type/ bandwidth	Class B limits dB(µV/m)		Verdict
	0.15 – 0.5 0.5 – 30	AAN	Quasi Peak/9 kHz	84 – 74 74	n/a	_
A11.1	0.15 – 0.5 5 – 30	AAN	CAverage/9 kHz	74 – 64 64	n/a	Pass
	0.15 – 0.5 0.5 – 30	CVP and current probe	Quasi Peak/9 kHz	84 – 74 74	40 – 30 30	Dest
A11.2 (0.15 – 0.5 5 – 30	CVP and current probe	CAverage/9 kHz	74 – 64 64	30 – 20 20	Pass
	0.15 – 0.5 0.5 – 30	Current probe	Quasi Peak/9 kHz	n/a	40 – 30 30	_
A11.3	0.15 – 0.5 5 – 30	Current probe	CAverage/9 kHz	n/a	30 – 20 20	Pass

Table 2.2-2: Requirements for asymmetric mode conducted emissions from class A equipment

Notes: - The choice of coupling device and measurement procedure is defined in Annex C¹.

- Screened ports including TV broadcast receiver tuner ports are tested with a common-mode impedance of 150 Ω This is typically accomplished with the screen terminated by 150 Ω to earth;

AC Mains ports that also have the function of a wired network port shall meet the limits given in Table A.9¹

- The application of the voltage and/or current limits is dependent on the measurement procedure used. Refer to Table C.1¹ for applicability.

Testing is required at only one EUT supply voltage and frequency.

Applicable to ports listed above and intended to connect to cables longer than 3 m.

Class B equipment (See definition in 7.1.1¹).

- Applicable to: wired network ports, optical fiber ports with metallic shield or tension members, broadcast receiver tuner ports and antenna ports.

 $^{\rm 1}$ With reference to SANS 2332:2017 / CISPR 32:2015.

Table 2.2-3: SANS 61000-3-2 2009 (Ed. 3.02) results

Test description	Verdict
Harmonic current emissions	Pass

Notes: Harmonic classification A

Table 2.2-4: SANS 61000-3-3 2009 (Ed. 2.00) results

Test description	Verdict
Voltage fluctuations and flicker	Pass
Natasi Nana	

Notes: None

2.3 Immunity Test Results

Environmental phenomenon	Test specification	Units	Performance criteria	Basic standard	Verdict
Power-frequency magnetic field ¹	50	Hz	A ²	SANS 61000-4-8	Dava
	1	A/m _{rms}	A-	SANS 01000-4-8	Pass
Continuous RF electromagnetic	80-1000	N411-			
field disturbances, swept test	80-1000	MHz	_		_
Continuous RF electromagnetic	3	V/m _{RMS} (unmodulated)	Α	SANS 61000-4-3	Pass
field disturbances, spot test	80	% AM (1 kHz)			
Electrostatic discharge (ESD)	4 (Contact discharge)	kV (charge voltage)	D	SANS 61000 4 3	Daca
	8 (Air discharge)	kV (charge voltage)	В	SANS 61000-4-2	Pass

Notes: ¹Applicable only to EUT containing devices susceptible to magnetic fields, such as CRT monitors, Hall elements, electrodynamic microphones, magnetic field sensors, etc.

Environmental phenomenon	Test specification	Units	Performance criteria	Basic standard	Verdict
Padia fraguancy continuous	0.15-80	MHz			
Radio-frequency continuous conducted ^{1 and 3}	3	V _{RMS} (unmodulated)	А	SANS 61000-4-6	Pass
	80	% AM (1 kHz)			
Surge (line to ground) ^{2, 4, 5, and 7}	1 or 4	kV (peak)	C	SANS 61000 4 F	Dass
	10/700	Tr/Th μs	L	SANS 61000-4-5	Pass
Fast transients ^{3, 5, and 6}	0.5	kV (peak)			
	5/50	Tr/Th ns	В	SANS 61000-4-4	Pass
	5	kHz (repetition rate)			

Notes: ¹The frequency range is scanned as specified. However, when specified in Annex A (SANS 2335:2018/CISPR 35:2016), an additional comprehensive functional test shall be carried out at a limited number of frequencies. The selected frequencies for conducted tests are: 0.2, 1, 7.1, 13.56, 21, 27.12 and 40.68 MHz (±1 %).

² Applicable only to ports which according to the manufacturer's specification may connect directly to outdoor cables.

³ Applicable only to cables which according to the manufacturer's specification supports communication on cable lengths greater than 3 m.

⁴ For ports where primary protection is intended, surges are applied at voltages up to 4 kV with the primary protectors fitted. Otherwise the 1 kV test level is applied without primary protection in place.

⁵ Test applied to all lines simultaneously to earth (ground).

⁶ For xDSL equipment, the repetition frequency for EFT testing shall be 100 kHz (See SANS 2335:2018/CISPR 35:2016Annex H).

⁷ Where the coupling network for the 10/700 μs waveform affects the functioning of high speed data ports, the test shall be carried out using a 1,2/50 (8/20) μs waveform and appropriate coupling network.

2.3 Immunity Test Results, continued

Table 2.3-3: Immunity, input AC power ports (including equipment marketed with a separate a.c./d.c power converter)

Environmental phenomenon	Test specification	Units	Performance criteria	Basic standard	Verdict
Radio-frequency continuous conducted ¹	0.15-80	MHz			
	3	V _{RMS} (unmodulated)	А	SANS 61000-4-6	Pass
	80	% AM (1 kHz)			
Voltage dip ²	100	% reduction	В		Pass
	0.5	period	D	SANS 61000-4-11	PdSS
	30	% reduction	С	SANS 01000-4-11	Pass
	25	periods	C		1 8 3 3
Voltage interruptions ²	100	% reduction	С	SANS 61000-4-11	Pass
	250	periods	C	SANS 01000-4-11	r d55
	1.2/50 (8/20)	Tr/Th μs		SANS 61000-4-5	Pass
Surge ³	1 (line to line)	kV (peak)	В		
	2 (line to ground)	kV (peak)			
Fast transients	1	kV (peak)			
	5/50	Tr/Th ns	В	SANS 61000-4-4	Pass
	5	kHz (repetition rate)			

Notes: ¹ The frequency range is scanned as specified. However, when specified in Annex A (SANS 2335:2018/CISPR 35:2016), an additional comprehensive functional test shall be carried out at a limited number of frequencies. The selected frequencies for conducted test are: 0.2, 1, 7.1, 13.56, 21, 27.12 and 40.68 MHz (±1 %).

² Changes to occur at 0 degree crossover point of the voltage waveform.

³ When the manufacturer specifies protection measures and it is impractical to simulate these measures during the tests, then the applied test levels shall be reduced to 0.5 kV (line to line) and 1 kV (line to earth (ground)).

Section 3 Equipment under test (EUT) details

3.1 Applicant

Company name	Network Engines, Inc.
Address	25 Dan Road
City	Carton
Province/State	MA.
Postal/Zip code	02021-2817
Country	USA

3.2 Manufacturer

Company name	NEI – Integration Services
Address	Parkmore Business Park
City	Galway
Country	Ireland

3.3 Sample information

Receipt date	March 20, 2023
Nemko sample ID number	Nemko PRJ0029749-7 SABS UIN 003802
Test start date	March 21st, 2023
Test end date	April 13th, 2023

3.4 EUT information

Product name	Veritas Server System
Model	VER5000CYP (Veritas Server), DCS0010 (Western Digital Data Storage Enclosure)
Variant(s)	N/A
Serial number	NNG05225210065, USALP00523QB001
Part number	SYS-CPR-00547, A214-000015-000
Power requirements	100-127 200-240, 10-12a, 50/60Hz
Description/theory of operation	The EUT is a server system that includes a JBOD.
Operational frequencies	Not provided
Software details	Rocky Linux 8.7

3.5 EUT exercise and monitoring details

The EUT was exercised by running BurnIn software with Rocky Linux 8.7 OS. If the EUT were to lose communications or change state this may be considered a failure.

3.6 EUT setup details

	1	Table 3.6-1: EUT sub	assemblies			
Description	Brand name		Model/Part nu	mber	Serial number	Rev.
Power Supply X2 (VER5000CYP)	Intel		PSSF132202A re	ev 05A	CNS1322A4LN5H0503	N/A
Disc Drive x 3 (VER5000CYP)	Micron		MTFDKCB1T9T	DZ	2214388206D1	N/A
Power Supply (DCS0010)	Shenzhen Gospell Digital	Fechnology Co. LTD	G1358-2000WN	IEE	1358202NEE221000096	5 N/A
Disc Drive x24 (DCS0010)	Western Digital		WUS4BA138DS	P3X1	A083E047	N/A
	7	Table 3.6-2: EUT inter	face ports			
Description						Qty.
100G NIC (QSFP28G) (VER5000CY	P)					4
Flex 5365 Broadcom NIC (VER500	OCYP)					8
QL2772 HBA1 (VER5000CYP)						2 pair
Ethernet (VER5000CYP)						4
AIC (DCS0010)						4
Ethernet MGMT (DCS0010)						2
USB						5
VGA						1
		Table 3.6-3: Support				
Description	Brand name		art number	Serial n	umber	Rev.
Keyboard	Logitech	Y-U0009		LZ0233	3	N/A
Mouse	MicroSoft	COM300)	N/A		N/A
Monitor	Dell	E2013Hc		CN-OXk	FTR-64180-346-24VS	N/A
Router/Switch	Netgear	XSM4316	5	4G3N29	97AD109	N/A
	Та	ble 3.6-4: Inter-conn	ection cables			
Cable description		From		То		Length (m)
Ethernet		VER5000CYP		Switch		3
Ethernet MGMT		DCS0010		Switch		3
100G NIC (QSFP28G)		VER5000CYP		DCS0010		2.5
Flex 5365 Broadcom NIC		VER5000CYP		VER5000CYP		0.5
QL2772 HBA1		VER5000CYP		VER5000CYP		0.5
USB		VER5000CYP		Keyboard		1.5
USB		VER5000CYP		Mouse		1.5
USB		VER5000CYP		Unterminate	d	2
VGA				Monitor		1.5

Figure 3.6-1: Test setup diagram

Section 4 Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5 Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20-75 %
Air pressure	86–106 kPa

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6 Measurement uncertainty

6.1 Uncertainty of measurement

Nemko USA Inc. has calculated measurement uncertainty and is documented in EMC/MUC/001 "Uncertainty in EMC measurements." Measurement uncertainty was calculated using the methods described in CISPR 16-4 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC measurements; as well as described in UKAS LAB34: The expression of Uncertainty in EMC Testing. Measurement uncertainty calculations assume a coverage factor of K=2 with 95% certainty.

Measurement		U _{cispr} dB	U _{lab} dB
Conducted disturbance at AC mains and other port power using a V-AMN	9 kHz to 150 kHz	3.8	2.9
	150 kHz to 30 MHz	3.4	2.3
Conducted disturbance at telecommunication port using AAN	150 kHz to 30 MHz	5.0	4.3
Conducted disturbance at telecommunication port using CVP	150 kHz to 30 MHz	3.9	2.9
Conducted disturbance at telecommunication port using CP	150 kHz to 30 MHz	2.9	1.4
Conducted disturbance at telecommunication port using CP and CVP	150 kHz to 30 MHz	4.0	3.1
Radiated disturbance (electric field strength in a SAC)	30 MHz to 1 GHz	6.3	5.5
Radiated disturbance (electric field strength in a FAR)	1 GHz to 6 GHz	5.2	4.7
Radiated disturbance (electric field strength in a FAR)	6 GHz to 18 GHz	5.5	5.0

Notes: Compliance assessment:

If U_{lab} is less than or equal to U_{cispr} then:

- compliance is deemed to occur is no measured disturbance level exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit
- If U_{lab} is greater than U_{cispr} then:
 - compliance is deemed to occur is no measured disturbance level, increased by (U_{lab} U_{cispr}), exceeds the disturbance limit;
 - non-compliance is deemed to occur if any measured disturbance level, increased by (Ulab Ucispr), exceeds the disturbance limit
- V-AMN: V type artificial mains network
- AAN: Asymmetric artificial network
- CP: Current probe
- CVP: Capacitive voltage probe
- SAC: Semi-anechoic chamber
- FAR: Fully anechoic room

Section 7 Terms and definitions

7.1 Equipment classification

Equipment classification	Equipment intended primarily for use in a residential environment shall meet the Class B limits. All other equipment shall comply with the Class A limits.
	Broadcast receiver equipment is Class B equipment.
	The user documentation and/or manual shall contain details of any special measures required to be taken by the purchaser or user to ensure EMC compliance of the EUT with the requirements of this publication (SANS 2332). One example would be the need to use shielded or special cables.
	Class A equipment shall have the following warning in the instructions for use, to inform the user of the risk of operating this equipment in a residential environment:
	Warning: This equipment is compliant with Class A of SANS 2332:2017 / CISPR 32:2015. In a residential environment this equipment may cause radio interference.

7.2 Performance terms and definitions

General performance criteria, Reference Clause 7.1 of SANS 224: 2010	The manufacturer has the obligation to express the performance criteria in terms which relate to the performance of his specific product when used as intended. The following performance criteria are applicable, and shall only be evaluated when the functions referred to are implemented. Examples of functions defined by the manufacturer to be evaluated during testing include, but are not limited to, the following: - Essential operational modes and states; - Tests of all peripheral access (hard disks, floppy disks, printers, keyboard, mouse, etc.); - Quality of software execution; - Quality of software execution; - Quality of speech transmission.	
Performance criterion A, Reference Clause 7.2 of SANS 224: 2010	During and after the test the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a minimum performance level specified by the manufacturer when the EUT is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the EUT if used as intended.	
Performance criterion B, Reference Clause 7.3 of SANS 224: 2010	 After the test, the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the EUT is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test. If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the EUT if used as intended. 	
Performance criterion C, Reference Clause 7.4 of SANS 224: 2010	During and after testing, a temporary loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls or cycling of the power to the EUT by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.	

Report reference ID: PRJ0029749-7TRFEMC SABS UIN 003803

Page 15 of 69

7.3 General definitions

7.3.1 Equipment type

Multimedia Equipment (MME)	Equipment that is information technology equipment, audio equipment, video equipment, broadcast receiver equipment, entertainment lighting control equipment or combinations of these.
Information technology equipment [ITE]	Equipment having a primary function of either (or a combination of) entry, storage, display, retrieval, transmission, processing, switching, or control of data and/or telecommunication messages and which may be equipped with one or more ports typically for information transfer.
	 Examples include data processing equipment, office machines, electronic business equipment and telecommunication equipment.
Audio equipment	Equipment which has a primary function of either (or a combination of) generation, input, storage, play, retrieval, transmission, reception, amplification, processing, switching or control of audio signals
Video equipment	Equipment which has a primary function of either (or a combination of) generation, input, storage, display, play, retrieval, transmission, reception, amplification, processing, switching, or control of video signals.
Broadcast receiver equipment	Equipment containing a tuner that is intended for the reception of broadcast services
	- These broadcast services are typically television and radio services, including terrestrial broadcast, satellite broadcast and/or cable transmission.
Entertainment lighting control equipment	Equipment generating or processing electrical signals for controlling the intensity, color, nature or direction of the light from a luminaire, where the intention is to create artistic effects in theatrical, televisual or musical productions and visual presentations.

7.3.2 Port type

Port used to connect to the mains supply network	
- Equipment with a DC power port which is powered by a dedicated AC/DC power converter is defined as AC mains powered equipment	
Port, other than a broadcast receiver tuner port (3.1.8), for connection of an antenna used for intentional transmission	
and/or reception of radiated RF energy.	
Port intended for the reception of a modulated RF signal carrying terrestrial, satellite and/or cable transmissions of audio	
and/or video broadcast and similar services	
- This port may be connected to an antenna, a cable distribution system, a VCR or similar device.	
Port, not powered by a dedicated AC/DC power converter and not supporting communication, that connects to a DC supply	
network.	
- Equipment with a DC power port which is powered by a dedicated AC/DC power converter is considered to be AC mains powered	
equipment.	
- DC power ports supporting communications are considered to be wired networks ports, for example Ethernet ports which include	
Power Over Ethernet (POE).	
Physical boundary of the EUT through which electromagnetic fields may radiate.	
Port at which an optical fiber is connected to an equipment.	
Port intended to be connected to a broadcast receiver tuner port in order to transmit a signal to the broadcast receiver.	
Port intended for the interconnection of components of an equipment under test, or between an equipment under test	
and local associated equipment and used in accordance with relevant functional specifications (for example for the	
maximum length of cable connected to it)	
- Examples include RS-232, Universal Serial Bus (USB), High-Definition Multimedia Interface (HDMI), IEEE Standard 1394 ("Fire Wire")	
Point of connection for voice, data and signaling transfers intended to interconnect widely-dispersed systems by direct	
connection to a single-user of multi-user communication network (for example CATV, PSTN, ISDN, xDSL, LAN and similar	
networks)	
- These ports may support screened or unscreened cables and may also carry AC or DC power where this is an integral part of the	
telecommunication specification.	

7.3 General definitions, continued

7.3.3 SANS 61000-3-2 2009 (Ed. 3.02) (Harmonic emissions)

For the purpose of harmonic current	limitation, equipment is classified as follows:

Class A	 Balanced three-phase equipment; 	
	 Household appliances excluding equipment identified as Class D; 	
	 Tools excluding portable tools; 	
	 Dimmers for incandescent lamps; 	
	– Audio equipment.	
	Equipment not specified in one of the three other classes shall be considered as Class A equipment.	
Class B	 Portable tools; 	
	 Arc welding equipment, which is not professional equipment. 	
Class C	– Lighting equipment.	
Class D	Equipment having a specified power according to 6.2.2 less than or equal to 600 W, of the following types:	
	 Personal computers and personal computer monitors; 	
	– Television receivers.	

7.3.4 SANS 61000-3-3 2009 (Ed. 2.00) (Flicker emissions)

Voltage fluctuation	Series of changes of r.m.s voltage evaluated as a single value for each successive half-period between zero-crossings of	
	the source voltage.	
Flicker	Impression of unsteadiness of visual sensation induced by a light stimulus whose luminance or spectral distribution	
	fluctuates with time.	
Short-term flicker indicator, Pst	The flicker severity evaluated over a short period (in minutes); Pst = 1 is the conventional threshold of irritability.	
Long-term flicker indicator, Plt	The flicker severity evaluated over a long period (a few hours) using successive Pst values.	

7.3.5 SANS 61000-4-2 2009 (Ed. 2.00) (Electrostatic discharge)

Electrostatic discharge; ESD	A transfer of electric charge between bodies of different electrostatic potential in proximity or through direct contact.	
Contact discharge method	A method of testing, in which the electrode of the test generator is held in contact with the EUT, and the discharge	
	actuated by the discharge switch within the generator.	
Air discharge method	A method of testing, in which the charged electrode of the test generator is brought close to the EUT, and the	
	discharge actuated by a spark to the EUT.	
Direct application	Application of the discharge directly to the EUT.	
Indirect application	Application of the discharge to a coupling plane in the vicinity of the EUT, and simulation of personnel discharge to	
	objects, which are adjacent to the EUT.	
Coupling plane	A metal sheet or plate, to which discharges are applied to simulate electrostatic discharge to objects adjacent to the	
	EUT. HCP: Horizontal Coupling Plane; VCP: Vertical Coupling Plane.	

7.3.6 SANS 61000-4-3 2008 (Ed. 3.01): (Radiated, radio-frequency, electromagnetic field)

Continuous waves (CW)	Electromagnetic waves, the successive oscillations of which are identical under steady-state conditions, which can be interrupted or modulated to convey information.	
Electromagnetic (EM) wave	Radiant energy produced by the oscillation of an electric charge characterized by oscillation of the electric and magnetic fields.	
Field strength	The term "field strength" is applied only to measurements made in the far field. The measurement may be of either the electric or the magnetic component of the field and may be expressed as V/m, A/m or W/m2; any one of these may be converted into the others.	
Sweep	Continuous or incremental traverse over a range of frequencies.	

Report reference ID: PRJ0029749-7TRFEMC SABS UIN 003803

 $\mathsf{Page}\ 17 \ \mathsf{of}\ 69$

7.3 General definitions, continued

7.3.7 SANS 61000-4-4 2011 (Ed. 2.01) (Electrical fast transient/burst)

Burst	Sequence of a limited number of distinct pulses or an oscillation of limited duration.	
Common mode (coupling)	Simultaneous coupling to all lines versus the ground reference plane.	
Ground reference plane	Flat conductive surface whose potential is used as a common reference.	
Coupling clamp	Device of defined dimensions and characteristics for common mode coupling of the disturbance signal to the circuit under test without any galvanic connection to it.	
Transient	Pertaining to or designating a phenomenon or a quantity which varies between two consecutive steady states during a time interval which is short compared with the time-scale of interest.	

Section 8 Emissions Testing data

8.1 Radiated emissions

8.1.1 References

SANS 2332:2017 / CISPR 32:2015

8.1.2 Test summary

Verdict	Pass		
Test date	April 4, 2023	Temperature	19 °C
Test engineer	Greg Woelke, EMC Test Engineer	Air pressure	1008 mbar
Test location	10m semi anechoic chamber	Relative humidity	37 %

8.1.3 Notes

- The top six emissions within 10 dB of the limit have been recorded for each detector type as required by the standard.

- Where there is a step in the relevant limit, the lower value was applied at the transition frequency.

The highest operating frequency of the EUT as provided by the client was 12 Gbps.

- The spectrum was scanned up to 6GHz since the EUT highest operating frequency according to Table 8.1-1 was not available from the client.

Table 8.1-1: Frequency range

	Highest internal frequency [Fx]	Highest measured frequency	
	F _X ≤ 108 MHz	1 GHz	
	108 MHz < F _x ≤ 500 MHz	2 GHz	
	500 MHz < F _x ≤ 1 GHz	5 GHz	
	$F_X > 1 \text{ GHz}$	$5 \times F_x$ up to a maximum of 6 GHz	
Notes:	Highest internal frequency [F _x] – highest fundamental frequency generated or used within the EUT or highest frequency at which it operates. This		
	includes frequencies which are solely used within an integrated circuit.		

For FM and TV broadcast receivers F_x is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies.

8.1.4 Setup details

Port under test	Enclosure Port
EUT setup configuration	Table top
Test facility	10 m Semi anechoic chamber
Measuring distance	3 & 10 m
Antenna height variation	1–4 m
Turn table position	0–360°
Measurement details	A preview measurement was generated with receiver in continuous scan or sweep mode while the EUT was rotated
	and antenna adjusted to maximize radiated emission. Emissions detected within 10 dB or above limit were re-measured
	with the appropriate detector against the correlating limit and recorded as the final measurement.

Receiver/spectrum analyzer settings for frequencies below 1 GHz:

Resolution bandwidth	120 kHz
Video bandwidth	300 kHz
Detector mode	 Peak (Preview measurement) Quasi-peak (Final measurement)
Trace mode	Max Hold
Measurement time	 100 ms (Peak preview measurement) 5000 ms (Quasi-peak final measurement)

Receiver/spectrum analyzer settings for frequencies above 1 GHz:

Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Detector mode	Peak (Preview measurement)
	Peak and CAverage (Final measurement)
Trace mode	Max Hold
Measurement time	 100 ms (Peak preview measurement)
	 5000 ms (Peak and CAverage final measurement)

Table 8.1-2: Radiated emissions equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMC Test Receiver	Rohde & Schwarz	ESU 26	E1353	1	11/11/2023
Antenna, Bilog	Schaffner-Chase	CBL 6111C	1480	2 Yr	2/21/2024
Antenna, DRG Horn	ETS Lindgren	3117-PA	E1160	1 Yr	2/13/2024
Pre Amp as part of DRG Horn	ETS Lindgren	3117-PA	Part of E1160	1 Yr	2/13/2024
Variac	Shanghai China	TDGC	S1037	NCR	NCR
Multimeter	Fluke	111	813	1 Yr	9/19/2023

NCR - no calibration required Notes:

Table 8.1-3: Radiated emissions test software details

Manufac	turer of Software	Details
Rohde &	Schwarz	EMC32 v10.00.00
Notes:	None	

Notes:

8.1.5 Test data

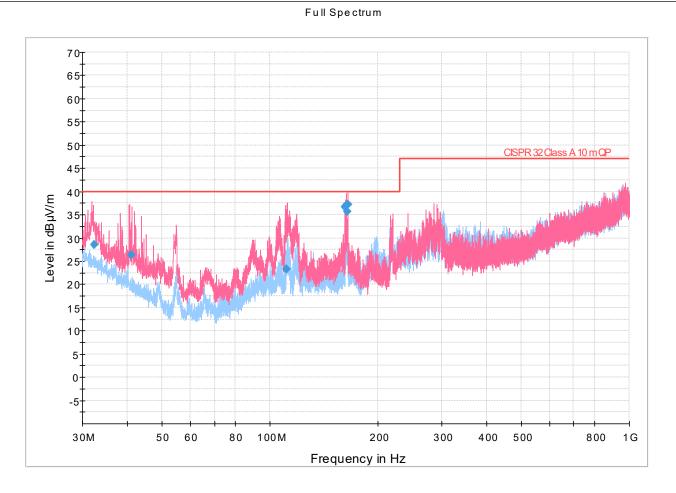


Figure 8.1-1: Radiated emissions spectral plot (30 MHz - 1 GHz)

Frequency	QuasiPeak	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)	(dB/m)
				(ms)					
32.410667	28.55	40.00	11.45	5000.0	120.000	98.0	V	39.0	24.3
41.133000	26.41	40.00	13.59	5000.0	120.000	274.0	V	134.0	19.7
111.240000	23.24	40.00	16.76	5000.0	120.000	126.0	V	11.0	18.6
161.689333	36.73	40.00	3.27	5000.0	120.000	98.0	V	180.0	18.1
163.651667	35.77	40.00	4.23	5000.0	120.000	98.0	V	182.0	18.1
164.700667	37.18	40.00	2.82	5000.0	120.000	109.0	V	163.0	18.0

Table 8.1-4: Radiated emissions results

Notes: ¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Testing data Radiated emissions SANS 2332:2017 / CISPR 32:2015

Full Spectrum

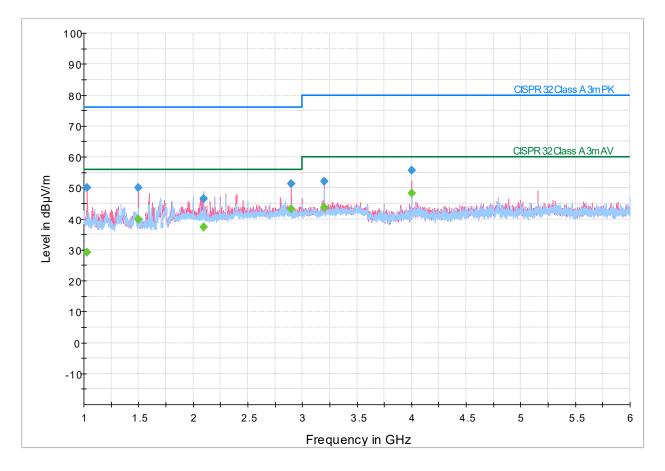


Figure 8.1-2: Radiated emissions spectral plot (1 GHz - 18 GHz)

Frequency	MaxPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)	(dB/m)
					(ms)					
1026.500000	50.09		76.00	25.91	5000.0	1000.000	139.0	V	174.0	-11.5
1026.500000		29.05	56.00	26.95	5000.0	1000.000	139.0	V	174.0	-11.5
1500.000000	50.01		76.00	25.99	5000.0	1000.000	132.0	V	186.0	-10.7
1500.000000		39.76	56.00	16.24	5000.0	1000.000	132.0	V	186.0	-10.7
2100.100000	46.55		76.00	29.45	5000.0	1000.000	347.0	Н	21.0	-7.2
2100.100000		37.43	56.00	18.57	5000.0	1000.000	347.0	Н	21.0	-7.2
2899.950000	51.22		76.00	24.78	5000.0	1000.000	98.0	V	0.0	-4.0
2899.950000		43.13	56.00	12.87	5000.0	1000.000	98.0	V	0.0	-4.0
3200.000000	52.23		80.00	27.77	5000.0	1000.000	124.0	V	112.0	-2.7
3200.000000		43.73	60.00	16.27	5000.0	1000.000	124.0	V	112.0	-2.7
4000.250000	55.62		80.00	24.38	5000.0	1000.000	98.0	V	175.0	-0.9
4000.250000		48.23	60.00	11.77	5000.0	1000.000	98.0	V	175.0	-0.9

Table 8.1-5: Radiated emissions results

Notes: ¹ Field strength (dB V/m) = receiver/spectrum analyzer value (dB V) + correction factor (dB)

² Correction factors = antenna factor ACF (dB) + cable loss (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Report reference ID: PRJ0029749-7TRFEMC SABS UIN 003803

Page 22 of 69

8.1.6 Setup photos

Figure 8.1-3: Radiated emissions setup photo below 1 GHz

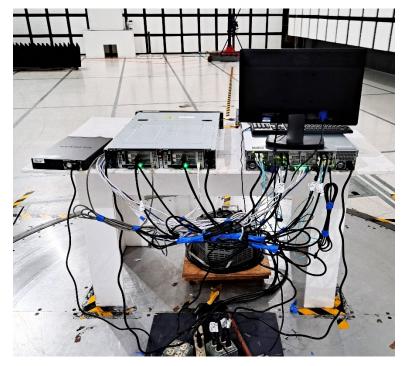


Figure 8.1-4: Radiated emissions setup photo below 1 GHz

Testing data Radiated emissions SANS 2332:2017 / CISPR 32:2015

Figure 8.1-5: Radiated emissions setup photo above 1 GHz

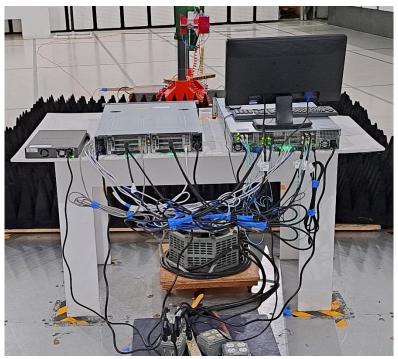


Figure 8.1-6: Radiated emissions setup photo above 1 GHz

8.2 Conducted emissions – from AC mains power ports

8.2.1 References

SANS 2332:2017 / CISPR 32:2015

8.2.2 Test summary

Verdict	Pass		
Test date	April 5, 2023	Temperature	19 °C
Test engineer	Greg Woelke, EMC Test Engineer	Air pressure	1007 mbar
Test location	Ground Plane	Relative humidity	43 %

- The top six emissions within 10 dB of the limit have been recorded for each detector type as required by the standard.

- Where there is a step in the relevant limit, the lower value was applied at the transition frequency.
- Equipment with a DC power port powered by a dedicated AC/DC power converter is considered to be AC mains powered equipment and was tested with a power converter. Where the power converter was provided by the manufacturer, the provided converter was used.

8.2.4 Setup details

Port under test – Coupling device	AC Mains PS B and PS B; Two Line V-Network (LISN)
EUT setup configuration	Table top
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 10 dB
	or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final
	measurement.

Receiver settings:

Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	 Peak (Preview measurement) Quasi-peak and CAverage (Final measurement)
Trace mode	Max Hold
Measurement time	 100 ms (Peak preview measurement) 5000 ms (Quasi-peak final measurement) 5000 ms (CAverage final measurement)

Table 8.2-1: Conducted emissions - from AC mains power ports equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI Test Receiver	Rohde & Schwarz	ESCI 7	E1026	2 Yr	3/22/2024
LISN	Rohde & Schwarz	ENV216	E1019	1 Yr	9/30/2023
Transient Limiter (10 dB pad)	Hewlett Packard	11947A	E1159	1 yr	2/28/2024
LISN	Solar	9348-50-R-24-BNC	384	1 Yr	9/14/2023
Variac	Shanghai China	TDGC	S1037	NCR	NCR
Multimeter	Fluke	111	813	1 Yr	9/19/2023

Notes: NCR - no calibration required

Table 8.2-2: Conducted emissions - from AC mains power ports test software details

Manufacturer of Software		Details
Rohde & Schwarz		EMC32 v10.20.01
Notes:	None	

8.2.5 Test data

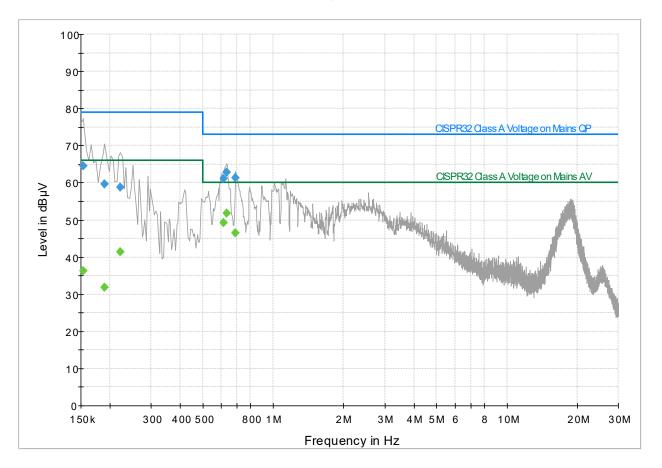


Figure 8.2-1: Conducted emissions at mains port spectral plot (150 kHz - 30 MHz) for VER5000CYP PS A at 230V 50Hz

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)			(dB)
					(ms)				
0.154000		36.31	66.00	29.69	5000.0	9.000	L1	ON	19.5
0.154000	64.60		79.00	14.40	5000.0	9.000	L1	ON	19.5
0.190000		31.80	66.00	34.20	5000.0	9.000	Ν	ON	19.5
0.190000	59.56		79.00	19.44	5000.0	9.000	N	ON	19.5
0.222000		41.39	66.00	24.61	5000.0	9.000	Ν	ON	19.5
0.222000	58.71		79.00	20.29	5000.0	9.000	N	ON	19.5
0.614000		49.20	60.00	10.80	5000.0	9.000	Ν	ON	19.4
0.614000	61.24		73.00	11.76	5000.0	9.000	N	ON	19.4
0.630000		51.81	60.00	8.19	5000.0	9.000	Ν	ON	19.4
0.630000	62.84		73.00	10.16	5000.0	9.000	N	ON	19.4
0.690000		46.41	60.00	13.59	5000.0	9.000	Ν	ON	19.4
0.690000	61.35		73.00	11.65	5000.0	9.000	N	ON	19.4

Notes:

¹ Result (dB μ V) = receiver analyzer value (dB μ V) + correction factor (dB).

² Correction factors = LISN factor IL (dB) + cable loss (dB) + transient limiter (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Report reference ID: PRJ0029749-7TRFEMC SABS UIN 003803

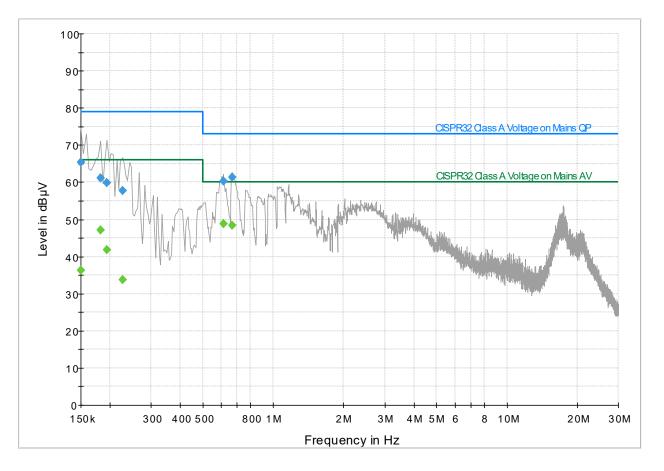
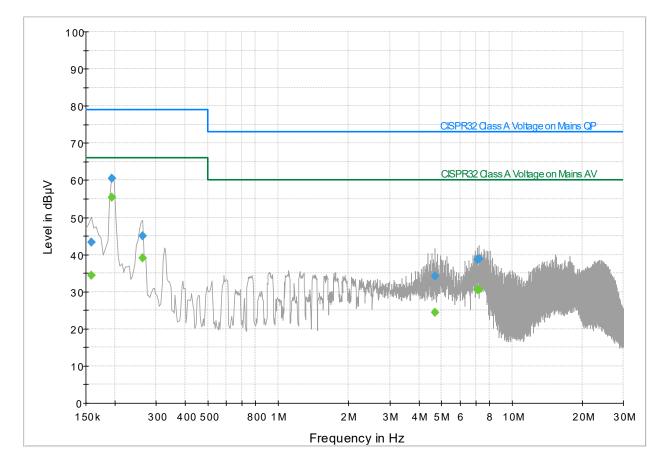


Figure 8.2-2: Conducted emissions at mains port spectral plot (150 kHz - 30 MHz) for VER5000CYP PSU B.

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)			(dB)
					(ms)				
0.150000	65.42		79.00	13.58	5000.0	9.000	Ν	ON	19.5
0.150000		36.37	66.00	29.63	5000.0	9.000	Ν	ON	19.5
0.182000	61.09		79.00	17.91	5000.0	9.000	L1	ON	19.5
0.182000		47.20	66.00	18.80	5000.0	9.000	L1	ON	19.5
0.194000		41.76	66.00	24.24	5000.0	9.000	Ν	ON	19.5
0.194000	59.80		79.00	19.20	5000.0	9.000	Ν	ON	19.5
0.226000		33.75	66.00	32.25	5000.0	9.000	Ν	ON	19.4
0.226000	57.66		79.00	21.34	5000.0	9.000	Ν	ON	19.4
0.610000	60.40		73.00	12.60	5000.0	9.000	L1	ON	19.4
0.610000		48.90	60.00	11.10	5000.0	9.000	L1	ON	19.4
0.666000	61.36		73.00	11.64	5000.0	9.000	L1	ON	19.4
0.666000		48.40	60.00	11.60	5000.0	9.000	L1	ON	19.4

Table 8.2-4: Conducted emissions at mains port results


Notes: ¹ Result (dBµV) = receiver analyzer value (dBµV) + correction factor (dB).

² Correction factors = LISN factor IL (dB) + cable loss (dB) + transient limiter (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

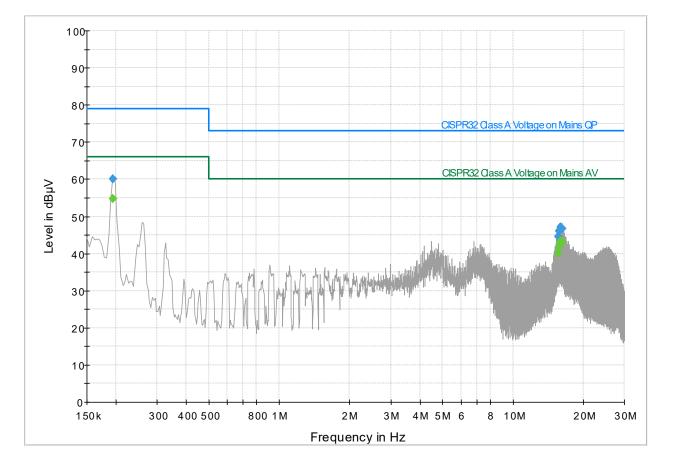
Conducted emissions at mains port spectral plot (150 kHz - 30 MHz) for DCS0010 PSU A.

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)			(dB)
					(ms)				
0.158000	43.36		79.00	35.64	5000.0	9.000	Ν	ON	19.5
0.158000		34.41	66.00	31.59	5000.0	9.000	Ν	ON	19.5
0.194000	60.50		79.00	18.50	5000.0	9.000	L1	ON	19.5
0.194000		55.39	66.00	10.61	5000.0	9.000	L1	ON	19.5
0.262000		39.00	66.00	27.00	5000.0	9.000	L1	ON	19.4
0.262000	44.95		79.00	34.05	5000.0	9.000	L1	ON	19.4
4.682000		24.46	60.00	35.54	5000.0	9.000	Ν	ON	19.5
4.682000	34.13		73.00	38.87	5000.0	9.000	N	ON	19.5
7.150000		30.47	60.00	29.53	5000.0	9.000	L1	ON	19.6
7.150000	38.72		73.00	34.28	5000.0	9.000	L1	ON	19.6
7.214000		30.54	60.00	29.46	5000.0	9.000	L1	ON	19.6
7.214000	38.91		73.00	34.09	5000.0	9.000	L1	ON	19.6

Table 8.2-5: Conducted emissions at mains port results

Notes: ¹ Result (dB μ V) = receiver analyzer value (dB μ V) + correction factor (dB).

² Correction factors = LISN factor IL (dB) + cable loss (dB) + transient limiter (dB)


³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Report reference ID: PRJ0029749-7TRFEMC SABS UIN 003803

Page 28 of 69

Conducted emissions at mains port spectral plot (150 kHz - 30 MHz) for DCS0010 PSU B.

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)			(dB)
					(ms)				
0.194000		54.82	66.00	11.18	5000.0	9.000	L1	ON	19.5
0.194000	60.08		79.00	18.92	5000.0	9.000	L1	ON	19.5
15.666000		40.19	60.00	19.81	5000.0	9.000	Ν	ON	19.9
15.666000	44.54		73.00	28.46	5000.0	9.000	N	ON	19.9
15.794000		41.81	60.00	18.19	5000.0	9.000	Ν	ON	19.9
15.794000	46.06		73.00	26.94	5000.0	9.000	Ν	ON	19.9
15.990000		43.29	60.00	16.71	5000.0	9.000	Ν	ON	19.9
15.990000	47.03		73.00	25.97	5000.0	9.000	N	ON	19.9
16.054000		43.31	60.00	16.69	5000.0	9.000	Ν	ON	19.9
16.054000	47.00		73.00	26.00	5000.0	9.000	N	ON	19.9
16.250000		43.09	60.00	16.91	5000.0	9.000	Ν	ON	19.9
16.250000	46.73		73.00	26.27	5000.0	9.000	Ν	ON	19.9

Table 8.2-6: Conducted emissions at mains port results

Notes: 1 Result (dBµV) = receiver analyzer value (dBµV) + correction factor (dB).

² Correction factors = LISN factor IL (dB) + cable loss (dB) + transient limiter (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Report reference ID: PRJ0029749-7TRFEMC SABS UIN 003803

Page 29 of 69

8.2.6 Setup photos

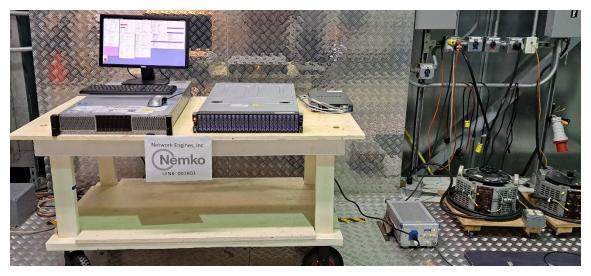


Figure 8.2-3: Conducted emissions – from AC mains power ports setup photo

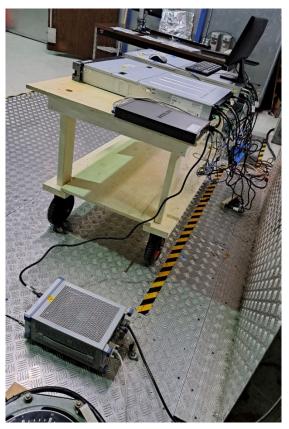


Figure 8.2-4: Conducted emissions – from AC mains power ports setup photo

8.3 Conducted emissions – Asymmetric mode

8.3.1 References

SANS 2332:2017 / CISPR 32:2015

8.3.2 Test summary

Verdict	Pass		
Test date	April 6, 2023	Temperature	25 °C
Test engineer	Greg Woelke, EMC Test Engineer	Air pressure	1004 mbar
Test location	Ground Plane	Relative humidity	60 %

8.3.3 Notes

- The top six emissions within 10 dB of the limit have been recorded for each detector type as required by the standard.

Where there is a step in the relevant limit, the lower value was applied at the transition frequency.

 Equipment with a DC power port powered by a dedicated AC/DC power converter is considered to be AC mains powered equipment and was tested with a power converter. Where the power converter was provided by the manufacturer, the provided converter was used.

8.3.4 Setup details

Port under test – Coupling device	MGMT Ethernet ; AAN
EUT setup configuration	Table top
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 10 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final
	measurement.

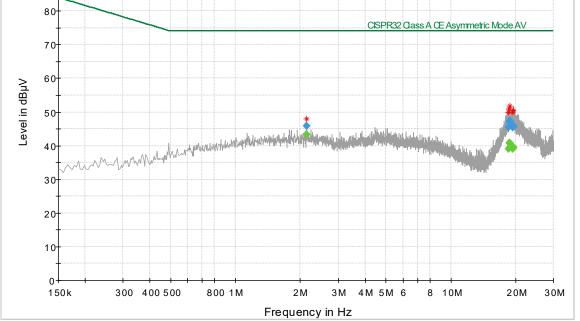
Receiver settings:

•	
Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	 Peak (Preview measurement)
	 Quasi-peak and CAverage (Final measurement)
Trace mode	Max Hold
Measurement time	 100 ms (Peak preview measurement)
	 – 5000 ms (Quasi-peak final measurement)
	 – 5000 ms (CAverage final measurement)

Table 8.3-1: Conducted emissions – Asymmetric mode equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI Test Receiver	Rohde & Schwarz	ESCI 7	E1026	2 Yr	3/22/2024
LISN	Rohde & Schwarz	ENV216	E1019	1 Yr	9/30/2023
Transient Limiter (10 dB pad)	Hewlett Packard	11947A	E1159	1 yr	2/28/2024
LISN	Solar	9348-50-R-24-BNC	384	1 Yr	9/14/2023
Telecom LISN	FCC	FCC-TLISN-T8-02-09	E1032	1 Yr	10/28/2023
Variac	Shanghai China	TDGC	S1037	NCR	NCR
Multimeter	Fluke	111	813	1 Yr	9/19/2023

Notes: NCR - no calibration required


Table 8.3-2: Conducted emissions – Asymmetric mode test software details

Manufacturer of Software	Details	
Rohde & Schwarz	EMC32 v10.20.01	
Report reference ID: PRJ0029749-	7TRFEMC	Page 31 d

SABS UIN 003803

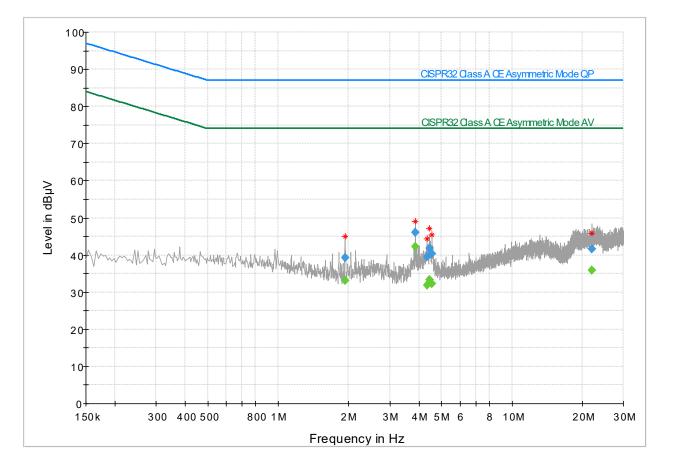
	Section 8 Testing data Test name Conducted emissions – from AC mains power ports Specification SANS 2332:2017 / CISPR 32:2015					
Notes:	None					
8.3.5	Test data					
		Full Spectrum				
	100					

Figure 8.3-1: Conducted emissions	– Asymmetric mode spectral plot (150 kHz - 30 MHz) for VE	R5000CYP.
-----------------------------------	---	-----------

Frequency (MHz)	QuasiPeak (dBμV)	CAverage (dBμV)	Limit (dBµV)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Line	PE	Corr. (dB)
					(ms)				
2.142000		43.25	74.00	30.75	5000.0	9.000	Telecom	GND	19.5
2.142000	45.93		87.00	41.07	5000.0	9.000	Telecom	GND	19.5
18.490000		39.05	74.00	34.95	5000.0	9.000	Telecom	GND	20.2
18.490000	45.36		87.00	41.64	5000.0	9.000	Telecom	GND	20.2
18.746000		40.68	74.00	33.32	5000.0	9.000	Telecom	GND	20.2
18.746000	47.18		87.00	39.82	5000.0	9.000	Telecom	GND	20.2
18.834000		40.86	74.00	33.14	5000.0	9.000	Telecom	GND	20.2
18.834000	47.41		87.00	39.59	5000.0	9.000	Telecom	GND	20.2
19.482000		39.16	74.00	34.84	5000.0	9.000	Telecom	GND	20.2
19.482000	45.37		87.00	41.63	5000.0	9.000	Telecom	GND	20.2
19.574000		39.52	74.00	34.48	5000.0	9.000	Telecom	GND	20.2
19.574000	45.96		87.00	41.04	5000.0	9.000	Telecom	GND	20.2

Table 8.3-3: Conducted emissions – Asymmetric mode port results

² Correction factors = LISN factor IL (dB) + cable loss (dB) + transient limiter (dB)


³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Report reference ID: PRJ0029749-7TRFEMC SABS UIN 003803

Notes: 1 Result (dBµV) = receiver analyzer value (dBµV) + correction factor (dB).

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Line	PE	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)			(dB)
					(ms)				
1.926000		33.03	74.00	40.97	5000.0	9.000	Telecom	GND	19.6
1.926000	39.23		87.00	47.77	5000.0	9.000	Telecom	GND	19.6
3.854000		42.21	74.00	31.79	5000.0	9.000	Telecom	GND	19.6
3.854000	46.15		87.00	40.85	5000.0	9.000	Telecom	GND	19.6
4.338000		31.82	74.00	42.18	5000.0	9.000	Telecom	GND	19.6
4.338000	39.52		87.00	47.48	5000.0	9.000	Telecom	GND	19.6
4.446000		33.35	74.00	40.65	5000.0	9.000	Telecom	GND	19.6
4.446000	41.82		87.00	45.18	5000.0	9.000	Telecom	GND	19.6
4.550000		32.22	74.00	41.78	5000.0	9.000	Telecom	GND	19.6
4.550000	40.36		87.00	46.64	5000.0	9.000	Telecom	GND	19.6
22.054000		35.95	74.00	38.05	5000.0	9.000	Telecom	GND	20.3
22.054000	41.55		87.00	45.45	5000.0	9.000	Telecom	GND	20.3

Table 8.3-4: Conducted emissions – Asymmetric mode port results

Notes: ¹ Result (dBµV) = receiver analyzer value (dBµV) + correction factor (dB).

² Correction factors = LISN factor IL (dB) + cable loss (dB) + transient limiter (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

Report reference ID: PRJ0029749-7TRFEMC SABS UIN 003803

South African Bu

Page 33 of 69

8.3.6 Setup photos

Figure 8.3-3: Conducted emissions – Asymmetric mode setup photo

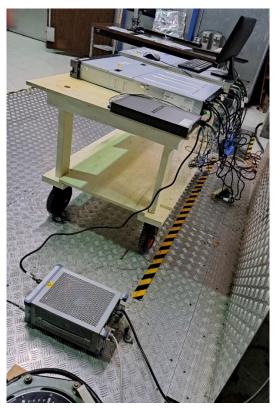


Figure 8.3-4: Conducted emissions – Asymmetric mode setup photo

8.4 Harmonic current emissions

References 8.4.1

SANS 61000-3-2 2009 (Ed. 3.02)

8.4.2 Test summary

Verdict	Pass		
Test date	March 31, 2023	Temperature	18 °C
Test engineer	Greg Woelke, EMC Test Engineer	Air pressure	1010 mbar
Test location	Ground Plane	Relative humidity	49 %
rest location	Ground Plane	Relative number of	49 %

8.4.3 Notes

None

8.4.4 Setup details

Port under test	AC Mains
Measurement time	30 min

Table 8.4-1: Harmonic current emissions equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.	
AC & DC Power Source Anal	zer California Instruments/Ametek	90003ix	1851	1 Yr	2/26/2024	
Notes: None						

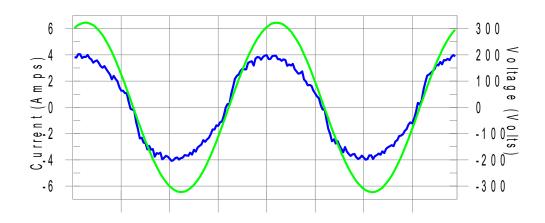
Notes:

Table 8.4-2: Harmonic current emissions test software details

Manufacturer of Software	Details
California Instruments	AC Source CIGui SII Version 3.0.0
Notos: Nono	

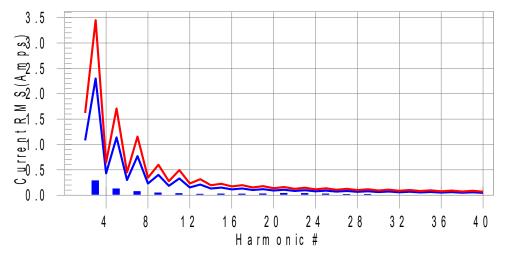
Notes: None

8.4.5 Test data


Measurement Data

Harmonics – Class-A per Ed. 4.0 (2014)(Run time)

EUT: VER5000CYPTested by: Greg WoelkeTest category: Class-A per Ed. 4.0 (2014) (European limits)Test Margin: 100Test date: 3/31/2023Start time: 6:25:25 PMEnd time: 6:55:47 PMTest duration (min): 30Data file name: H-000198.cts_dataComment: 230VAC 50Hz, PRJ0029749Customer: Network Engines Inc


Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Harmonics and Class A limit line

European Limits

Test result: Pass Worst harmonic was #23 with 37.3% of the limit.

Current Test Result Summary (Run time)

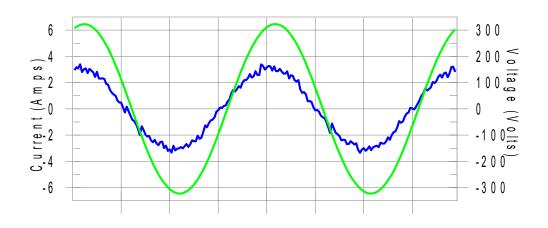
EUT: vER5000CYPTested by: Greg WoelkeTest category: Class-A per Ed. 4.0 (2014) (European limits)Test Margin: 100Test date: 3/31/2023Start time: 6:25:25 PMEnd time: 6:55:47 PMTest duration (min): 30Data file name: H-000198.cts_dataComment: 230VAC 50Hz, PRJ0029749Customer: Network Engines Inc				e			
THC(A): Highest	parameter va	ID(%): 11.9 lues during			OHC Limit(A	A): 0.251	
	V_RMS (Volts)			Frequency(Hz)			
	_Peak (Amps			I_RMS (Amps)			
	_Fund (Amps			Crest Factor:	1.503		
I	Power (Watts)	: 660.5		Power Factor:	0.983		
Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.011	1.080	N/A	0.015	1.620	N/A	Pass
3	0.289	2.300	12.5	0.292	3.450	8.5	Pass
4	0.005	0.430	N/A	0.007	0.645	N/A	Pass
5	0.128	1.140	11.2	0.130	1.710	7.6	Pass
6	0.002	0.300	N/A	0.004	0.450	N/A	Pass
7	0.074	0.770	9.6	0.076	1.155	6.5	Pass
8	0.002	0.230	N/A	0.003	0.345	N/A	Pass
9	0.047	0.400	11.8	0.048	0.600	8.0	Pass
10	0.002	0.184	N/A	0.003	0.276	N/A	Pass
11	0.034	0.330	10.4	0.036	0.495	7.2	Pass
12	0.002	0.153	N/A	0.003	0.230	N/A	Pass
13	0.022	0.210	10.6	0.026	0.315	8.2	Pass
14	0.002	0.131	N/A	0.003	0.197	N/A	Pass
15	0.028	0.150	18.4	0.029	0.225	13.0	Pass
16	0.002	0.115	N/A	0.004	0.173	N/A	Pass
17	0.026	0.132	19.6	0.029	0.198	14.4	Pass
18	0.003	0.102	N/A	0.004	0.153	N/A	Pass
19	0.029	0.118	24.7	0.032	0.178	17.7	Pass
20	0.003	0.092	N/A	0.005	0.138	N/A	Pass
21	0.039	0.107	36.2	0.041	0.161	25.5	Pass
22	0.003	0.084	N/A	0.005	0.125	N/A	Pass
23	0.037	0.098	37.3	0.039	0.147	26.4	Pass
24	0.002	0.077	N/A	0.004	0.115	N/A	Pass
25	0.028	0.090	30.7	0.032	0.135	23.6	Pass
26	0.002	0.071	N/A	0.004	0.107	N/A	Pass
27	0.018	0.083	21.5	0.020	0.125	16.2	Pass
28	0.003	0.066	N/A	0.004	0.099	N/A	Pass
29	0.019	0.078	24.9	0.023	0.116	20.1	Pass
30	0.002	0.061	N/A	0.003	0.092	N/A	Pass
31	0.012	0.073	N/A	0.014	0.109	N/A	Pass
32	0.002	0.058	N/A	0.004	0.086	N/A	Pass
33	0.013	0.068	N/A	0.015	0.102	N/A	Pass
34	0.002	0.054	N/A	0.003	0.081	N/A	Pass
35	0.009	0.064	N/A	0.011	0.096	N/A	Pass
36	0.002	0.051	N/A	0.003	0.077	N/A	Pass
37	0.012	0.061	N/A	0.014	0.091	N/A	Pass
38	0.002	0.048	N/A	0.003	0.073	N/A	Pass
39	0.012	0.058	N/A	0.013	0.087	N/A	Pass
40	0.002	0.046	N/A	0.003	0.069	N/A	Pass

Voltage Source Verification Data (Run time)

EUT: vER5000CYP **Tested by: Greg Woelke** Test category: Class-A per Ed. 4.0 (2014) (European limits) Test Margin: 100 Test date: 3/31/2023 Start time: 6:25:25 PM End time: 6:55:47 PM Test duration (min): 30 Data file name: H-000198.cts_data Comment: 230VAC 50Hz, PRJ0029749 **Customer: Network Engines Inc**

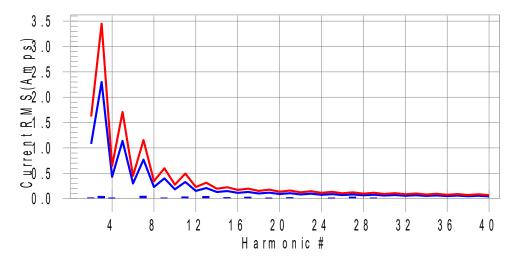
Test Result: Pass Source qualification: Normal

Highest parameter values during test: Voltage (Vrms): 229.10 Frequency(Hz): 50.00 I_Peak (Amps): 4.427 2.991 I_RMS (Amps): I_Fund (Amps): 2.915 Power (Watts): 660.5 **Crest Factor:** 1.503 **Power Factor:** 0.983 Harm# Harmonics V-rms Limit V-rms % of Limit Status 2 0.458 OK 0.020 4.39 3 1.132 2.062 54.89 OK 4 OK 0.077 0.458 16.74 5 0.048 0.916 5.19 OK 6 0.068 14.92 OK 0.458 7 0.098 0.687 14.26 OK 8 0.014 2.95 OK 0.458 9 0.023 0.458 5.03 OK 10 0.007 0.458 1.59 οκ 0.229 11 0.010 4.17 OK 12 0.017 0.229 7.35 οκ 0.229 13 OK 0.013 5.70 14 0.005 0.229 2.31 OK 15 0.018 0.229 7.98 OK 16 0.015 0.229 OK 6.66 17 0.020 0.229 8.92 οκ 0.022 0.229 OK 18 9.79 19 0.023 0.229 OK 10.21 20 0.017 0.229 7.62 OK 21 0.055 0.229 24.05 OK 22 0.016 0.229 6.87 OK 23 0.229 0.034 ок 15.02 24 0.009 0.229 3.99 OK 25 0.032 0.229 13.86 OK 26 0.008 0.229 3.43 OK 27 0.022 0.229 9.72 OK 28 0.006 0.229 2.72 OK 29 0.021 0.229 9.06 OK 30 0.008 0.229 3.28 OK 31 0.015 0.229 6.62 οκ 32 0.006 0.229 2.78 OK 33 0.017 0.229 7.36 OK 34 0.006 0.229 2.58 οκ 35 0.014 0.229 6.04 OK 36 0.007 0.229 2.88 OK 37 0.017 0.229 7.34 οκ 0.229 38 0.006 OK 2.52 39 0.018 0.229 8.00 οκ 40 0.007 0.229 3.03 OK



Harmonics – Class-A per Ed. 4.0 (2014)(Run time)

EUT: DCS0010 JBODTested by: Greg WoelkeTest category: Class-A per Ed. 4.0 (2014) (European limits)Test Margin: 100Test date: 3/31/2023Start time: 7:05:19 PMEnd time: 7:35:40 PMTest duration (min): 30Data file name: H-000199.cts_dataComment: 230VAC 50Hz, PRJ0029749Customer: Network Engines Inc


Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Harmonics and Class A limit line

European Limits

Current Test Result Summary (Run time)

EUT: DCS0010 JBODTested by: Greg WoelkeTest category: Class-A per Ed. 4.0 (2014) (European limits)Test Margin: 100Test date: 3/31/2023Start time: 7:05:19 PMEnd time: 7:35:40 PMTest duration (min): 30Data file name: H-000199.cts_dataComment: 230VAC 50Hz, PRJ0029749Customer: Network Engines Inc				e			
THC(A): Highest	parameter val	ID(%): 5.7 lues during	alification: POHC(A test:): 0.049 PO	HC Limit(A)	: 0.251	
	V_RMS (Volts)			Frequency(Hz)			
	I_Peak (Amps)			I_RMS (Amps)			
	I_Fund (Amps)): 2.182		Crest Factor:	1.689		
	Power (Watts)	: 489.5		Power Factor:	0.977		
Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.021	1.080	1.9	0.022	1.620	1.4	Pass
3	0.050	2.300	2.2	0.051	3.450	1.5	Pass
4	0.015	0.430	3.5	0.017	0.645	2.6	Pass
5	0.009	1.140	N/A	0.010	1.710	N/A	Pass
6	0.002	0.300	N/A	0.003	0.450	N/A	Pass
7	0.053	0.770	6.8	0.054	1.155	4.7	Pass
8	0.006	0.230	0.0 N/A	0.007	0.345	N/A	Pass
9	0.000	0.230	4.2	0.018	0.600	3.0	Pass
10	0.006	0.400	4.2 N/A	0.018	0.000	3.0 N/A	Pass
11	0.008	0.184	11.7	0.039	0.278	8.0	_
12	0.006	0.330	N/A	0.039	0.495	0.0 N/A	Pass Pass
			22.3				Pass
13	0.047	0.210	22.3 N/A	0.048	0.315	15.3	
14 15	0.006	0.131		0.007	0.197	N/A 11.5	Pass
15	0.025	0.150	16.7	0.026	0.225	-	Pass
16	0.007 0.034	0.115 0.132	N/A 25.9	0.008 0.035	0.173 0.198	N/A 17.8	Pass
							Pass
18	0.007	0.102	N/A	0.008	0.153	N/A 9.1	Pass
19	0.015	0.118	12.8	0.016	0.178	-	Pass
20	0.006	0.092	N/A	0.008	0.138	N/A	Pass
21 22	0.025	0.107	23.0	0.026	0.161	16.1	Pass
22	0.004 0.005	0.084 0.098	N/A N/A	0.005 0.006	0.125 0.147	N/A N/A	Pass
23 24	0.005	0.098	N/A	0.005	0.147	N/A	Pass Pass
24 25	0.004	0.090	17.8	0.003	0.135	12.7	Pass
26	0.010	0.030	N/A	0.017	0.135	N/A	Pass
20	0.035	0.083	41.7	0.036	0.125	28.8	Pass
28	0.006	0.065	41.7 N/A	0.008	0.099	20.0 N/A	Pass
20	0.000	0.000	22.1	0.008	0.035	15.9	Pass
30	0.002	0.078	N/A	0.003	0.092	N/A	Pass
30	0.002	0.073	N/A	0.005	0.1092	N/A	Pass
32	0.004	0.073	N/A	0.003	0.086	N/A	Pass
32	0.003	0.058	N/A	0.004	0.102	N/A	Pass
33 34	0.007	0.068	N/A	0.008		N/A	
34 35	0.004	0.054	N/A	0.005	0.081 0.096	N/A	Pass Pass
35 36	0.005	0.064	N/A	0.008	0.096	N/A	Pass
30	0.005	0.051	N/A	0.008	0.077	N/A	
37			N/A	0.009			Pass
	0.007	0.048	N/A N/A		0.073	N/A	Pass
39	0.010	0.058		0.011 0.009	0.087	N/A	Pass
40	0.008	0.046	N/A	0.009	0.069	N/A	Pass

Voltage Source Verification Data (Run time)

EUT: DCS0010 JBOD Tested by: Greg Woelke Test category: Class-A per Ed. 4.0 (2014) (European limits) Test Test date: 3/31/2023 Start time: 7:05:19 PM End Test duration (min): 30 Data file name: H-000199.cts_data Test Margin: 100 End time: 7:35:40 PM Comment: 230VAC 50Hz, PRJ0029749 **Customer: Network Engines Inc**

Source qualification: Normal **Test Result: Pass**

- V _ _	parameter values during t oltage (Vrms): 229.20 _Peak (Amps): 3.694 _Fund (Amps): 2.182 ower (Watts): 489.5	Freq I_RM Cres	uency(Hz): 50.00 IS (Amps): 2.197 It Factor: 1.689 er Factor: 0.977	,)
Harm#	Harmonics V-rms	Limit V-rms	% of Limit	Status
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 23 24 25 26 27 28 9 30 132 334 35 36 37	0.022 1.158 0.074 0.060 0.065 0.087 0.011 0.012 0.008 0.014 0.017 0.025 0.006 0.009 0.011 0.022 0.018 0.013 0.016 0.023 0.005 0.007 0.006 0.015 0.017 0.007	Clinic V-mis 0.458 2.063 0.458 0.917 0.458 0.688 0.458 0.458 0.458 0.458 0.458 0.229	$\begin{array}{c} 4.70\\ 56.16\\ 16.19\\ 6.53\\ 14.28\\ 12.65\\ 2.40\\ 2.51\\ 1.81\\ 6.01\\ 7.29\\ 11.08\\ 2.66\\ 3.93\\ 4.67\\ 9.81\\ 7.88\\ 5.78\\ 7.12\\ 10.06\\ 2.07\\ 3.01\\ 2.62\\ 6.66\\ 5.01\\ 15.46\\ 3.86\\ 7.63\\ 3.13\\ 2.98\\ 3.09\\ 4.53\\ 2.89\\ 4.00\\ 3.06\\ 4.28\end{array}$	ĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ
38 39 40	0.010 0.017 0.015	0.229 0.229 0.229	4.44 7.55 6.35	OK OK OK

8.4.6 Setup photos

Figure 8.4-1: Conducted emissions – Harmonic current emissions setup photo

30 min

8.5 Voltage fluctuations and flicker

8.5.1	References
0.5.1	

SANS 61000-3-3 2009 (Ed. 2.00)

8.5.2 Test summary

Verdict	Pass		
Test date	March 31, 2023	Temperature	18 °C
Test engineer	Greg Woelke, EMC Test Engineer	Air pressure	1010 mbar
Test location	Ground Plane	Relative humidity	49 %
8.5.3 Notes			
None			
8.5.4 Setup details			
Port under test	AC Mains		

Table 8.5-1: Voltage fluctuations and flicker equipment list

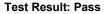
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
AC & DC Power Source Analyzer	California Instruments/Ametek	90003ix	1851	1 Yr	2/26/2024

Notes: None

Measurement time

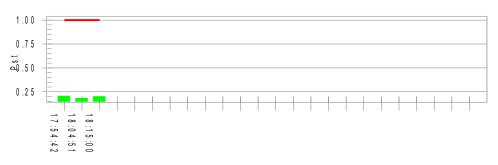
Table 8.5-2: Voltage fluctuations and flicker test software details

Manufact	urer of Software	Details
California	Instruments	AC Source ClGui SII Version 3.0.0
Notes:	None	

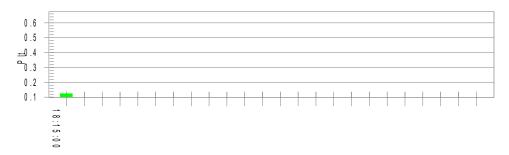

European Limits

8.5.5 Test data

Measurement data


Flicker Test Summary per EN/IEC61000-3-3 (Run time)

EUT: VER5000CYP ServerTested by: Greg WoelkeTest category: All parameters (European limits)Test Margin: 100Test date: 3/31/2023Start time: 5:44:12 PMEnd time: 6:15:01 PMTest duration (min): 30Data file name: F-000197.cts_dataComment: 230VAC 50Hz, PRJ0029749Customer: Network Engines, Inc.



Status: Test Completed

Psti and limit line

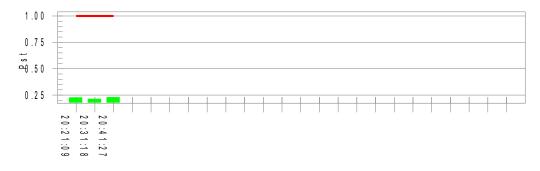
Plt and limit line

Parameter values recorded dur	ing the test:			
Vrms at the end of test (Volt):	229.09			
Highest dt (%):	0.00	Test limit (%	6): N/A	N/A
T-max (mS):	0	Test limit (n	nŚ): 500.0	Pass
Highest dc (%):	0.00	Test limit (%	6): 3.30	Pass
Highest dmax (%):	0.04	Test limit (%	6): 4.00	Pass
Highest Pst (10 min. period):	0.206	Test limit:	<i>.</i> 1.000	Pass
Highest Plt (2 hr. period):	0.124	Test limit:	0.650 Pass	

Report reference ID: PRJ0029749-7TRFEMC SABS UIN 003803

Testing data Voltage fluctuation and flicker SANS 2332:2017 / CISPR 32:2015

Flicker Test Summary per EN/IEC61000-3-3 (Run time)


EUT: DCS0010 JBODTested by: Greg WoelkeTest category: All parameters (European limits)Test Margin: 100Test date: 3/31/2023Start time: 8:10:39 PMEnd time: 8:41:28 PMTest duration (min): 30Data file name: F-000200.cts_dataComment: 230VAC 50Hz, PRJ0029749Customer: Network Engines, Inc.

Test Result: Pass

Status: Test Completed

Psti and limit line

European Limits

Plt and limit line

Parameter values recorded dur Vrms at the end of test (Volt):	ing the test: 229.19			
Highest dt (%):	0.00	Test limit (%)	: N/A	N/A
T-max (mS):	0	Test limit (m	S): 500.0	Pass
Highest dc (%):	0.00	Test limit (%)	: 3.30	Pass
Highest dmax (%):	-0.04	Test limit (%)	: 4.00	Pass
Highest Pst (10 min. period):	0.229	Test limit:	1.000	Pass
Highest Plt (2 hr. period):	0.140	Test limit: 0.	650 Pass	

Report reference ID: PRJ0029749-7TRFEMC SABS UIN 003803

Testing data Voltage fluctuation and flicker SANS 2332:2017 / CISPR 32:2015

8.5.6 Setup photos

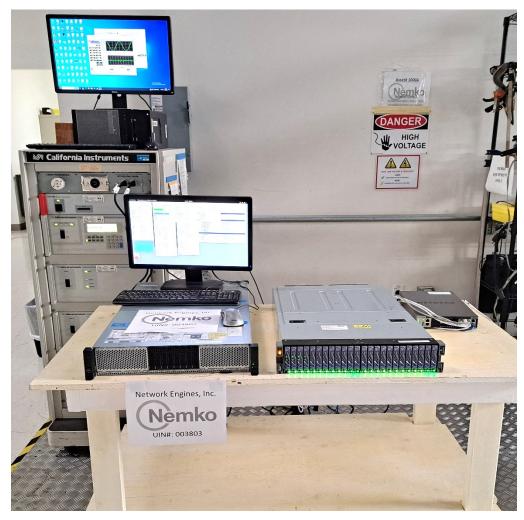


Figure 8.5-1: Voltage fluctuations and flicker setup photo

Section 9 Immunity Testing data

9.1 Radio-frequency electromagnetic field amplitude modulated

9.1.1 References

SANS 61000-4-3

9.1.2 Test summary

Verdict	Pass		
Test date	April 11, 2023	Temperature	19 °C
Test engineer	Greg Woelke, EMC Test Engineer	Air pressure	1003 mbar
Test location	RFI Chamber	Relative humidity	58 %

9.1.3 Notes

None

9.1.4 Setup details

Table 9.1-1: Radio-frequency electromagnetic field amplitude modulated equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Signal Generator	Rohde & Schwarz	SMC 100A	E1335	2 yr	4/7/2024
RF Amplifier	Amplifier Research	500W1000M5	740	NCR	NCR
RF Amplifier	Amplifier Research	60S1G6	E1176	NCR	NCR
Antenna	Amplifier Research	ATR80M6G	1227	NCR	NCR
Variac	Shanghai China	TDGC	S1037	NCR	NCR
Multimeter	Fluke	111	813	1 Yr	9/19/2023

Notes: NCR - no calibration required

Table 9.1-2: Radio-frequency electromagnetic field amplitude modulated test software details

Manufac	turer of Software	Details
ETS-LIND	GREN	TILE! Version 6.0.4.548
Notes:	None	

9.1.5 Test data

Table 9.1-3: Swept frequency – Radio-frequency electromagnetic field amplitude modulated results

Step size increment	1%
Dwell time ¹	3 s
Antenna polarization	Vertical and Horizontal
Modulation	CW signal amplitude modulated (AM) with 80 % depth with a 1 kHz sine wave
EUT setup configuration	Table top
EUT position facing antenna	Front side, back side, left side and right side
Frequency range, MHz	Test level, V/m Comments

80 1000 No degradation 3 Notes: ¹The dwell time at each frequency was not less than the time necessary for the EUT to be exercised and to be able to respond. The time to exercise the EUT is

not interpreted as a total time of a program or a cycle but related to the reaction time in case of failure of the EUT.

Table 9.1-4: Spot frequency - Continuous RF Electromagnetic Field Disturbances results

Dwell time ¹	3 s			
Antenna polarization	Vertical and Horizontal			
Modulation	CW signal amplitude modulated (AM) wit	CW signal amplitude modulated (AM) with 80 % depth with a 1 kHz sine wave		
EUT setup configuration	Table top			
EUT position facing antenna	Front side, back side, left side and right side	de		
Frequency MHz	Test level, V/m	Comments		
1800	3	No degradation		
2600	3	No degradation		
3500	3	No degradation		
5000	3	No degradation		

Notes: ¹The dwell time at each frequency was not less than the time necessary for the EUT to be exercised and to be able to respond. The time to exercise the EUT is not interpreted as a total time of a program or a cycle but related to the reaction time in case of failure of the EUT.

Setup photo 9.1.6

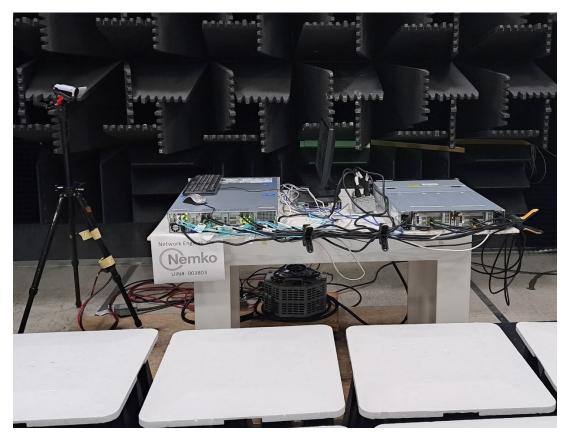


Figure 9.1-1: Radio-frequency electromagnetic field amplitude modulated setup photo

Radio-frequency continuous conducted 9.2

References 9.2.1

SANS 61000-4-6

9.2.2 Test summary

Verdict	Pass		
Test date	April 10, 2023	Temperature	19 °C
Test engineer	Greg Woelke, EMC Test Engineer	Air pressure	1005 mbar
Test location	Ground Plane	Relative humidity	60 %

9.2.3 Notes

None.

9.2.4 Setup details

Table 9.2-1: Radio-frequency continuous conducted equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Signal Generator	Rohde & Schwarz	SMC 100A	E1306	2Yr	12/5/2023
RF Amplifier	Ophir	GRF5048	E1255	NCR	NCR
CDN	FCC	FCC-801-M3-25	846	1 Yr	3/8/2024
CDN	FCC	FCC-801-M4-25A	628	1 Yr	8/12/2023
Variac	Shanghai China	TDGC	S1037	NCR	NCR
Multimeter	Fluke	111	813	1 Yr	9/19/2023

Notes: Choose an item.

Table 9.2-2: Radio-frequency continuous conducted test software details

Manufact	urer of Software	Details
ETS-LINDG	IREN	TILE! Version 6.0.4.548
Notes:	None	

9.2.5 Test data

Table 9.2-3: Swept frequency – Radio-frequency continuous conducted results 0.15-80 MHz Frequency range: Step size increment: 1% Dwell time¹: 3 s Signal level: $3 V_{\text{RMS}}$ Modulation: CW signal amplitude modulated (AM) with 80 % depth with a 1 kHz sine wave Ports investigated **Coupling method** 50 $\boldsymbol{\Omega}$ termination point Comments AC Mains PSA and PSB CDN CDN No degradation 100G NIC (QSFP28G) Clamp CDN No degradation USB CDN No degradation Clamp Ethernet CDN No degradation Clamp Ethernet MGMT CDN No degradation Clamp

Notes: ¹The dwell time at each frequency was not less than the time necessary for the EUT to be exercised and to be able to respond. The time to exercise the EUT is not interpreted as a total time of a program or a cycle but related to the reaction time in case of failure of the EUT.

9.2.6 Setup photo

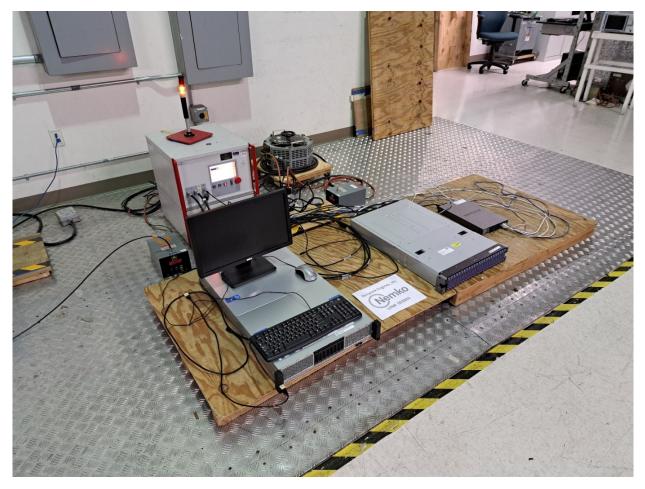


Figure 9.2-1: Radio-frequency continuous conducted on AC mains setup photo

Section 9 Test name Specification

Testing data Radio-frequency continuous conducted SANS 2335:2018/CISPR 35:2016



Figure 9.2-2: Radio-frequency continuous conducted on I/O cable setup photo

9.3 Electrostatic discharge

9.3.1 References

SANS 61000-4-2

9.3.2 Test summary

Verdict	Pass		
Test date	April 12, 2023	Temperature	20 °C
Test engineer	Greg Woelke, EMC Test Engineer	Air pressure	998 mbar
Test location	ESD Room	Relative humidity	56 %

9.3.3 Notes

None

9.3.4 Setup details

Table 9.3-1: Electrostatic discharge equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
ESD Simulator Gun	EMTest	Dito	E1173	1 Yr	4/29/2023
Variac	Shanghai China	TDGC	S1037	NCR	NCR
Multimeter	Fluke	111	813	1 Yr	9/19/2023
Notes: None					

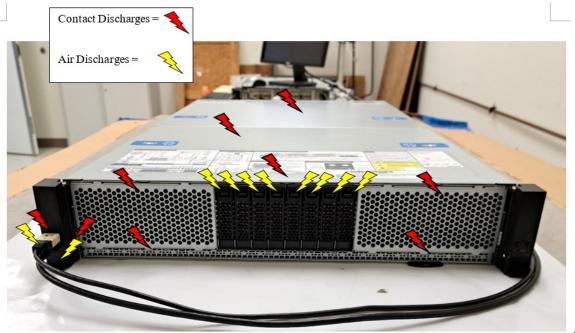
Notes: None

Notes:

9.3.5 Test data

Table 9.3-2: Electrostatic discharge results
--

EUT setup configuration:	Table top			
ESD repetition rate:	1 pulse per second			
Discharges:	25 contact discharges and	10 air discharges at each polarity		
Contact discharge ^{1 and 2}		Test voltage (±kV)	Comments	
Please refer to "Electrostatic d	ischarge test location	4	No degradation	
points" photos of this section		4	No degradation	
Indirect discharge ^{1 and 2}		Test voltage (±kV)	Comments	
HCP (all sides)		4	No degradation	
		٨	No degradation	
VCP (all sides)		4	No degradation	
VCP (all sides) Air discharge		4 Test voltage (±kV)	Comments	
,	ischarge test location		0	


¹For contact discharge, the requirement to apply ESD discharges at lower levels, as defined in Clause 5 of IEC 61000-4-2, is not applicable.

² The EUT was exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. For table-top equipment one of the test points was the center front edge of the horizontal coupling plane, which was subjected to at least 50 indirect discharges (25 of each polarity). All other test points received at least 50 direct contact discharges (25 of each polarity). If no direct contact test points were available, then at least 200 indirect discharges were applied in the indirect mode.

Electrostatic discharges were applied only to those points and surfaces of the EUT which are expected to be touched during usual operation, including user access, as specified in the user manual, for example cleaning or adding consumables when the EUT is powered.

9.3.5 Test data, continued

Electrostatic discharge test location point's for VER5000CYP

Figure 9.3-1:

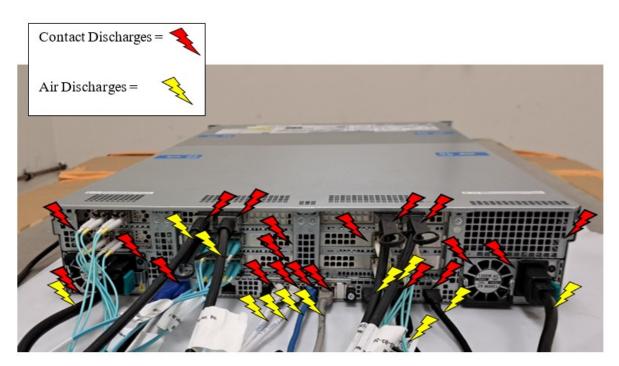
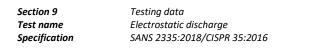



Figure 9.3-2: Electrostatic discharge test location point's for VER5000CYP

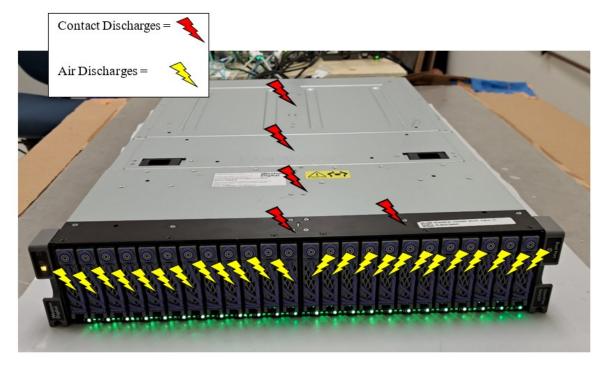
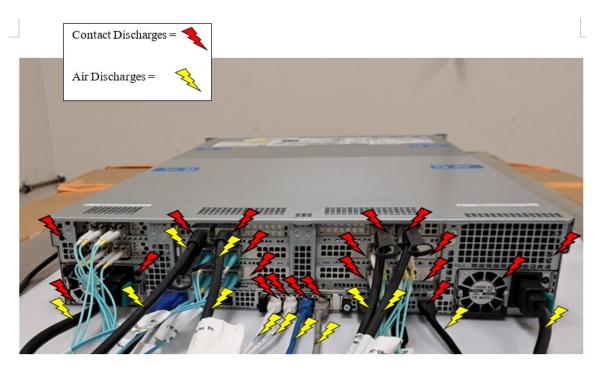



Figure 9.3-3: Electrostatic discharge test location point's for DCS0010

Figure 9.3-4: Electrostatic discharge test location point's for DCS0010

9.3.6 Setup photo

Figure 9.3-5: Electrostatic discharge setup for VER5000CYP

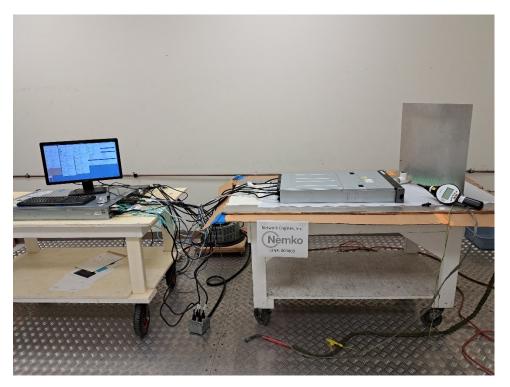


Figure 9.3-6: Electrostatic discharge setup for DCS0010

Surge 9.4

9.4.1 References

SANS 61000-4-5

9.4.2 Test summary

Verdict	Pass		
Test date	April 10, 2023	Temperature	19 °C
Test engineer	Greg Woelke, EMC Test Engineer	Air pressure	1005 mbar
Test location	Ground Plane	Relative humidity	60 %

9.4.3 Notes

None

9.4.4 Setup details

Table 9.4-1: Surge equipment list					
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Multitest Generator	TESEQ	NSG 3060	E1341	1 Yr	9/2/2023
Coupling Network	TESEQ	CDN 3061-C16	E1125	1 Yr	9/2/2023
Variac	Shanghai China	TDGC	S1037	NCR	NCR
Multimeter	Fluke	111	813	1 Yr	9/19/2023
Notes: None					

Notes: None

Table 9.4-2: Surge test software details

Manufact	urer of Software	Details
TESEQ		Advanced Test Solution for EMC, Version 1.3.2
Notes:	None	

9.4.5 Test data

Table 9.4-3: Surge at AC power ports results						
Open circuit voltage (T ₁ / T ₂): 1.2/50 μs (T ₁ = front time, T ₂ = time to half value)						
Short circuit curent (T ₁ / T ₂):	8/20 µs (T₁ = fron	8/20 μs (T ₁ = front time, T ₂ = time to half value)				
Surge pulse interval:	interval: 30 s					
Number of pulses:	er of pulses: 5 positive and 5 negative					
Test port		Coupling	Test voltage (±kV)	Comments		
		Phase to Neutral	0.5, 1	No degradation		
AC mains power PS A & PS B		Phase to ground	0.5, 1, 2	No degradation		
		Neutral to ground	0.5, 1, 2	No degradation		
Notes: – Phase to neutral of	oupling : Surge applied	with generator output impedance se	et to 2 Ω			

pling : Surge applied with generator output impedance set to 2 Ω - $\,$ Phase/neutral to ground coupling : Surge applied with generator output impedance set to 12 Ω

- $\,$ Surge applied synchronous (relation to power supply): 0, 90, 180, and 270° $\,$

9.4.6 Setup photo

Figure 9.4-1: Surge setup photo

9.5 Fast transients

9.5.1 References

SANS 61000-4-4

9.5.2 Test summary

Verdict	Pass		
Test date	April 13, 2023	Temperature	20 °C
Test engineer	Greg Woelke, EMC Test Engineer	Air pressure	1000 mbar
Test location	Ground Plane	Relative humidity	47 %

9.5.3 Notes

None

9.5.4 Setup details

Table 9.5-1: Fast transients equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Multitest Generator	TESEQ	NSG 3060	E1341	1 Yr	9/2/2023
Coupling Network	TESEQ	CDN 3061-C16	E1125	1 Yr	9/2/2023
Variac	Shanghai China	TDGC	S1037	NCR	NCR
Multimeter	Fluke	111	813	1 Yr	9/19/2023

NCR - no calibration required Notes:

Table 9.5-2: Fast transients test software details

Manufac	turer of Software	Details
TESEQ		Advanced Test Solution for EMC, Version 1.3.2
Notes:	None	

9.5.5 Test data

Table 9.5-3: Fast transients results				
Wave shape (Tr / Td):	5/50 ns (Tr = rise time, Td= duration time)			
Repetition frequency4:	5 kHz			
Burst duration:	15 ms			
Burst period:	300 ms			
Test duration:	60 s			
Test port		Test voltage (±kV)	Comments	
AC mains power PS A & PS B ¹	and 2	0.5, 1	No degradation	
100G NIC (QSFP28G)		0.5	No degradation	
USB		0.5	No degradation	
Ethernet		0.5	No degradation	
Ethernet MGMT		0.5	No degradation	
Notes: ¹ Transient applied	asynchronous (relation to power supply)			

²The test voltage was applied simultaneously between a ground reference plane and all of the power supply terminals and the protective or functional earth port on the EUT cabinet

³The test voltage was applied via capacitive coupling clamp

⁴ For xDSL equipment, the repetition frequency for EFT testing was 100 kHz

- If the EUT contained several ports with the same particular interface, only one was tested
- Multiconductor cables, such as a 50-pair telecommunication cable, were tested as a single cable. _

9.5.6 Setup photos

Figure 9.5-1: Fast transients on AC Mains setup photo

Section 9 Test name Specification Testing data Fast transients SANS 2335:2018/CISPR 35:2016

Figure 9.5-2: Fast transients on AC Mains and analog/digital data port setup photo

9.6 Voltage dips and voltage interruptions

9.6.1	References				

SANS 61000-4-11

9.6.2 Test summary

Verdict	Pass		
Test date	March 31, 2023	Temperature	18 °C
Test engineer	Greg Woelke, EMC Test Engineer	Air pressure	1009 mbar
Test location	Ground Plane	Relative humidity	51 %
9.6.3 Notes			
None			
9.6.4 Setup details			

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
AC Power Source	California Instruments	3001 iX	D1851	1 Yr	2/26/2024
Large Magnetic Coil	Nemko	N/A	E1036	NCR	NCR
Variac	Shanghai China	TDGC	S1037	NCR	NCR
Multimeter	Fluke	111	813	1 Yr	9/19/2023

Table 9.6-1: Voltage dips and voltage interruptions equipment list

Notes: None

Table 9.6-2: Voltage dips and voltage interruptions test software details

Manufact	urer of Software	Details
California	Instruments	AC Source CIGui SII Version 3.0.0
Notes:	None	
9.6.5	Test data	

Table 9.6-3: Voltage dips results

Variation/dip repetition:	Sequence of three dips/interruptions with an in	ee dips/interruptions with an interval of 10 seconds between each test				
Test port	Voltage reduction (%)	Voltage reduction (%) Periods Comments				
AC Mains PS A & PS B	100	0.5	No degradation			
AC IVIDINS PS A & PS B	30	25	No degradation			

Notes: Changes occurred at the 0 crossings of the voltage waveform

Table 9.6-4: Voltage interruptions results

Variation/dip repetition:	Sequence of three dips/interruptions with an interval of 10 seconds between each test				
Test port	Voltage reduction (%)	Periods	Comments		
AC Mains PS A & PS B	100	250	EUT power cycled		
Notes: Changes occurred at the O crossings of the voltage waveform					

Notes: Changes occurred at the 0 crossings of the voltage waveform

Report reference ID: PRJ0029749-7TRFEMC SABS UIN 003803

SABS

Testing data Power-frequency magnetic field SANS 2335:2018/CISPR 35:2016

9.6.6 Setup photo

Figure 9.6-1: Voltage dips and voltage interruptions setup photo

9.7 Power-frequency magnetic field

9.7.1 References

SANS 61000-4-8

9.7.2 Test summary

Verdict	Pass		
Test date	March 31, 2023	Temperature	18 °C
Test engineer	Greg Woelke, EMC Test Engineer	Air pressure	1009 mbar
Test location	Ground Plane	Relative humidity	51 %

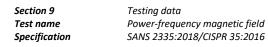
9.7.3 Notes

Applicable only to equipment containing devices susceptible to magnetic fields, such as CRT monitors, Hall elements, electrodynamic microphones, magnetic field sensors, etc.

9.7.4 Setup details

Table 9.7-1: Power-frequency magnetic field equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
AC Power Source	California Instruments	3001 iX	D1851	1 Yr	2/26/2024
Magnetic Field Level Tester	Narda	ELT-400	851	1 Yr	1/25/2024
Magnetic Field Sensor	Narda	F-0012	852	1 Yr	1/25/2024
Large Magnetic Coil	Nemko	N/A	E1036	NCR	NCR
Variac	Shanghai China	TDGC	S1037	NCR	NCR
Multimeter	Fluke	111	813	1 Yr	9/19/2023


Notes: NCR - no calibration required

9.7.5 Test data

Table 9.7-2: Power-frequency magnetic field results

Assessment time:	5 minutes at each loop polarization		
Signal frequency:			
Magnetic field test level:	1 A/m		
Loop polarization		Comments	
Vertical (aligned with AC power line)		No degradation	
Vertical (perpendicular to AC power line)		No degradation	
Horizontal		No degradation	

Notes: The EUT was arranged and connected to satisfy its functional requirements, and was placed at the center of the coil system (immersion method). Physically large products that could not be completely submerged in the magnetic field; only the sensitive devices (such as CRT monitors if they are the only sensitive parts were tested.

9.7.6 Setup photo

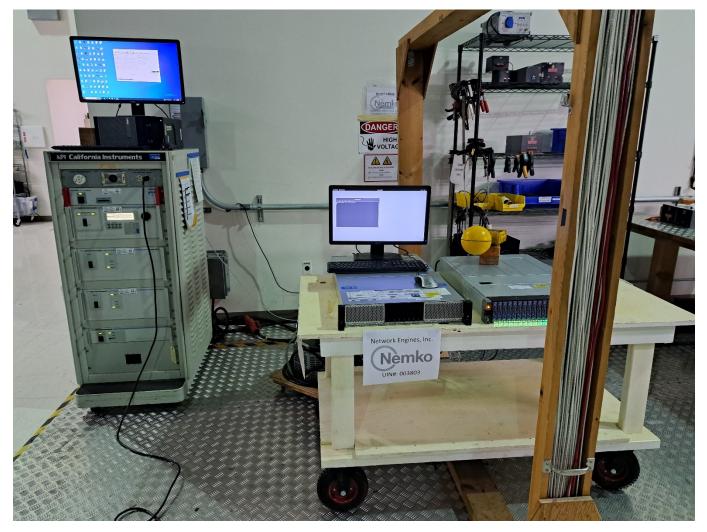


Figure 9.7-1: Power-frequency magnetic field setup photo

Section 10 EUT photos

10.1 External photos

Figure 10.1-1: VER5000CYP Front view photo

Figure 10.1-2: VER5000CYP Rear view photo

Figure 10.1-3: VER5000CYP Side view photo

Figure 10.1-4: VER5000CYP Side view photo

Figure 10.1-5: DCS0010 Front view photo

Figure 10.1-6: DCS0010 Rear view photo

Figure 10.1-7: DCS0010 Side view photo

Figure 10.1-8: DCS0010 Side view photo